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Abstract

We introduce a modification of the generalized Pólya urn model containing two urns,
and we study the number of balls Bj(n) of a given color j ∈ {1, . . . , J} added to the urns
after n draws, where J ∈N. We provide sufficient conditions under which the random
variables (Bj(n))n∈N, properly normalized and centered, converge weakly to a limiting
random variable. The result reveals a similar trichotomy as in the classical case with
one urn, one of the main differences being that in the scaling we encounter 1-periodic
continuous functions. Another difference in our results compared to the classical urn
models is that the phase transition of the second-order behavior occurs at

√
ρ and not at

ρ/2, where ρ is the dominant eigenvalue of the mean replacement matrix.
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1. Introduction

A brief overview of classical Pólya urn models. For J ∈N, a J-dimensional Pólya urn
process (B(n))n∈N is an NJ-valued stochastic process which represents the evolution of an urn
containing balls of J different colors denoted by 1, 2, . . . , J. The initial composition of the
urn can be specified by a J-dimensional vector B(0) given by B(0) = (

B1(0), . . . , BJ(0)
)
, the

jth coordinate Bj(0) of B(0) representing the number of balls of color j present in the urn at
the beginning of the process, i.e. at time 0. At each subsequent time step n ≥ 1, we pick a ball
uniformly at random, inspect its color, and put it back into the urn together with a random
collection of additional balls, whose colors are given by L(j) = (L(j,1), . . . , L(j,J)) if the selected
ball has color j (which happens with probability proportional to the number of balls of color
j already present in the urn). This rule for adding balls can be summed up by the so-called
replacement matrix L, which in our case is a random matrix L defined as follows. For J ∈N,
we write [J] := {1, . . . , J}, and we consider a sequence (L(j))j∈[J] of J independent NJ-valued
random (column) vectors. We denote by L the J × J random matrix with column vectors L(j),
so L = (

L(1), L(2), . . . , L(J)
)
, and by aij =E

[
L(j,i)

]
the expectation of L(j,i), for all i, j ∈ [J];
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2 K. KOLESKO AND E. SAVA-HUSS

finally, we let A = (aij)i,j∈[J], so that EL = A. We then continue the process, each time taking
an independent (of everything else) copy of the replacement matrix L. Note that the model
described involves replacement, meaning that the selected ball is placed back into the urn after
each draw. However, it is also possible to study a model without replacement by considering the
replacement matrix L − I, where I is the J × J identity matrix. In this case, it might happen that
some diagonal entries of L − I are equal to −1, which means a ball is removed from the urn.
The urn process is the sequence (B(n))n≥1 of J-dimensional random vectors with nonnegative
integer coordinates, and the jth coordinate Bj(n) of B(n) represents the number of balls of color
j in the urn after the nth draw, for j ∈ [J]. We also define B◦(n) to be the number of balls drawn
up to time n; that is, B◦

j (n) represents the number of balls of color j drawn up to the nth draw
(in particular, B◦

1(n) + · · · + B◦
J(n) = n). As one expects, the limit behavior of (B(n))n≥1 and

(B◦(n))n≥1 depends on the distribution of the replacement matrix L, and in particular on the
spectral properties of its mean value matrix A.

The literature on limit theorems for Pólya urn models is enormous and any attempt to give
a complete survey here is hopeless, but we mention some relevant references and results in
this direction. For additional results, the reader is referred to the cited articles and the refer-
ences therein. In 1930, in his original article [10], Pólya investigates a two-color urn process
with replacement matrix L being the identity. If L is a non-random, irreducible matrix with
exclusively nonnegative entries, then it is well established that the sequence B◦(n)/n converges
almost surely to u as n goes to infinity, where u is the left eigenvector associated with ρ, the
spectral radius of A =EL. The coordinates of u are all nonnegative and normalized in such
a way that they sum up to one; see [2, 5, 9, 12] for more details. The second-order behav-
ior of the sequence (B◦(n))n∈N depends on the second eigenvalue λ2 (ordered by real parts)
of A. If Re(λ2), the real part of the second-largest eigenvalue, is less than or equal to ρ/2,
then the fluctuations around the limit u are Gaussian (with a random variance). The magnitude
of the fluctuations is of order

