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Abstract. The distinction between the proofs that only certify the truth of their con-

clusion and those that also display the reasons why their conclusion holds has a long

philosophical history. In the contemporary literature, the grounding relation—an objec-

tive, explanatory relation which is tightly connected with the notion of reason—is receiving

considerable attention in several fields of philosophy. While much work is being devoted

to characterising logical grounding in terms of deduction rules, no in-depth study focusing

on the difference between grounding rules and logical rules exists. In this work, we anal-

yse the relation between logical grounding and classical logic by focusing on the technical

and conceptual differences that distinguish grounding rules and logical rules. The calculus

employed to conduct the analysis provides moreover a strong confirmation of the fact that

grounding derivations are logical derivations of a certain kind, without trivialising the

distinction between grounding and logical rules, explanatory and non-explanatory parts of

a derivation. By a further formal analysis, we negatively answer the question concerning

the possible correspondence between grounding rules and intuitionistic logical rules.

§1. Introduction. According to a philosophical tradition dating back to Aris-
totle’s Posterior Analytics [3, Post. An. I, 2–8], certain proofs do not only certify
the truth of their conclusion but also display the reasons why their conclusion
holds. In the contemporary philosophical literature, the grounding relation—an
objective, explanatory relation which can be traced back to Bolzano’s notion
of Abfolge [4]—is receiving considerable attention in several fields of philosophy.
Grounding is usually introduced as the relation that connects two relata if the
first—the ground—constitutes a reason why the second—the consequence—holds.
Much work is being devoted to characterising grounding for logical formulae in
terms of deduction rules, see for instance [22, 6, 19], but no study focusing on the
difference between rules for logical grounding and rules for logical reasoning exists.
In this work, we fill this gap by an in-depth formal analysis of the relationship
between grounding and logical rules for classical and intuitionistic logic.

It has been shown in [11] that grounding rules defined according to the notion
of grounding introduced in [18] and inspired by Bolzano’s notion of Abfolge can
be effectively used as logical introduction rules. In particular, it is possible to
define a grounding calculus which is also a complete calculus for classical logic by
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2 FRANCESCO A. GENCO

employing grounding rules instead of certain logical introduction rules. The work
presented in [11] moreover includes a proof that the presented calculus normalises
and hence that the employed grounding rules are proof-theoretically balanced with
respect to logical elimination rules. This balance matches the one between logical
rules for introducing connectives and logical rules for eliminating connectives,
and implies that by eliminating a connective we do not obtain more than what
is required to introduce it. Therefore, we know that the information that the
premisses of a grounding rule are derivable already contains all the information
that we can obtain from its conclusion by an elimination rule application. This
result leaves a question open though, since the calculus introduced in [11] does
not only contain grounding rules for introducing connectives, but also contains
one logical introduction rule. Indeed, the grounding rules for negation are too
strict with respect to the traditional negation introduction rule and hence not
enough to define a complete calculus for classical logic. The simple solution
to this problem adopted in [11] is to include also an unrestricted version of

the negation introduction rule

[A]n
....
⊥
¬A

n

in the calculus. The addition of this rule

yields a complete and normalising calculus, but it is not immediately apparent
whether a subtler solution is possible. Could we not find a more meaningful
way to reintegrate what grounding rules lack with respect to logical introduction
rules? Moreover, are there logical rules which give us some intuition about what
grounding rules are precisely missing to become a sufficient set of introduction
rules? We positively answer this question by defining the calculus GCL which
only contains grounding rules as introduction rules. The calculus essentially
relies on the presence of a rule, often called classical dilemma, corresponding to a
disjunction elimination applied to an instance of the excluded middle law A∨¬A:

[A]n
....
B

[¬A]n
....
B

B
CDn

As we will argue, this answer to the question about what grounding rules are
missing with respect to logical introduction rules is essentially tied to the nature
of grounding as an explanatory relation. The formal role of the classical dilemma
rule in this calculus can be given a precise philosophical interpretation which
clarifies the nature of grounding rules and presents strong connections with the
notion of informational analyticity discussed in [7, 8]. The introduced grounding
calculus GCL thus gives us a very precise idea of what kind of logical derivations
are grounding derivations and, even though it constitutes a confirmation of the
fact that grounding derivations are logical derivations of a particular kind, it does
not trivialise the difference between grounding rules and logical rules, explanatory
and non-explanatory parts of a logical derivation.

This result raises a further question though. Since classical logic can be defined
by adding the law of excluded middle to intuitionistic logic, and since adding this
law to a set of grounding rules and elimination rules yields a calculus for classical
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logic, could it not be that grounding rules exactly correspond to intuitionistic
introduction rules? A positive answer to this question would agree with a quite
widespread belief that grounding should be closer to intuitionistic reasoning—or at
least to some kind of constructive reasoning—than to classical reasoning. Indeed,
Bolzano himself stressed that Abfolge derivations should not feature arguments by
reductio ad absurdum. Nevertheless, an exact correspondence between grounding
rules and intuitionistic introduction rules does not hold. While it is true that
grounding derivations do not contain non-constructive reasoning steps, as we will
show, grounding rules alone are not strong enough to constitute a suitable set of
introduction rules for intuitionistic logic either.1

Before introducing the calculi that we will employ, let us discuss Bolzano’s
notion of truth and its relation with Abfolge, classical and intuitionistic logic.

1.1. Bolzano, grounding, classical and intuitionistic logic. Quite clearly,
Bolzano’s notion of truth is much more compatible with a classical notion of
truth rather than with an intuitionistic one. According to Bolzano, indeed, truth
does not depend in any way on its relation to a subject or on the existence of
any evidence for it. The following remark clearly witnesses this:

The number of blossoms that were on a certain tree last spring is a
statable, if unknown, figure. Thus, the proposition which states this
figure I call an objective truth, even if nobody knows it. [4, WL §25]

This stance by Bolzano is decidedly incompatible with an intuitionistic notion of
truth, according to which something is true only insofar as a mental construction
proves it true, see for instance [16]. In [4, WL §125], moreover, Bolzano extensively
discusses his position according to which a proposition is either true or false, and
no other possibility is admitted, which evidently matches the classically valid—
but not intuitionistically valid—law of the excluded middle: A ∨ ¬A. Therefore,
from a technical perspective, Bolzano’s background logic is clearly classical logic,
see also [26] for a detailed discussion on the topic. Nevertheless, the notion
of Abfolge presents strong similarities with intuitionistic derivability. Indeed,
as Bolzano argues in [4, §530], while logical derivations can feature apagogic
reasoning steps—that is, by reductio ad absurdum—this kind of reasoning does
not appear among what can be legitimately employed in Abfolge derivations, see
also [15] and [21] on the subject. Hence, since according to Bolzano an Abfolge
derivation is a particular kind of logical derivation, Abfolge might be taken to
define a fragment of the class of classical derivations which is identical—or at
least very closely related—to the one induced by intuitionistic derivability. As we
will see, though, this is not the case. Indeed, if we define a derivability relation
on the basis of Bolzano’s Abfolge, we obtain a notion of derivability which is
much stricter than the one based on intuitionistic logical introduction rules.

1Notice that, even though the methods and systems employed in the second part of the

present work might seem to suggest otherwise, the aim of this part is not to proof-theoretically

characterise an intuitionistic notion of grounding. The attempt to define a notion of grounding
that complies with the main tenets of complete grounding but is based an intuitionistic notion

of truth is certainly an endeavour of great interest, but would require rather different ideas
than those employed here. We must, hence, leave such an endeavour for future work.
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The rest of the article is structured as follows. In Section 2 we present the simple
grounding calculus Gr and we show that it is sound and complete with respect
to classical logic. In Section 3 we present the refinement GCL of the calculus
Gr which only contains grounding rules as introduction rules; we moreover show
that the rules of Gr that are not rules of GCL are eliminable, and hence that
also GCL is sound and complete with respect to classical logic. In Section 3.2
we investigate the conceptual significance of GCL with respect to the distinction
between grounding and logical rules for classical logic. In Section 4, we analyse
the relationship between grounding rules and logical rules for intuitionistic logic.
We conclude in Section 5 with a brief summary of the presented work.