√
n when Re(λ2) < ρ/2 and of order log (n)

√
n in the critical

case Re(λ2) = ρ/2. Conversely, if Re(λ2) > ρ/2, then the fluctuations are non-Gaussian and of
higher order. See Janson [5] for this trichotomy and [11] for an approach based on the spectral
decomposition of a suitable finite-difference transition operator on polynomial functions.

Apart from these seminal results, the model of Pólya urns has been extended and more
precise asymptotics are known. Several generalizations are considered in [5]. Another possible
extension is to consider measure-valued Pólya processes; see the recent work [6] for second-
order asymptotics of such processes for infinitely many colors and the literature cited there for
additional results.

The model and our contribution. In the current paper we consider a modification of the
Pólya urn model containing two urns marked U1 and U2. For a fixed J ∈N representing the
number of colors, we consider the random J × J matrix L as above, with independent column
vectors L(j) and expectation matrix A =EL. With these initial conditions, we define the NJ-
valued stochastic process (B(n))n∈N as follows, with B(n) = (B1(n), . . . , BJ(n)). Suppose that
at time 0 we have one ball of type (color) j0 in urn U1. We draw this ball from urn U1, and we
put into urn U2 a collection of balls L(j0) = (L(j0,1), . . . , L(j0,J)) (this notation means that for
each i ∈ [J], we put L(j0,i) balls of type i into urn U2). Thus we now have

∑J
i=1 L(j0,i) balls in

urn U2. At the next step, we draw balls from urn U2 uniformly at random, one after another,
and for any ball of type j drawn we add an independent collection of balls with distribution
L(j) into urn U1. We continue until urn U2 is empty, and then we exchange the roles of urns
U1 and U2. We emphasize that, unlike in the Pólya urn model, in the two-urn model it is more
convenient to consider drawing without replacement; that is, the ball drawn in each step is
not returned to either urn, but only determines the future addition of balls. In particular, all

https://doi.org/10.1017/apr.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.37


Fluctuations for the two-urn model 3

FIGURE 1. The model with two alternating urns and deterministic replacement matrix after n = 4 draws.

coefficients of L are nonnegative. For j ∈ [J], by Bj(n) we denote the total number of balls of
type j that have been added to one of these two urns up to (and including) the nth draw.

Graphically, we can draw a random tree in order to visualize the step-by-step evacuation
of one urn and the refilling of the other one, as follows: we color the nodes of the tree in
colors {1, . . . , J}; the content of urn U1 represents the root of the tree colored with some fixed
j0 ∈ {1, . . . , J}, i.e. the zero generation; after one draw of the node of type j0, the content L(j0)

of U2 represents the first generation. Then, after choosing balls (i.e. nodes of the tree at level
one) uniformly at random without replacement and putting their offspring in the other urn U1,
we create step by step the second generation of the tree, and step by step we fill up U1 again.
Thus what we propose here is a more refined branching process where the transition from
generation k to generation k + 1 is considered after each member of generation k reproduces.
If we visualize the process as a random tree that grows after each node is chosen, the quantity
Bj(n) represents the number of nodes of type j and

∑J
j=1 Bj(n) represents the total number of

nodes in the tree after n steps of the process, that is, after n balls have been drawn from U1
and U2. For better understanding, we illustrate this process in an example in Appendix A and
Figure 1.