§2. A simple grounding calculus. We formally define the grounding cal-
culus Gr for classical logic based on the notion of complete logical grounding
introduced in [18, 19]. The grounding rules of Gr are the propositional grounding
rules of the calculus presented in [13]. The logical language that we will consider
is the language of propositional classical logic:

ϕ ::= ξ | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ ξ ::= p | q | r | . . .

where p, q, r, . . . are propositional variables.
We adopt the usual conventions concerning parentheses. In particular, negations

bind more strictly than binary connectives, ∧ and ∨ bind more strictly than →,
and, finally, implications associate to the right. Hence, for instance, ¬A ∧B →
C → D abbreviates ((¬A) ∧B)→ (C → D).

In order to present the rules of the grounding calculus, we introduce the
notion of converse formula. As detailed and philosophically motivated in [18],
complete logical grounds are not constructed by directly negating formulae but by
employing converse formulae instead.2 Naturally, the converse A⊥ of the formula
A is true when A is false. Here is the formal definition.

Notation. We denote by ¬n a sequence ¬ . . .¬ containing n consecutive occur-
rences of the symbol ¬. For instance ¬3p will denote the formula ¬¬¬p.

Definition 2.1 (Converse Formula). For any formula A, the converse A⊥ of
A is defined as follows:

• if A = ¬2nB where B does not begin with ¬, then A⊥ = ¬A
• if A = ¬2n+1B where B does not begin with ¬, then A⊥ = ¬2nB

Examples of pairs of converse formulae are ¬¬P and ¬¬¬P , A∧B and ¬(A∧B).
Now that we introduced the required notation, we can present the rules of

the calculus and clarify their intended meaning. Table 1 contains the grounding
rules of the calculus. We distinguish the application of these rules from the
applications of other rules by a double inference line. Grounding rules of the

2The technical details of the definition of the converse of a formula depend on the notion

of g-complexity, see [18]. This complexity measure is the grounding counterpart of logical

complexity and enables us to select the largest proper subformulae of a formula A the truth of
which positively determines the truth of A. With this in mind, the converse of a formula A is

built by adding a negation to A if this does not produce a formula of greater g-complexity, and
by removing a negation from A otherwise.
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A B

A ∧B
A B

A ∨B
A | B⊥

A ∨B
B | A⊥

A ∨B
B | A
A→ B

A⊥ B

A→ B

A⊥ | B⊥

A→ B

A⊥ B⊥

¬(A ∧B)

A⊥ | B
¬(A ∧B)

B⊥ | A
¬(A ∧B)

A⊥ B⊥

¬(A ∨B)

A B⊥

¬(A→ B)

A

¬¬A

Table 1. Grounding Rules of Gr

forms
A

B
,
C D

E
and

F | G
H

express, respectively, that A is the ground of B, that

C and D constitute the ground of E, and that F is the ground of H under the
condition G. The vertical bar | appearing in the third kind of rule does not play
any role in the construction of derivations: all premisses of any grounding rule
must be derived before the rule can be applied. The meaning of the vertical bar
exclusively concerns grounding. Indeed, the premiss that stands to the right of
the vertical bar is not part of the ground of the formula occurring as conclusion
of the rule, but constitutes a side condition required to be able to consider the
premiss to the left of the bar as the complete ground of the conclusion.

These grounding rules are intended as means for explaining true formulae
according to a notion of logical grounding formalised in [18] and inspired by
the requirements that Bernard Bolzano proposed for his notion of grounding—
Abfolge in the original, German text [4]. According to this notion of grounding,
a ground is supposed to be true, to completely account for the truth of the
relative consequence, and to constitute the unique objective reason why the
consequence holds—as extensively discussed for instance in [4, §203–§210]. Hence,
technically, the ground will not only constitute a sufficient condition for the
relative consequence, but also a necessary condition if we take into account what
is true and what is false in the context under consideration. The role of the
side conditions in grounding rules is precisely that of guaranteeing this. If we

consider, for instance, the grounding rule
A | B⊥

A ∨B
for disjunction, the condition

B⊥ has the role of guaranteeing that the ground A is the unique and complete
reason why A ∨B is true. The truth of A alone, indeed, would certainly imply
the truth of A ∨B; but, if we were not to specify that B is false by B⊥, the fact
that A is true would not necessarily be the only reason why A ∨B is true and,
therefore, A would not be a necessary condition for the truth of A ∨ B. This
stress on the necessary character of the ground with respect to the truth of the
conclusion is also the main difference between the notion of complete grounding
and the well-established notion of full grounding [22, 10, 6]. Indeed, a full ground
of a formula is not required to be also a necessary condition for the formula.

In Table 2, we present the logical rules for the connectives ⊥,¬,∧,∨ and→. We
call, as usual, introduction rules those rules in the schema of which a certain logical
constant—or group of logical constants—is displayed in the conclusion but not in
the premisses, and elimination rules those rules in the schema of which a certain
logical constant—or group of logical constants—is displayed in some premisses
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but not in the conclusion. Hence, Table 2 contains, in order, elimination rules for
conjunction, disjunction and implication, negation introduction, ⊥ elimination,
double negation elimination, and negation elimination.3

⊥
A
¬¬A
A

A ∧B
A

A ∧B
B

A ∨B

[A]n
....
C

[B]n
....
C

C
n A→ B A

B

[A]n
....
⊥
¬A

n ¬A A
⊥

where n ∈ N

Table 2. Logical Rules for Gr

The negation introduction rule is the only introduction rule in Table 2. While
the idea behind the definition of the calculus Gr is to replace logical introduction
rules by grounding rules, this cannot be done for negation rules. Indeed, the
restrictions on the grounding rules for negation make them wanting as logical
introduction rules. An easy solution to this problem is to include in the calculus an
unrestricted version of the grounding rules for negation: the traditional negation
introduction rule. This solution is perfectly satisfactory from a logical perspective,
but subtler solutions can be adopted if we wish to better understand the relation
between grounding rules and logical rules, as shown in Section 3.

Definition 2.2 (Derivation). A derivation in a calculus C is built by starting
from hypotheses and by applying the rules of the calculus C, see [20] for details.

We assume, finally, that the calculus does not distinguish between ground-
theoretically equivalent formulae, see [5, 18]. Two formulae A and B are ground-
theoretically equivalent if A can be obtained from B by applying the laws of
commutativity and associativity, shown below, to some subformulae of B.4

B ∧A ↔ A ∧B (A ∧B) ∧ C ↔ A ∧ (B ∧ C)

B ∨A ↔ A ∨B (A ∨B) ∨ C ↔ A ∨ (B ∨ C)

Notice that, while the calculus contains both grounding and logical rules, only
the grounding rules are supposed to be explanatory. The logical rules are simply
supposed to provide a background notion of logical reasoning—which we will
show to be sufficient even if we do not include all traditional logical introduction
rules—but not to comply with the requirements that we have on explanatory
rules. Hence, the explanatory parts of the derivations constructed by employing
the calculus will only be those obtained by grounding rule applications. The
double inference line employed for grounding rules is precisely meant to provide
an immediate visual indication of the explanatory parts of a derivation.

2.1. Classical soundness and completeness. We show now that, if we
employ the grounding rules as introduction rules for the connectives of classical
logic, then Gr is also a calculus for classical logic. Technically, we will show that

3Since ¬A can be defined as A→ ⊥, we do not consider the rules for negation as rules for
introducing or eliminating ⊥.

4Different but equivalent ways of internalising the ground-theoretic equivalences in a calculus
can be found in [13] and [11].
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Gr is sound and complete with respect to the standard natural deduction calculus
NC for classical logic, see [20], presented in Table 3. But first, we establish
some simple lemmata which will enable us to work with the notation A⊥ for the
converse of a formula A without bothering about the internal structure of A.

Lemma 2.1. For any formula A, A ∨A⊥ is derivable in Gr and in NC.

Proof. If A = ¬2nB, then A⊥ = ¬A and (¬A)⊥ = A. Thus, we can derive
A ∨A⊥ = A ∨ ¬A in Gr as follows:

[¬(A ∨ ¬A)]1

[¬(A ∨ ¬A)]1
[A]2 |

[A]2

(¬A)⊥

A ∨ ¬A
⊥
¬A

2

|

[¬(A ∨ ¬A)]1
[A]2 |

[A]2

(¬A)⊥

A ∨ ¬A
⊥
¬A

2

A⊥

A ∨ ¬A
⊥

¬¬(A ∨ ¬A)
1

A ∨ ¬A
If, on the other hand, A = ¬¬2nB, then A⊥ = ¬2nB and A∨A⊥ = ¬¬2nB∨¬2nB
is of the form ¬C ∨ C where C⊥ = ¬C and (¬C)⊥ = C. Thus, we can derive
A ∨A⊥ = ¬C ∨ C in Gr as follows:

[¬(¬C ∨ C)]1

[¬(¬C ∨ C)]1
[C]2 |

[C]2

(¬C)⊥

¬C ∨ C
⊥
¬C

2

|

[¬(¬C ∨ C)]1
[C]2 |

[C]2

(¬C)⊥

¬C ∨ C
⊥
¬C

2

C⊥

¬C ∨ C
⊥

¬¬(¬C ∨ C)
1

¬C ∨ C

As for NC, we just have to notice that A ∨ (A⊥) has either the form C ∨ ¬C or
¬C ∨ C, as argued above, and that both formulae are derivable in NC. a

We prove now that the formula A and its converse A⊥ are always contradictory.

Lemma 2.2. For any A, A
⊥ A
⊥

is both a Gr and an NC derivation.

Proof. If A = ¬2nB, then A⊥ = ¬A and we have ¬A A
⊥ . If, on the other

hand, A = ¬¬2nB, then A⊥ = ¬2nB and we have ¬¬
2nB ¬2nB
⊥

. a

We can finally prove that Gr is sound and complete with respect to classical
logic. In order to do so, we adopt the usual notation for derivability.

Definition 2.3 (Derivability). For any calculus C, set of formulae Γ, and
expression E, the relation Γ `C E holds if there is a derivation of E from
hypotheses Γ constructed exclusively using rules of the calculus C.
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A B
A ∧B

A ∧B
A

A ∧B
B

A
A ∨B

B
A ∨B

A ∨B

[A]n
....
C

[B]n
....
C

C
n

[A]n
....
B

A→ B
n A→ B A

B

[A]n
....
⊥
¬A

n ¬A A
⊥

⊥
A

[¬A]n
....
⊥
A

n

where n ∈ N

Table 3. The Calculus NC

Theorem 2.3 (Soundness (CL)). The calculus Gr is classically sound.

Proof. We show that, for any Γ and F , if Γ `Gr F then Γ `NC F . The proof
is by induction on the number of rule applications in the Gr derivation.

If no rule is applied in the NC derivation of F , Γ = {F} and the statement
trivially holds. Assume then that the Gr derivation of F contains n > 0 rule
applications and that if F has a Gr derivation containing m rule applications,
for m < n, then F has an NC derivation. We consider the last rule applied in
the Gr derivation of F . We only discuss some non-trivial cases.

• A⊥ B⊥

¬(A ∨B)
By I.H., A⊥ and B⊥ are derivable in NC. By Lemma 2.2, the

following is an NC derivation

[A ∨B]2
A⊥ [A]1

⊥
B⊥ [B]1

⊥
⊥

1

¬(A ∨B)
2

Therefore, the conclusion of the rule is derivable in NC as well.

• A B⊥

¬(A→ B)
By inductive hypothesis (now on I.H.), A and B⊥ are derivable

in NC. By Lemma 2.2, the following is an NC derivation

B⊥
[A→ B]1 A

B
⊥

¬(A→ B)
1

Therefore, the conclusion of the rule is derivable in NC as well.
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• ¬¬A
A

By I.H., ¬¬A is derivable in NC. By

[¬(A ∨ ¬A)]2

[¬(A ∨ ¬A)]2
[A]3

A ∨ ¬A
⊥
¬A

3

A ∨ ¬A
⊥

A ∨ ¬A
2

[A]1

A

¬¬A [¬A]1

A
A

1

we can derive the conclusion in NC.

a

Theorem 2.4 (Completeness (CL)). The calculus Gr is classically complete.

Proof. We show, in particular, that, for any set of hypotheses Γ and formula
F , Γ `NC F then Γ `Gr F . The proof is by induction on the number of rule
applications in the NC derivation of F . If no rule is applied in the NC derivation,
the statement trivially holds. Assume then that the NC derivation of F contains
n > 0 rule applications and that if a formula has an NC derivation containing m
rule applications, for m < n, then it has also a Gr derivation. We consider the
last rule applied in the NC derivation. We only discuss some non-trivial cases.

• A
A ∨B By I.H., the premiss is derivable in Gr. By Lemma 2.1 we have

that the following is a Gr derivation:

. . .
B ∨B⊥

A [B]1

A ∨B
A | [B⊥]1

A ∨B
A ∨B

1

•

[A]n
....
B

A→ B
n

By I.H., the premiss B is derivable in Gr fom the hypothesis

A. By Lemmata 2.1 and 2.2, the following is a Gr derivation:

. . .
A ∨A⊥

[A]1
....
B | [A]1

A→ B

. . .
B ∨B⊥

[A⊥]1 [B]2

A→ B

[A⊥]1 | [B⊥]2

A→ B
A→ B

2

A→ B
1

a

Corollary 1. The grounding calculus Gr is classically sound and complete.

Proof. By Theorems 2.3 and 2.4. a
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§3. The specific difference between grounding and classical logic. As
we have seen, grounding rules constitute a suitable basis for defining a complete
set of rules for classical logic. Grounding rules are not the only introduction rules
in Gr though. This is due to the fact that grounding rules for negation do not
enable us to derive the negation of a generic formula. And this is not surprising,
because they are not supposed to do so. Since, for instance, no negation of an
atomic formula will ever have a logical ground, grounding rules are defined with
the precise intent of forbidding grounding derivations of formulae of this kind.
This is the reason why Gr also includes the traditional logical introduction rule for
negation. By including this particular rule in Gr, we obtain a complete calculus
for classical logic. A question naturally arises though: can we be more precise
about the difference between logical introduction rules and grounding rules? In
other words, do we need to fully lift the restrictions on the grounding rules for
negation or is there a way to define a complete calculus for classical logic that only
contains grounding rules as introduction rules? This question can be positively
answered, and the answer points at the specific conceptual difference between
grounding rules and logical introduction rules. In order to answer this question,
we define the calculus GCL, a variant of Gr that only contains grounding and
elimination rules, and the structural rule of classical dilemma. We show then
that GCL is classically sound and complete by exploiting the fact that Gr is.

A B

A ∧B
A B

A ∨B
A | B⊥

A ∨B
B | A⊥

A ∨B
B | A
A→ B

A⊥ B

A→ B

A⊥ | B⊥

A→ B

A⊥ B⊥

¬(A ∧B)

A⊥ | B
¬(A ∧B)

B⊥ | A
¬(A ∧B)

A⊥ B⊥

¬(A ∨B)

A B⊥

¬(A→ B)

A

¬¬A

A ∧B
A

A ∧B
B

A ∨B

[A]n
....
C

[B]n
....
C

C
n A→ B A

B
¬A A
⊥

⊥
P

⊥
¬P

[A]n
....
B

[¬A]n
....
B

B
n ¬¬A

A

where n ∈ N and P is a propositional variable

Table 4. Rules of GCL

Here is the formal definition of the grounding calculus GCL.

Definition 3.1 (Calculus GCL). GCL contains the rules in Table 4.

Let us now comment on the choice of the new rules of GCL.
The ex falso quodlibet (efq) rule for negated atoms is needed because no formula

can ground an atom or its negation. Indeed, the truth conditions of atoms and
negated atoms are, so to speak, extra-logical. From a technical perspective, there
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is no way to derive ¬P by grounding rules without having ¬P itself among the
hypotheses or inside some hypothesis. Notice, for instance, that even if we assume
⊥ as a hypothesis, we still cannot derive ¬P by using grounding rules.