The main focus of the current work is to investigate first- and second-order asymptotics
of Bj(n) as n → ∞, j ∈ [J]. It may happen that with positive probability L(j,i) vanishes for all
i ∈ [J]. In such a case we do not add any new balls to the urn; we just remove the selected ball
of type j. In particular, it can happen that after a finite number n0 of steps, both urns are empty;
in such a case we define B(n) = B(n0), for n ≥ n0. Since we are interested in the long-term
behavior of the urn process, we restrict the analysis to a set where this does not happen, i.e. to
the survival event S = {|B(n)| → ∞}.

We can also define the corresponding sequence (B◦(n))n≥0 that represents the types of the
balls drawn up to time n. While it is possible to ask about limit theorems for B◦(n), the method
developed in this paper for studying B(n) is directly applicable to B◦(n). Therefore, we focus
our attention exclusively on the sequence (B(n))n∈N.

The approach we use to investigate (Bj(n))n≥0, j ∈ [J], is to embed it into a multi-
type discrete-time branching process (Zn)n∈N with offspring distribution matrix L. A similar
approach using the Athreya–Karlin embedding allowed Janson [5] to study (B◦

j (n))n≥0 for the
Pólya urn model. One difference between our model and the one in [5] is that, in the latter, the
process is embedded into a multitype continuous-time Markov branching process, and an indi-
vidual reproduces after an exponential clock rings. In our model, in the embedded branching
process, an individual reproduces after deterministic time 1. The lattice nature of the model
manifests itself in the second-order behavior of (Bj(n))n≥0.
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4 K. KOLESKO AND E. SAVA-HUSS

Assumptions. In this work we use the following assumptions:

(GW1) The matrix A has spectral radius ρ > 1.

(GW2) The matrix A is positively regular.

(GW3) We have 0 	=∑J
j=1 Cov

[
L(j)

]
and Var[L(i,j)] < ∞ for all i, j ∈ [J].

(GW4) For every i, j ∈ [J], the expectation E[L(i,j) log L(i,j)] is finite.

In the third condition above, 0 is the J × J zero matrix, and for j ∈ [J], Cov
[
L(j)

]
represents

the J × J covariance matrix of the vector L(j). If the matrix A is irreducible, the Perron–
Frobenius theorem ensures that the dominant eigenvalue ρ of A is real, positive, and simple.
If ρ > 1, this means that the multitype branching process with offspring distribution matrix L
is supercritical, i.e. P(S) > 0. If u is the corresponding eigenvector for ρ, then clearly all the
entries uj are strictly greater than zero for any j ∈ [J], and we assume that u is normalized in
such a way that

∑
j∈[J] uj = 1. First-order asymptotics of Bj(n), j ∈ [J], are determined by ρ

and the vector u.

Theorem 1. Assume (GW1), (GW2), and (GW4) hold. Then for any j ∈ [J] we have the
following strong law of large numbers for the total number of balls of type j after n
draws:

lim
n→∞

Bj(n)

n
= ρuj, P

S -almost surely.

Thus, the first-order behavior of Bj(n), j ∈ [J] resembles the first-order behavior of B◦
j (n)

from the model with one urn [5]. In order to understand the second-order asymptotics of Bj(n),
we need full information on the spectral decomposition of the mean replacement matrix A. We
denote by σA the spectrum of the matrix A and define σ 1

A = {λ ∈ σA : |λ| > √
ρ}, σ 2

A = {λ ∈
σA : |λ| = √

ρ}, and finally σ 3
A = {λ ∈ σA : |λ| < √

ρ}. Then we can write

σA = σ 1
A ∪ σ 2

A ∪ σ 3
A .

For a simple eigenvalue λ ∈ σA, we denote by uλ and vλ the corresponding left and right
eigenvectors. We set

γ = max{|λ| : λ ∈ σA \ {ρ}} and � = {λ ∈ σA : |λ| = γ },
so ρ − γ is the spectral gap of A, and � is the set of eigenvalues of A where the spectral
gap is achieved. For a complex number z we set logρ z = log z

log ρ
, where z �→ log z is the principal

branch of the natural logarithm. Denote by {ej}j∈[J] the standard basis vectors in R
J . For j ∈ [J],

consider the following row vector in R1×J :

wj = e�
j A − ρuj1, (1)

where the ith entry is wji = aji − ρuj =E[L(i,j)] − ρuj, for 1 ≤ i ≤ J. In the above equation,
1 denotes the vector in R1×J with all entries equal to one. Our main result provides the second-
order behavior of (Bj(n))n∈N.
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Theorem 2. Assume that (GW1)–(GW3) hold, all λ ∈ � are simple, and there exists δ > 0 such
that E

[(
L(i,j)

)2+δ]
< ∞ for all i, j ∈ [J]. Then for any j ∈ [J] the following trichotomy holds:

(i) If γ >
√

ρ, then for any λ ∈ � there exist a 1-periodic, continuous function fλ : R→C

and random variables X, Xλ such that the following holds:

Bj(n) = ρuj · n +
∑
λ∈�

nlogρ λfλ( logρ n − X)Xλ + oP
(
nlogρ γ

)
.

(ii) If γ = √
ρ and for some λ ∈ σ 2

A and i ∈ [J] we have wjuλ 	= 0 and Var[vλLei] > 0 for
wj defined as in (1), then there exist a 1-periodic, continuous function Ψ : R→ (0, ∞)
and a random variable X such that, conditionally on S, the following convergence in
distribution holds:

Bj(n) − ρuj · n√
n logρ n Ψ( logρ n − X)

d−→N (0, 1), as n → ∞.

(iii) If γ <
√

ρ and for some λ ∈ σ 3
A and some i ∈ [J] we have wjuλ 	= 0 and Var[vλLei] > 0

with wj defined as in (1), then there exist a 1-periodic, continuous function Ψ : R→
(0, ∞) and a random variable X such that, conditionally on S, the following conver-
gence in distribution holds:

Bj(n) − ρuj · n√
n Ψ( logρ n − X)

d−→N (0, 1), as n → ∞.

A more general and quantified result where the periodic functions are explicitly defined is
provided in Theorem 4.

Note that the result above slightly differs from that of the one-urn model, where the func-
tions Ψ and fλ are actually constants. What might be even more surprising is that, in our model,
the phase transition occurs at

√
ρ rather than at ρ/2 as observed in the Pólya urn model.

The heuristic explanation is as follows: the growth in mean of the corresponding continuous-
time branching process is driven by the semigroup etA. In particular, the leading asymptotic is
etρ and the next order is |etλ2| = etReλ2 . We anticipate observing Gaussian fluctuations in the
branching process at the scale

√
etρ (with possible polynomial corrections), providing a natu-

ral threshold for Reλ2 in relation to ρ/2. On the other hand, the two-urn model is embedded
into a discrete-time branching process whose growth in the mean is driven by the semigroup
An (or (I + A)n in the model with no replacement). Thus, the leading term is at scale ρn and
the subleading term is at scale |λ2|n. As before, we expect to observe Gaussian fluctuations
at scale

√
ρn, which induce natural distinctions depending on the relative locations of |λ2|

and
√

ρ.
Structure of the paper. In Section 2 we introduce multitype branching processes (Zn)n∈N

and Crump–Mode–Jagers processes (Z�
n )n∈N counted with a characteristic � : Z→R

1×J .
Then in Section 3 we show how to relate our model (Bj(n)), with two interacting urns, to a

branching process (Z�j

n )n∈N counted with a characteristic �j. By applying [8, Proposition 4.1]

to (Z�j

n )n∈N, we then obtain first-order asymptotics of (Bj(n))n∈N for any j ∈ [J] (Theorem 1).
The main result is proved in Section 4. We conclude with Appendix A, where the model with
two interacting urns is illustrated by an example with deterministic replacement matrix, and
Appendix B, where higher-moment estimates for (Z�

n ) are given for general characteristics �.
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6 K. KOLESKO AND E. SAVA-HUSS