Let us now move to the rule

[A]n
....
B

[¬A]n
....
B

B
n

which we will call now on the

classical dilemma (CD) rule.5 The technical role of this rule in GCL can be
understood if we consider that the principle A ∨ ¬A is used to simulate logical
introduction rule applications by grounding rule applications. Suppose, for
instance, that we have a derivation δ of the formula A and we want to derive
A∨B. The logical introduction rule enables us to do it directly, but the grounding
rule for disjunction does not. Nevertheless we can do it by applying the CD rule
to make a case distinction on B and ¬B, and then by applying the grounding rule

in each one of the two cases:6

δ
A [B]1

A ∨B

δ
A | [B⊥]1

A ∨B
A ∨B

1

The conceptual significance

of the possibility of simulating logical introduction rules by grounding rules and
the CD rule will be discussed in Section 3.2.7

In order to prove that GCL is sound with respect to classical logic, it is enough
to show that the efq rule for negated atoms and the CD rule are classically sound.

Theorem 3.1 (Soundness of GCL (CL)). The calculus GCL is classically sound.

Proof. All rules of Gr are classically sound, the efq rule for negated atoms is
just a restriction of the usual efq rule, and the CD rule can be simulated in NC
by a disjunction elimination on a formula of the form A ∨ ¬A. a

Since the only Gr rule which is missing from GCL is negation introduction and
since Gr is classically complete, to prove that GCL is classically complete, it is
enough to prove that negation introduction is unnecessary in GCL. Let us then
establish some terminology and a lemma which will be essential for the proof.

Definition 3.2 (Formula Length). The length of a formula F is the number
of occurrences of connectives—including ⊥—and propositional variables in F .

5Even though this is a rather simple rule corresponding to the excluded middle principle,
it can only be found in a few works, such as [24, 7, 8]. Different facets of its computational

behaviour have moreover been investigated in [14, 1, 2]
6This technique is used several times in the proof of Theorem 2.4.
7Let us remark that a calculus for classical logic could also be defined by using the CD

rule, an unrestricted elimination rule for ⊥, grounding rules and elimination rules. In such a
calculus, we could very easily dispense with all sorts of negation introductions. A derivation of

the form

[A]n
.
.
.
.
⊥
¬A

n

would be simulated by a derivation of the form

[A]1
.
.
.
.
⊥
¬A [¬A]1

¬A
1

where 1

is an application of the CD rule. But then again we would be clearly adding too much to the
calculus: much more than is required to make grounding rules sufficient as introduction rules.

The outcome of this addition—that is, the dispensability of any negation introduction rule—is
clearly an overcompensation for the strictness of grounding rules.

https://doi.org/10.1017/S1755020324000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000194


12 FRANCESCO A. GENCO

Lemma 3.2. For any formula B there is a GCL derivation γ of B from ⊥.

Proof. If B = ⊥, then γ = ⊥. Hence, in the rest of the proof we suppose
that B 6= ⊥ and we proceed by induction on the formula length l of B.

If l ≤ 2, then we can derive B from ⊥ by the efq rule or by the efq rule for
negated atoms. Suppose then that 2 < l. We reason by cases on the form of B.

• B = ¬C. We have four subcases.
– B = ¬¬D. By I.H., we can derive D from ⊥ without using negation

introductions. We construct γ by applying the grounding rule for double
negation to this derivation of D.

– B = ¬(D∧E) By I.H., we have derivations of D⊥ and E⊥ from ⊥ that
do not contain negation introductions. Indeed, it is easy to see that
the formula length of D⊥ is always smaller than the formula length of
¬(D ∧E); as is the formula length of E⊥. We construct γ by applying
the grounding rule for negated conjunctions to these derivations of D⊥

and E⊥.
– B = ¬(D ∨ E). By I.H., we have derivations of D⊥ and E⊥ from ⊥

that do not contain negation introductions. We construct γ by applying
the grounding rule for negated disjunctions to these derivations of the
converses of D and E.

– B = ¬(D → E). By I.H., we have derivations of D and E⊥ from
⊥ without negation introductions. We construct γ by applying the
grounding rule for negated implications to these derivations.

• B = C ∧D. By I.H., we have derivations of C and D from ⊥ that do not
contain negation introductions. We construct γ by applying the grounding
rule for conjunction to these derivations.

• B = C ∨D. By I.H., we have derivations of C and D from ⊥ that do not
contain negation introductions. We construct γ by applying the grounding
rule for disjunction to these derivations.

• B = C → D. By I.H., we have derivations of D and of C⊥ from ⊥ without
negation introductions. We construct γ by applying the grounding rule for
implication to these derivations.

a
Let us denote by GCL + ¬I the calculus obtained by extending GCL with the

negation introduction rule. We now prove that all applications of the negation
introduction rule can be eliminated from GCL + ¬I derivations.

Theorem 3.3. From any derivation in GCL + ¬I we can obtain one in GCL.

Proof. We associate to each GCL +¬I derivation δ a complexity (µ, ν) where
µ is the maximum among the lengths of the conclusions of negation introductions
in δ, and ν is the number of negation introductions in δ the conclusions of which
have length µ. The pairs (µ, ν) are ordered lexicographically.

The proof is by induction on the derivation complexity (µ, ν). Consider any
GCL + ¬I derivation δ and suppose that the complexity of δ is (µ, ν). If either
µ ≤ 1 or ν = 0, then δ is a GCL derivation and we are done. We suppose then
that 1 < µ and 0 < ν and we show that we can obtain a GCL + ¬I derivation
δ′ with complexity strictly smaller than (µ, ν). Since 1 < µ and 0 < ν, there
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is at least one negation introduction in δ. We consider a negation introduction
[A]n

....
⊥
¬A

n

in δ such that ¬A has length µ and
A....
⊥

does not contain any negation

introduction the conclusion of which has length µ. We can always find such an
application of negation introduction because it is enough to consider a topmost
one among those the conclusion of which has length µ. We reason then by cases
on the form of A. We only present some exemplar cases.

• A is an atom P . Then δ′ is

[P ]1
....
⊥
¬P

r
[¬P ]1

¬P
1

where 1 is an application of

the CD rule and r is an application of efq for negated atoms. Clearly δ′

has complexity (µ′, ν′) where either µ′ < µ, if the negation introduction
eliminated was the only one in δ with conclusion of maximal length, or
µ′ = µ and ν′ < ν, otherwise. In both cases (µ′, ν′) is strictly smaller than
(µ, ν).

• A = ¬B. Then δ′ is

[¬B]1
....
⊥
γ
B

¬¬B [¬¬B]1

¬¬B
1

where 1 is an application of the CD

rule and γ is just an application of negation introduction if B = ¬C and
a derivation of B from some occurrences of ⊥ constructed according to
Lemma 3.2 otherwise.

If γ is an application of negation introduction, its conclusion has length
ρ < µ and δ′ has complexity (µ′, ν′), which is, according to the argument
also used in the previous case, strictly smaller than (µ, ν).

If γ is constructed according to Lemma 3.2, we have that the derivation

α =
¬B....
⊥

might occur more than once in δ′ and that δ′ might contain nega-

tion introductions. But since α only contains negation introductions with
conclusion of length strictly smaller than µ, we can conclude also in this
case that δ′ has complexity (µ′, ν′) strictly smaller than (µ, ν).