2. Preliminaries

For the rest of the paper, (	,A, P) is a probability space on which all the random vari-

ables and processes we consider are defined. We write
a.s.−→ for almost sure convergence,

P−→ for

convergence in probability,
d−→ for convergence in distribution, and

st−→ for stable convergence
(cf. [1] for the definition and properties). We also use PS to denote the conditional probabil-

ity P[ · |S], and the corresponding convergences are denoted by
P
S−→,

d,S−→,
st,S−−→. We use the

notation N= {1, 2, . . . , } and N0 = {0, 1, 2, . . . , }.
Stochastic processes. Our convergence results for stochastic processes use the usual space

D of right-continuous functions with left-hand limits, always equipped with the Skorokhod J1
topology. For a finite-dimensional vector space E and any interval J ⊆ [ − ∞, ∞], we denote
by D(J) =D(J, E) the space of all right-continuous functions from J to E with left-hand limits.

For an n × m matrix A = (aij)i,j with m, n ∈N, the Hilbert–Schmidt norm of A, also called
the Frobenius norm, is defined as

‖A‖HS =
( n∑

i=1

m∑
j=1

|aij|2
)1/2

.

Since for any vector its Hilbert–Schmidt norm coincides with its Euclidean norm, for the rest
of the paper we write only ‖ · ‖ instead of ‖ · ‖HS.

Ulam–Harris tree U∞. An Ulam–Harris tree U∞ is an infinite rooted tree with vertex set
V∞ =⋃

n∈N0
Nn, the set of all finite strings or words i1 · · · in of positive integers over n letters,

including the empty word ∅ (which we take to be the root), and with an edge joining i1 · · · in
and i1 · · · in+1 for any n ∈N0 and any i1, · · · , in+1 ∈N. Thus every vertex v = i1 · · · in has
outdegree ∞, and the children of v are the words v1, v2, . . .. We let them have this order
so that U∞ becomes an infinite ordered rooted tree. We will identify U∞ with its vertex set
V∞, when there is no risk of confusion in doing so. For vertices v = i1 · · · in we also write
v = (i1, . . . , in), and if u = (j1, . . . , jm) we write uv for the concatenation of the words u and
v; that is, uv = (j1, . . . , jm, i1, . . . , in). The parent of i1 · · · in is i1 · · · in−1. Finally, for u ∈ U∞,
we use the notation |u| = n to mean u ∈Nn (i.e. u is a word of length (or height) n; in other
words, it is at distance n from the root ∅). For any u ∈ V∞, by Tu we mean the subtree of
U∞ rooted at u, that is, u together with all infinite paths going away from u, and for u, v ∈ U∞
we denote by d(u, v) their graph distance. For trees rooted at ∅, we omit the root and we
write only T. For J ∈N, a J-type tree is a pair (T, t) where T is a rooted subtree of U∞ and
t : T→ {1, . . . , J} is a function defined on the vertices of T that returns for each vertex v its
type t(v).

Multitype branching processes. Consider the random J × J matrix L with independent
column vectors L(j), for 1 ≤ j ≤ J, as in the introduction. Multitype Galton–Watson trees are
random variables taking values in the set of J-type trees (T, t), where the type function t is
random and defined in terms of the matrix L. Let (L(u))u∈U∞ be a family of independent and
identically distributed (i.i.d.) copies of L indexed over the vertices of U∞. For any i ∈ [J], we
define recursively the random labeled tree T

i rooted at ∅, with the associated type function
t = ti : Ti → {1, . . . , J}, as follows: ∅ ∈Ti and t(∅) = i. Now suppose that u = j1 . . . jm ∈ Ti

with t(u) = j, for some j ∈ [J]. Then

j1 . . . jmk ∈T
i if and only if k ≤ L(j,1)(u) + · · · + L(j,J)(u),
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and we set t(uk) = 
 whenever

L(j,1)(u) + · · · + L(j,
−1)(u) < k ≤ L(j,1)(u) + · · · + L(j,
)(u).

The multitype branching process Zn = (Z1
n , . . . , ZJ

n) associated with the pair (Ti0, t), and
starting from a single particle (or individual) of type i0 ∈ [J] at the root ∅ (i.e., t(∅) = i0) is
defined as follows: Z0 = ei0 , and for n ≥ 1,

Zi
n = #{u ∈T

i0 : |u| = n and t(u) = i}, for i ∈ [J],

so Zi
n represents the number of individuals of type i in the nth generation, or the number of

vertices u ∈Ti0 with |u| = n and t(u) = i. The main results of [8] that we use in the current
paper hold under the assumptions (GW1)–(GW3) on (Zn)n∈N, which we suppose to hold here
as well. In particular, (Zn)n∈N is a supercritical branching process.

Spectral decomposition of A. Recall the decomposition of the spectrum σA of the matrix
A as σA = σ 1

A ∪ σ 2
A ∪ σ 3

A . From the Jordan–Chevalley decomposition of A (which is unique up
to the order of the Jordan blocks) we infer the existence of projections (πλ)λ∈σA that commute
with A and satisfy

∑
λ∈σA

πλ = I and

Aπλ = πλA = λπλ + Nλ,

where Nλ = πλNλ = Nλπλ is a nilpotent matrix. Moreover, for any λ1, λ2 ∈ σA it holds that
πλ1πλ2 = πλ11{λ1=λ2}. If λ ∈ σA is a simple eigenvalue of A and uλ, vλ are the corresponding
left and right eigenvectors, normalized in such a way that vλuλ = 1, then πλ = uλvλ. If we
write N =∑

λ∈σA
Nλ, then N is also a nilpotent matrix and we have Nπλ = Nλ. Thus A can be

decomposed into its semisimple part D =∑
λ∈σA

λπλ and a nilpotent part N, as A = D + N.

For any λ ∈ σA, we denote by dλ ≥ 0 the integer such that Ndλ

λ 	= 0 but Ndλ+1
λ = 0 (hence

dλ + 1 is at most the multiplicity of λ). So dλ = 0 if and only if Nλ = 0, and this happens for all
λ if and only if A is diagonalizable (that is, A has a complete set of J independent eigenvectors).
Since ρ is a simple eigenvalue, we have Nρ = 0 and dρ = 0, and πρ = uv. We set

π (1) =
∑
λ∈σ 1

A

πλ, π (2) =
∑
λ∈σ 2

A

πλ, π (3) =
∑
λ∈σ 3

A

πλ,

and for i = 1, 2, we define

Ai = Aπ (i) + (
I − π (i)).

The process
(
W(i)

n
)

n∈N defined by

W(i)
n = A−n

i π (i)Zn

is a An-martingale, where (An)n≥0 is the filtration An = σ ({L(u) : |u| ≤ n}). According to
[8, Lemma 2.2], W(1)

n converges in L2(	,A, P) to a random variable W(1) whose expectation
is EW(1) = π (1)ei0 . In particular, we have the convergence

ρ−nZn → πρW(1) = Wu, as n → ∞,

in L2, and the random variable W is given by W = v · W(1) with EW = vi0 > 0. The classical
Kesten–Stigum theorem [7] states that under (GW1), (GW2), and (GW4) the convergence
above holds almost surely. For the rest of the paper, when we use the random variable W, we
always mean the limit random variable from the Kesten–Stigum theorem.
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8 K. KOLESKO AND E. SAVA-HUSS