• A = B∨C. Then δ is

[B ∨ C]1
....
⊥

¬(B ∨ C)
1

and δ′ is

[B]2 [C]3

B ∨ C...
.
⊥
γ1

¬(B ∨ C)

[B]2 |

[¬C]3

η1
C⊥

B ∨ C...
.
⊥
γ2

¬(B ∨ C)

¬(B ∨ C)
3

[C]4 |

[¬B]2

η2
B⊥

B ∨ C...
.
⊥
γ3

¬(B ∨ C)

[¬B]2 [¬C]4

β
¬(B ∨ C)

¬(B ∨ C)
4

¬(B ∨ C)
2

where 2, 3 and 4 are applications of the CD rule; γ1, γ2 and γ3 are derivations
of ¬(B ∨ C) from some occurrences of ⊥ constructed according to Lemma

https://doi.org/10.1017/S1755020324000194 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000194


14 FRANCESCO A. GENCO

3.2; η1 and η2 consist of converse rule applications and, possibly, double
negation rule applications—which are required to derive B⊥ and C⊥ if,
respectively, ¬B is not the converse of B and ¬C is not the converse of
C—; β is a derivation of ¬(B ∨ C) by the grounding rule for negation and,
possibly, double negation elimination rule applications—which are required
to derive B⊥ and C⊥ if, respectively, ¬B is not the converse of B and ¬C
is not the converse of C.

Since by assumption
[B ∨ C]1

....
⊥

does not contain negation introductions

with conclusion of length greater than or equal to µ, and γ1, γ2, γ3, η1, η2

and β do not contain negation introductions, the complexity of δ′ is (µ′, ν′)
where either µ′ < µ, if the negation introduction eliminated was the only
one in δ with conclusion of maximal length, or µ′ = µ and ν′ < ν, otherwise.
In both cases (µ′, ν′) is strictly smaller than (µ, ν).

a
We can finally prove that GCL is a calculus for classical logic.

Theorem 3.4. The calculus GCL is complete with respect to classical logic.

Proof. All Gr derivations are derivations in the calculus GCL +¬I defined by
adding the negation elimination rule to GCL. Thus, by Theorem 2.4, GCL + ¬I
is complete with respect to classical logic. But, by Theorem 3.3, the negation
introduction rule is eliminable in GCL. Hence we can conclude that also GCL is
complete with respect to classical logic. a

3.1. Some minimal grounding systems. Let us present now two minimal
grounding calculi that fully exploit the strength of the CD rule and thus enable
us to dispense with some or all logical elimination rules. These calculi will show
once more that grounding rules behave just like logical introduction rules in that,
along with the CD rule, enable us to partly dispense with elimination rules. The
first minimal calculus that we will introduce is GCL

′ and is defined by removing
all elimination rules from GCL and by adding the unrestricted efq rule.

Definition 3.3. The calculus GCL
′ contains all grounding rules displayed in

Table 1, the CD rule, and the unrestricted efq rule.

In GCL
′ it is possible to prove all classical tautologies. This is easy to see,

intuitively, since by nesting applications of the CD rule on the subformulae of
any formula, we can simulate all assignments considered in the truth table of
that formula; if the formula is a tautology, grounding rules will then enable us to
derive the formula in all branches above the topmost CD applications, and thus
to construct a proof of the formula. We prove this formally.

Theorem 3.5. For any theorem T of classical logic, it is possible to construct
a derivation of T in GCL

′ without undischarged hypotheses.

Proof. Consider any truth table formalism such that one line of the truth
table of a formula F corresponds to one truth assignment for the propositional
variables occurring in F and such that a formula is a tautology if, and only if, its
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value is true on all lines of its truth table. Let us then consider any tautology F
and let us construct a GCL

′ derivation of the form

....

....

F CD4

....

....

F CD5

F CD2

....

....

F CD6

....

....

F CD7

F CD3

F CD1

such that

• each application of the CD rule discharges a pair of hypotheses p and ¬p
where p is a propositional variable occurring in F ,
• all CD rule applications at the same distance from the conclusion of the

derivation discharge the same hypotheses,
• for each propositional variable p occurring in F , there is at least one CD

rule application that discharges the pair of hypotheses p and ¬p.
Notice, in particular, that above each premiss of any uppermost CD application

in our derivation, we can discharge either p or ¬p for each propositional variable
occurring in F . Hence, we can associate the derivation of any of these premisses
to one line of the truth table of F as follows. If above a certain premiss we can
discharge the propositional variables p1, . . . , pn and the negated propositional
variables ¬q1, . . . ,¬qm, then the derivation above this premiss will be associated
to the line of the truth table in which p1, . . . , pn have value true and q1, . . . , qm
have value false.

Consider now a derivation δ of a premiss of any uppermost CD application in
our proof. As we will formally prove later, the following is true:

(∗) For any subformula A of F , if A has value true in the truth table
line associated to δ, then we can derive A from the hypotheses that we
can discharge in δ; if A has value false in the truth table line associated
to δ, then we can derive both ¬A and A⊥ from the hypotheses that
we can discharge in δ.

Since F is a subformula of F and since F has value true on all lines of the
truth table of F , this is enough to prove that we can derive F as premiss of any
uppermost CD application in our derivation by only using hypotheses discharged
by CD rule applications. And this means that we have a derivation of T without
undischarged hypotheses,

We now prove (∗) by induction on the form of the subformula A of F . If A
is atomic, it is either a propositional variable p, and then we can derive it by
employing the discharged assumption p or ¬p, or it is ⊥, and then we can derive

its negation by the following proof:
⊥1

¬⊥ ¬⊥1

¬⊥ CD1
Since the line of the truth

table corresponding to δ and the hypotheses that we can discharge in δ agree by
definition on all propositional variables, and since the value of ⊥ is false on all
lines of any truth table, we have that (∗) holds for A. Suppose now that A is
not atomic and that (∗) holds for all proper subformulae of A, we prove that (∗)
holds for A as well by reasoning on its outermost connective. We only present
some exemplar cases.
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• A = ¬B If A has value true on the considered line of the truth table, then
B must have value false. By I.H. on B, we can derive ¬B, which is exactly
A. If A has value false on the considered line of the truth table, then B must
have value true. By I.H., we can derive B and by applying the grounding
rule for double negation we can derive also ¬¬B = ¬A. Since A⊥ is either
B or ¬¬B, we have (∗).

• A = B ∨ C If A has value true on the considered line of the truth table,
then either B or C must have value true. By I.H. on B and C, we can
derive B and C, or B⊥ and C, or B and C⊥. In all three cases, by one of
the grounding rules for disjunction, we can derive B ∨ C, which is exactly
A. If A has value false on the considered line of the truth table, then both
B and C must have value false. By I.H. on B and C, we can derive both
B⊥ and C⊥. Then, by the grounding rule for negated disjunction, we can
derive ¬(B ∨ C) as desired.

a

A second minimal system that we will present is obtained by removing conjunc-
tion, disjunction, implication and double negation elimination rules from GCL.
In the resulting calculus, which we call GCL

′′, it is possible to directly simulate
the elimination rules that we have removed—see [9] for a proof of a similar result.
Let us define the calculus and show that its completeness can be easily proved by
simulating all missing rules.

Definition 3.4. The calculus GCL
′′ contains all grounding rules displayed in

Table 1, the CD rule, the unrestricted efq rule, and the negation elimination rule.

Theorem 3.6. All rules of GCL can be simulated in GCL
′′.

Proof. The statement is trivial for the grounding rules, the CD rule, the efq
rules for atoms and negated atoms, and for the negation elimination rule. We
prove it for double negation, conjunction, disjunction and implication elimination:

• ¬¬A
A

can be simulated as follows:

¬¬A [¬A]1

⊥
A [A]1

A
1

• A ∧B
A

can be simulated as follows:

A1

A ∧B

¬A1
....
A⊥ | B2

¬(A ∧B)

¬A1
....
A⊥

¬B2
....
B⊥

¬(A ∧B)

¬(A ∧B)
CD2

⊥
A

A CD1

where the converses of A and B might require an application of double
negation elimination—which can be simulated as shown above—to be derived
from ¬A and ¬B respectively.

The symmetrical conjunction elimination can be simulated symmetrically.
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•
A ∨B

An
....
C

Bn
....
C

C
n

can be simulated as follows:
A1
....
C

B2
....
C

A ∨B

¬A1
....
A⊥

¬B2
....
B⊥

¬(A ∨B)

⊥
C

C CD2

C CD1

where the converses of A and B might require an application of double
negation elimination—which can be simulated as shown above—to be derived
from ¬A and ¬B respectively.