2.1. Branching processes counted with a characteristic

We recall that a characteristic of dimension one is a function � : Z→R1×J , so that for
each k ∈ Z, �(k) is an R1×J-valued random variable defined on the same probability space
(	,A, P) where the Galton–Watson process (Zn)n∈N and its genealogical tree T are defined.
A deterministic characteristic is just a fixed function � : Z→R1×J . For a random function
� : Z→R1×J and the multitype Galton–Watson tree T, the process (Z�

n )n∈N which for any
n ∈N is defined as

Z�
n =

∑
u∈T

�u(n − |u|)et(u)

is called the multitype Crump–Mode–Jagers (CMJ) process counted with characteristic �,
or simply the branching process counted with characteristic �, where (�u)u∈U∞ is an i.i.d.
copy of �. First- and second-order asymptotics for (Z�

n )n∈N, under mild assumptions on �,
are considered in [8, Proposition 4.1] and in [8, Theorem 3.5], respectively. We use these
two results below for a particular choice of the characteristic �, and show how the branching
process with this particular choice of characteristic can be related to the two-urn model with
alternating urns U1 and U2.

The choice of the characteristic. Let U ∼ Unif[0, 1] be a uniform random variable taking
values in [0,1] and defined on the probability space (	,A, P). For every threshold x ∈ [0, 1)
we define the characteristic �t

x : N0 →R1×J by

�t
x(k)ei = 1{k≥1} + 1{k=0}1{U≤x}, for 1 ≤ i ≤ J, (2)

or, in a simplified way, for 1 ≤ i ≤ J,

�t
x(k)ei =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for k ≥ 1,

1 with probability P(U ≤ x) = x, for k = 0,

0 with probability P(U > x) = 1 − x, for k = 0.

Similarly, for j ∈ [J], we define �
j
x : N0 →R

1×J by

�j
x(k)ei = 1{k≥1} 〈ej, Lei〉︸ ︷︷ ︸

=L(i,j)

+1{k=0}1{U≤x}〈ej, Lei〉, for 1 ≤ i ≤ J, (3)

so �
j
x(k)ei = �t

x(k)eiL(i,j). For the uniform random variable U on [0,1], let (Uu)u∈U∞ be an

i.i.d. copy of U. For u ∈ U∞, let �t
x,u (respectively �

j
x,u) be defined through (2) (respectively

(3)) with U, L being replaced by Uu, L(u). Then the family
(
(L(u), �t

x,u, �
j
x,u)

)
u∈U∞ is an i.i.d.

collection of copies of (L, �t
x, �

j
x), for j ∈ [J].

For the characteristic �t
x from (2), threshold x ∈ [0, 1), and multitype Galton–Watson

tree T, the process
(
Z

�t
x

n
)

n≥0 counts the total number of individuals u ∈ U∞ born before time n
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(including the root), and those born at time n with Uu ≤ x, since we have

Z
�t

x
n =

∑
u∈T

�t
x,u(n − |u|)et(u) =

n−1∑
k=0

∑
u∈T;|u|=k

1 +
∑

u∈T; |u|=n

1{Uu≤x}

=
n−1∑
k=0

|Zk| +
∑

u∈T; |u|=n

1{Uu≤x},

where |Zn| =∑J
j=1 Zj

n represents the size of the nth generation of the Galton–Watson process.

On the other hand, Lei = L(i) represents the random collection of individuals born from an
individual of type i, while L(i,j) = 〈ej, Lei〉 represents the random number of offspring of type j

of an individual of type i for i, j ∈ [J]. Therefore Z�
j
x

n counts the number of individuals of type

j born up to time n, and those of type j born at time n + 1 but with threshold ≤ x, so Z�
j
x

n can
be written as

Z�
j
x

n =
n−1∑
k=0

∑
u∈T;|u|=k

〈ej, L(u)et(u)〉 +
∑

u∈T;|u|=n+1,t(u)=j

1{Uu≤x},

since Zj
k+1 =∑

u∈T;|u|=k〈ej, L(u)et(u)〉 represents the number of offspring of type j in the (k +
1)th generation and |{u ∈T; |u| = n + 1, t(u) = j}| = Zj

n+1. Summing up over all j ∈ [J] gives

Z
�t

x
n+1 − 1 =

J∑
j=1

Z�
j
x

n ,

and an application of [8, Proposition 4.1] to Z
�t

x
n and Z�

j
x

n , for j ∈ [J], yields the law of large
numbers.