• A→ B A
B

can be simulated as follows:

B1

A→ B

A

¬B1
....
B⊥

¬(A→ B)

⊥
B

B CD1

where the

converse of B might require an application of double negation elimination—
which can be simulated as shown above—to be derived from ¬B.

a

The existence of the calculi GCL
′ and GCL

′′ is certainly of interest. Indeed,
they show that grounding rules, the CD rule and a few rules for ⊥ are enough
to recover the full strength of classical logic. Nevertheless, some caveats are in
order. The calculus GCL

′ does not fully characterise the consequence relation of
classical logic: GCL

′ does not enable us, indeed, to construct derivations from
hypotheses, but only derivations without hypotheses for the theorems of the logic.
In other terms, GCL

′ does not fare well as a deductive system—in the sense of a
system that enable us to reason according to the logic—but only as a system for
characterising the provability relation relative to the logic. On the other hand,
while the calculus GCL

′′ enables us to fully characterise the consequence relation
of classical logic, it does so by rather convoluted derivations. In any case, the
conceptual analysis of grounding rules that we will obtain, would not differ much
if we considered one of these calculi instead of GCL. Indeed, the central element
in the analysis that follow is the CD rule. Therefore, we will focus on the full
system GCL and we will show that it constitutes an ideal formal instrument for
studying the specific difference between grounding rules and logical introduction
rules. Let us dwell on this issue in the next section.

3.2. Why the excluded middle? As we will see, the presence in GCL of
one rule—the CD rule—that precisely fills the gap between grounding and logical
rules is the reason why this calculus enables us to exactly determine the difference
between these two kinds of rules. In order to fully understand what this means,
though, we must first consider how grounding rules are supposed to work.

Grounding rules are intended as means for explaining true formulae: they are
supposed to display the reasons why their conclusion is true. While grounding
rules can be employed to derive classical tautologies—as we have shown by
the completeness results: Theorems 2.4 and 3.4—these rules are supposed to
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act on truths and, in particular, to conclude a true consequence given its true
reasons. This is why grounding is described as factive.8 Therefore, in a sense,
grounding rules are supposed to be used only after we have fixed a particular
truth assignment, or, in simpler terms, after we have established what is true
and what is false.

This dependence of grounding rules on truth is even more evident if we consider
the role of the premisses representing the side conditions of the ground. These
premisses are indeed useless from a purely logical perspective, that is, they are
useless if our only concern is the transmission of truth from the premisses to
the conclusion. The ground conditions are, on the other hand, essential for
grounding rules since a ground is supposed to completely account for the truth of
its consequence, see [18] for the philosophical motivation behind this requirement.
A grounding derivation is meant here to give us a full account of the status
of its conclusion with respect to truth, to display the complete reason why its
conclusion is true.9 Our grounding rules for disjunction are exemplary in this

sense, as already mentioned. For instance, the rule
A | B⊥

A ∨B
expresses that A

is the complete reason why A ∨ B is true, also considering that B is false, as
made explicit by the right premiss of the rule. Thus the condition B⊥ does not
contribute in any way to make the conclusion A ∨B true, but it is required to
provide a full account of the truth of all the parts of A ∨ B. The fact that a
grounding derivation is required to constitute a full account of the truth of its
conclusion explains why grounding rules presuppose the knowledge of what is
true and what is false—and not only for the formulae that matter, but also for
those that do not really affect the truth of the conclusion but are nevertheless
part of it.

We finally have all the elements to understand the conceptual reason why the
CD rule alone enables us to use grounding rules as logical introduction rules:
the CD rule is a logical instrument to reason by cases in a hypothetical way
on the truth and falsity of formulae. This enables us to simulate in a purely
abstract way the choice of a truth assignment. Therefore, when we need to
apply a grounding rule and we only possess the information required by a logical
introduction rule to introduce a connective, we can use the CD rule to make
an exhaustive case distinction and show that, in any case, the grounding rule is
enough to introduce the connective. Let us consider a simple example in order to
discuss this conceptual point in more concrete terms. Consider, for simplicity,
the formula A ∨ P where P is atomic. If we use the logical introduction rule for

disjunction, it is enough to have a derivation δ of A to conclude A ∨ P :
δ
A

A ∨ P
Indeed, if A is true, then also A ∨ P is true, and this is all that matters as far

8What we construct when we apply grounding rules to hypotheses closely corresponds to

what Lipton calls a potential explanation [17, page 58].
9We could say that a grounding rule corresponds to a double implication modulo a truth

assignment. That is, if
A

B
and

C D

E
are grounding rules, then A ↔ B and C ∧D ↔ E hold.

If, on the other hand,
A | B⊥

C
is a grounding rule, then A↔ C holds when ¬B holds.
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as logical rules are concerned. If we use the grounding rules for disjunction, on
the other hand, we also need information on P . It does not matter whether P
is true or false, but we nevertheless need a premiss to witness its truth value,
because the grounding rule requires a full account of the truth of all parts of its
conclusion. Since we are reasoning at the level of pure logic and we do not know
whether P is true or false, we use the CD rule and make a case distinction on
the truth of P , as shown by the CD rule application 1 in the derivation below.
In each of the two cases, we use the grounding rule for disjunction to conclude

A ∨ P as follows:
δ
A [P ]1

A ∨ P

δ
A |

[¬P ]1

P⊥

A ∨ P
A ∨ P

1

. By employing the CD rule in this way,

on the one hand, we simulate the choice of truth assignments and thus comply
with the requirements of grounding rules; on the other hand, we do not actually
fix a truth assignment and therefore keep the reasoning on a level of full logical
generality. In conclusion, it is due to the possibility of reasoning hypothetically
on truth and falsity, provided by the CD rule, if we can use grounding rules as
logical introduction rules.
Informational analyticity. A system that presents strong technical similarities
with GCL has been studied in [7, 8]. In this system, the only rule that enables the
discharge of hypotheses is the CD rule. Moreover, there is a striking similarity
between the introduction rules of this system and the grounding rules of GCL if we
forget about the premisses corresponding to ground conditions in the latter rules.
These analogies between GCL and the system in [7, 8] do not seem to be merely
technical. Let us dwell on the issue. Conceptually, the calculus discussed in [7, 8]
has been introduced in order to capture a distinction between informationally
analytic inference rules and inference rules that require hypothetical reasoning
on virtual information. The characterising feature of an informationally analytic
rule is that the information that the conclusion of the rule is true is completely
contained in the information that its premisses are true. To the contrary, the
validity of a rule that requires hypothetical reasoning on virtual information
appeals to information which is not directly carried by the premisses of the rule.
The CD rule is a typical example of a rule of the latter kind since its validity
essentially relies on hypothetical reasoning about the truth of formulae and
background information concerning the underlying notion of truth. A conceptual
connection between the system in [7, 8] and GCL seems actually to exist then.
Indeed, the premisses of a grounding rule are supposed to carry all the existing
information in virtue of which its conclusion is true. The information that
these premisses are true is therefore supposed to contain the information that
the conclusion is true. It could be argued therefore that grounding rules are
informationally analytic rules in nature. A complete equivalence between the two
kinds of rules clearly does not hold though, because grounding rules must comply
with further requirements which are irrelevant with respect to the notion of
informational analyticity. Finally, the role of the CD rule in GCL, as we have just
argued, is precisely that of introducing the possibility of reasoning about virtual
information, which is not provided by grounding rules due to their factivity.
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§4. Grounding rules and intuitionistic introduction rules. We have
just shown that classical logic can be characterised by adding the CD rule to a
calculus only containing grounding rules as introduction rules. Since classical
logic can be also characterised by adding the law of excluded middle—for instance
in the form of the CD rule—to intuitionistic logic, the identification of grounding
rules and intuitionistic introduction rules seems possible. A potential connection
between grounding and intuitionistic, or constructive, reasoning is moreover
hinted at by the idea—already discussed in Section 1—that classical reductio
ad absurdum, the use of which is not allowed in intuitionistic proofs, should not
occur inside grounding derivations either. Let us formally investigate, then, the
connection between grounding rules and intuitionistic introduction rules.

The most evident lack of grounding rules with respect to intuitionistic in-
troduction rules concerns the rules for implication. The logical completeness
of grounding rules for implication clearly relies on the classical translation of
A→ B as ¬A ∨B; and while the implication rules based on this translation are
intuitionistically sound, they are not intuitionistically complete. Indeed, they
only capture the most basic cases in which an implication is intuitionistically
true—that is, when the consequent is true and when the antecedent is false. In
intuitionistic logic, though, an implication can be true also for another reason.
If we consider the semantics of intuitionistic implication according to the BHK
interpretation, see [25], we have that A→ B is true if we can transform any proof
of A into a proof of B. Clearly this is possible whenever A is false—the condition
is trivially met since we will never be provided with a proof of A—and whenever
B is true—in this case, our transformation can simply discard the proof of A
and directly present the proof of B which we must already have according to the
BHK interpretation if we know that B is true. But it is still possible for A→ B
to be true even if A is not false and we have no proof of B. This third case is not
captured by any grounding rule but is captured by the traditional implication
introduction rule. The latter rule, indeed, enables us to reason in a hypothetical
way from the assumed truth of A: if we can derive B under the hypothetical
assumption that A is true, then we can conclude A → B. As we have argued
in Section 3.2 though, grounding rules are not supposed to enable us to reason
in a hypothetical way about truth, and indeed they do not. To recover the full
strength of IL then, we need to add a rule to do so. If we moreover wish to study
the distinction between grounding rules and intuitionistic introduction rules, the
additional rule should not be an introduction rule and should exclusively capture
what grounding rules are missing. Let us try to define such a rule.

It is important to remark that in defining this new rule—and the other ones
that will be required—we neither simply aim at a simulation of intuitionistic
introduction rules by also using grounding rules, nor we aim at the definition of a
new notion of grounding complying with the main tenets of complete grounding
but based on an intuitionistic notion of truth. The first objective could be easily
achieved by the classical calculi presented above, and is not of much interest.
Indeed, simulating intuitionistic derivability by classical derivability is, in general,
easily done. The second objective, on the other hand, would require a redefinition
of the adopted grounding notion and thus of the grounding rules themselves.
And while defining such a notion of intuitionistic grounding would constitute a
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result of great interest, the methods and systems developed here do not seem
to directly enable us to do so. Such an endeavour must hence be left for future
work. The actual objective of the rest of the present work is to define a calculus
which is both sound and complete with respect to intuitionistic logic, and in
which grounding rules play an essential role. Only after having defined such a
calculus we could hope for a deeper and more formal understanding of the specific
difference between intuitionistic introduction rules and grounding rules.

From a proof-theoretical perspective, grounding rules for implication are missing
the possibility of discharging hypotheses. According to our rules, in a ground we
can only use proven formulae or formulae which we have independently supposed
to be true and that we will, perhaps, discharge by other rule applications. Let
us then try a technical solution and define a rule that exclusively enables us to
discharge hypotheses and such that its use in combination with the grounding
rules for implication enables us to prove the truth of an implication in all cases
which are relevant for IL. Such a rule is the leftmost shown below, and it is
sound with respect to IL since we can simulate it by the central derivation below.
This rule is moreover complete with respect to implication introduction, since
for each topmost implication introduction, we can simulate it in the grounding
calculus extended with our new rule by the derivation below on the right and
then proceed to simulate the other topmost implication introductions until only
grounding rules are used to introduce implications in the whole proof.

[A]n
....

A→ B
A→ B

n

[A]n
....

A→ B [A]n

B
A→ B

n

[A]n
....
B | [A]n

A→ B
A→ B

n

Let us dwell on the meaning of this rule. Even though, at first glance, the rule
seems the result of a proof-theoretical trick to admit the possibility of discharging
hypotheses when introducing an implication, a closer inspection enables us to
understand its logical meaning. Indeed, the rule directly corresponds to the
logical principle (A→ A→ B)→ A→ B, because, if we have a proof of A→ B
from the hypothesis A, it enables us to obtain a proof of A → B; or, in other
terms, if we have a proof of A→ A→ B, then we can obtain a proof of A→ B.
By noticing that A→ A→ B is equivalent to A ∧A→ B, we can easily see that
the rule corresponds to the logical principle of left contraction.10 Contraction is
not enforced by grounding rules since the addition of redundant information to
the ground is not admissible, as is clear if we consider the formal definition of
the grounding relation presented in [18] which we follow here.

Since the discrepancies between grounding rules and logical rules for implication
can be solved by employing a structural principle such as left contraction. Let us
direct our attention towards other structural principles as well. Let us begin with
the weakening principle, and in particular with left weakening.11 This principle
is implied by the a fortiori principle: B → A→ B, which we can derive in our

10The corresponding sequent calculus rule is
Γ, F, F ⇒ ∆

Γ, F ⇒ ∆
.

11The sequent calculus left weakening rule is
Γ ⇒ ∆

Γ, F ⇒ ∆
.
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grounding calculus by additionally employing the rule that we have just defined:

[B]2 | [A]1

A→ B
A→ B

1

| [B]2

B → A→ B
B → A→ B

2

Nothing more is required as far as left weakening is concerned. Exactly the same
way of reasoning can be employed for negation, since we can treat—and actually

even define—¬A as the formula A→ ⊥. Hence we also introduce the rule

[A]n
....
¬A
¬A

n

.

Let us then consider right weakening: (A → B) → A → B ∨ C.12 This
weakening principle is not a legitimate grounding principle either: even if we have
a derivation of A, we cannot ground A ∨B without specifying whether B is true

or false. Adding the rule B
B ∨ C which corresponds to full right weakening would

clearly solve the problem, but seems a rather radical overcompensation. Indeed,
this rule is the traditional disjunction introduction rule and grounding rules for
introducing disjunctions already exist, they are simply more demanding than
traditional disjunction introduction rules. An ideal solution would then consist
in finding some logical principles which are intuitionistically valid and exactly fill
the gap between grounding rules for disjunction and logical introduction rules for
disjunction. Let us then consider the right weakening principles that are already
valid with respect to our grounding rules for disjunctions:

(A→ B)→ A→ C⊥ → B ∨ C (GW1)

(A→ B)→ A→ C → B ∨ C (GW2)

These are clearly weaker than full right weakening because, in order to en-
able us to conclude B ∨ C, also require us to specify whether C is true or
false. In order to obtain full right weakening, we would also need the princi-
ples (A→ C⊥ → B ∨ C)→ A→ B ∨ C and (A→ C → B ∨ C)→ A→ B ∨ C,
which, used in combination with GW1 and GW2 by transitivity of implication,
enable us to derive full right weakening: (A→ B)→ A→ B ∨ C. Unfortunately,
these two implications are too general and, even though the first one is valid in CL,
neither of them is derivable by grounding rules or valid in IL.13 Nevertheless, we
can restrict their form by following the intuition that A is simply supposed to be
the hypothesis from which we can derive B ∨C regardless of the truth of C. This
restriction yields the following implications: (B → C⊥ → B ∨ C)→ B → B ∨ C

12The sequent calculus right weakening rule is
Γ ⇒ ∆

Γ ⇒ ∆, F
.

13Another possibly useful principle to try to recover right weakening from the grounding
rules for disjunction could be the following: (A → C⊥ → B ∨ C) ∧ (A → C → B ∨ C)) →
(A→ B ∨ C). But also this implication is not valid in IL. Indeed, if we consider its instance
((⊥ → ⊥) → (C′ ∨¬C′)⊥ → B ∨ (C′ ∨¬C′))∧ ((⊥ → ⊥) → (C′ ∨¬C′) → B ∨ (C′ ∨¬C′))) →
((⊥ → ⊥) → B ∨ (C′ ∨ ¬C′)), we can clearly see that, when B, C′ and ¬C′ are all false, both
conjuncts in the antecedent are true—also considering that (C′ ∨ ¬C′)⊥ is contradictory in

IL—but the consequent is false.
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A B

A ∧B
A B

A ∨B
A | B⊥

A ∨B
B | A⊥

A ∨B
B | A
A→ B

A⊥ B

A→ B

A⊥ | B⊥

A→ B

A⊥ B⊥

¬(A ∧B)

A⊥ | B
¬(A ∧B)

B⊥ | A
¬(A ∧B)

A⊥ B⊥

¬(A ∨B)

A B⊥

¬(A→ B)

A

¬¬A

A ∧B
A

A ∧B
B

A ∨B

[A]n
....
C

[B]n
....
C

C
n A→ B A

B
¬A A
⊥

⊥
A

[A]n
....

A→ B
A→ B

n

[A]n
....
¬A
¬A

n

B [C⊥]n
....

B ∨ C
B ∨ C

n

B [C]n
....

B ∨ C
B ∨ C

n

where n ∈ N

Table 5. Rules of GIL

and (B → C → B ∨ C)→ B → B ∨ C, where instead of supposing that from A
we can derive B ∨ C, we directly pick the instance of A that enables us to do so
without knowing whether C is true or false, that is, the formula B itself. The
latter implications are clearly valid in IL since B → B ∨ C is. From these two

formulae, we can then obtain the following two rules:

B [C⊥]n
....

B ∨ C
B ∨ C

n

and

B [C]n
....

B ∨ C
B ∨ C

n

,

and add them to the grounding calculus to recover the full strength of IL.
Let us dwell for a moment on the proof-theoretical nature of the four rules that

we have just defined. These rules, indeed, are certainly of a peculiar kind: while
particular connectives are displayed in their schemata, the only premiss appearing
in each of them is simply identical to the relative conclusion. Since these rules
directly correspond to axioms that express structural principles of the logic—that
is, left weakening, left contraction, and right weakening—it seems reasonable to
consider them structural rules. And the display of specific connectives in the
rule schemata should not lead us to conclude that these rules are not structural,
because also the CD rule is often considered as a structural rule even though
negation plays an essential role in its schematic presentation. Moreover, the
four rules above are clearly not operational logical rules,14 in the sense that they
neither introduce nor eliminate any connective.

The fact that additional rules—such as our four new rules—are required to
define a complete calculus for intuitionistic logic based on grounding rules is a
formal confirmation that grounding rules are wanting with respect to the intended
meaning of intuitionistic connectives. As mentioned above, these rules precisely

14The expression operational rules is used by Gentzen to denote both introduction and
elimination rules [23] insofar as these rules actively operate on a particular connective by
introducing or eliminating it.
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enable us to cover all possible cases envisaged by the BHK interpretation for the
truth of intuitionistic connectives. While a single rule enforcing the adoption of a
classical notion of truth—that is, the CD rule—was enough to do this with respect
to the connectives of classical logic, a technically subtler solution that addresses
the problems of each connective separately is required here. The dependence of
the solution on the specific connectives is only apparent though, because, as we
have just shown, the additional rules required by the solution actually correspond
to very general structural principles. Let us then define the calculus GIL for IL
that only contains grounding rules as introduction rules.

Definition 4.1 (Calculus GIL). GIL contains all rules in Table 5.

Before proving that GIL is sound and complete with respect to IL, let us
formally define the intuitionistic calculus that we will use for reference.

Definition 4.2 (Calculus NI). The natural deduction calculus NI for IL con-

tains all rules in Table 3 except the classical rule

[¬A]n
....
⊥
A

n

.

Theorem 4.1 (Soundness (IL)). The calculus GIL is intuitionistically sound.

Proof. We show, in particular, that, for any set of hypotheses Γ and formula
F , if Γ `GIL

F then Γ `NI F . The proof is by induction on the number of rule
applications in the GIL derivation of F . If no rule is applied in the GIL derivation,
Γ = {F} and the statement trivially holds. Assume then that the GIL derivation
contains n > 0 rule applications and that if we have a GIL derivation containing
m rule applications, for m < n, then we also have an equivalent NI derivation.
We consider the last rule applied in the GIL derivation of F . We only present
some of the non-trivial cases.

• A
⊥ | B⊥

A→ B
By I.H., A⊥ is derivable in NI. Since NI and NC contain

the same negation elimination rule, by Lemma 2.2, the following is an NI

derivation of the conclusion of the rule:

[A]1 A⊥

⊥
B

A→ B
1

• A⊥ B⊥

¬(A ∨B)
By I.H., A⊥ and B⊥ are derivable in NI. Since NI and NC

contain the same negation elimination rule, by Lem. 2.2, the following is an

NI derivation of the conclusion of the rule:
[A ∨B]1

A⊥ [A]2

⊥
B⊥ [B]2

⊥
⊥

2

¬(A ∨B)
1
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• A B⊥

¬(A→ B)
By I.H., A and B⊥ are derivable in NI. Since NI and NC

contain the same negation elimination rule, by Lem. 2.2, the following is an

NI derivation of the conclusion of the rule: B
⊥

[A→ B]1 A

B
⊥

¬(A→ B)
1

a

Theorem 4.2 (Completeness (IL)). GIL is intuitionistically complete.

Proof. We show, in particular, that, for any set of hypotheses Γ and formula
F , Γ `NI F then Γ `GIL

F . The proof is by induction on the number of rule
applications in the NI derivation of F . If no rule is applied in the NI derivation
of F , the statement trivially holds. Assume then that the NI derivation of F
contains n > 0 rule applications and that if a formula has an NI derivation
containing m rule applications, for m < n, then it has also an GIL derivation. We
consider the last rule applied in the NI derivation of F . We only present some
non-trivial cases that we have not already discussed.

• A
A ∨B By I.H., the premiss is derivable in GIL. We arbitrarily choose

between one of the GIL derivations
A | [B⊥]1

A ∨B
A ∨B

1
and

A [B]1

A ∨B
A ∨B

1
.

•

[A]n
....
⊥
¬A

n

By I.H., ⊥ is derivable in GIL from A. Hence

[A]1
....
⊥
¬A
¬A

1

is a GIL

derivation.

a
We have thus shown that, in order to define a calculus for IL by only employing
grounding rules as introduction rules, it is necessary to also include additional
rules. The specific rules that we used here in order to do so enable us to
recover precisely the structural principles of left contraction, left weakening and
right weakening. These rules also show us then that grounding rules do not
enforce all structural principles that hold with respect to intuitionistic reasoning.
Therefore, we can conclude that grounding rules are not equivalent to intuitionistic
introduction rules. Moreover, we have provided an independent confirmation
of the thesis defended in [12] that grounding is based on a derivability relation
which is essentially substructural. Substructural logics, indeed, are defined by
proof-theoretical systems in which the use of the structural rules of contraction
and weakening is either forbidden or strongly limited.

§5. Conclusions. In the present work, we investigated the relationship be-
tween logical grounding rules and traditional logical rules. First of all, we showed
that logical grounding rules constitute a complete set of introduction rules for
classical and intuitionistic logic; secondly, we showed that logical grounding rules
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are not identical to logical rules because, due to their very nature of explanatory
rules, they lack the abstractness of logical introduction rules. In particular we
showed that if we want to use grounding rules as logical introduction rules, we
need to employ logical principles or rules that enable us to reason about truth in
a hypothetical way. We moreover argued that this result connects grounding rules
and the notion of informational analyticity discussed in [7, 8]. The grounding
calculus introduced to conduct the analysis strongly confirms the thesis that
grounding derivations are logical derivations of a particular kind without trivi-
alising the distinction between grounding and logical rules. Finally, we showed
that grounding rules are essentially different from intuitionistic logical rules as
well, since the former do not enforce the structural inferential principles which
are required to derive all theorems of intuitionistic logic.

While the present work exclusively focuses on grounding rules for connectives,
introduction and elimination rules for a grounding operator can be defined as
well. A study concerning the properties of these rules and their interaction with
grounding rules would constitute a natural and essential extension of the presented
analysis. Since, moreover, grounding is a typical example of a hyper-intensional
notion, an analysis focusing on the connection between the proof-theoretical
features of grounding rules and their hyper-intensional nature would certainly be
of great interest both for proof-theory and for the study of grounding.
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