Proposition 1. Under the assumptions (GW1), (GW2), and (GW4), for any threshold x ∈ [0, 1)
and characteristic �t

x (respectively �
j
x, j ∈ [J]) defined in (2) (respectively (3)) we have the

following:

lim
n→∞

Z
�t

x
n

ρn
=
( 1

ρ − 1
+ x

)
W, PS -almost surely,

lim
n→∞

Z�
j
x

n

ρn
=
( 1

ρ − 1
+ x

)
Wρuj, P

S-almost surely.

Proof. Since for any fixed x ∈ [0, 1) the random variables (1{Uu≤x})u∈U∞ are i.i.d. and
Bernoulli-distributed as Bern(x), in view of the strong law of large numbers we obtain

lim
n→∞

1

|Zn|
∑

u∈T; |u|=n

1{Uu≤x} = x, PS -almost surely,

and similarly

lim
n→∞

1

Zj
n

∑
|u|=n,t(u)=j

1{Uu≤x} = x, PS -almost surely.
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10 K. KOLESKO AND E. SAVA-HUSS

For the deterministic characteristic 1{k≥1} and the corresponding branching process counted
with this characteristic, by applying [8, Proposition 4.1(i)] we get

Z
�t

x
n

ρn
= 1

ρ
·

a.s.−→W
∑

k≥0 ρ−k︷ ︸︸ ︷
1

ρn−1

n−1∑
k≥0

∑
|u|=k

1 +

a.s.−→xW︷ ︸︸ ︷
1

ρn

∑
|u|=n

1{Uu≤x}

a.s.−→
( 1

ρ

∑
k≥0

1

ρk
+ x

)
W =

( 1

ρ − 1
+ x

)
W, as n → ∞,

and this shows the first part of the claim. For the second one, from the Kesten–Stigum theorem

we know that Zj
n

ρn
a.s.−→ Wuj as n → ∞ for any j ∈ [J], and for the characteristic �

j
x, since we

have

Z�
j
x

n =
n∑

k=0

Zj
k +

∑
u∈T; |u|=n+1,t(u)=j

1{Uu≤x},

we obtain

Z�
j
x

n

ρn
=

a.s.−→W
∑

k≥0 ρ−kuj︷ ︸︸ ︷
1

ρn

n∑
k=1

Zj
k +

a.s.−→ρxWuj︷ ︸︸ ︷
ρ

1

ρn+1

∑
|u|=n+1,t(u)=j

1{Uu≤x}

a.s.−→
( 1

ρ

∑
k≥0

1

ρk
+ x

)
Wρuj =

( 1

ρ − 1
+ x

)
Wρuj, as n → ∞,

and the proof is completed. �
Following the notation from [8], for every characteristic � : Z→R1×J we define the two

vectors xi(�) =∑
k∈N E[�(k)]π (i)A−k

i , for i = 1, 2. In particular, since E[�t
x(0)] = x1, we

have

xi

(
�t

x

)
= x1π (i) + 1π (i)

∞∑
k=1

A−k
i = 1π (i)

(
xI +

∞∑
k=1

A−k
i

)

= 1π (i)
(

x + (Ai − I)−1
)

, for i = 1, 2. (4)

For any random characteristic � : Z→R1×J that satisfies the assumptions of [8, Theorem
3.5]—i.e. for which (GW1)–(GW3) hold,

∑
k∈Z

∥∥E[�(k)]
∥∥(ρ−k + ϑ−k) < ∞ for some ϑ <√

ρ, and finally
∑

k∈Z ‖Var[�(k)]‖ρ−k < ∞—we set

F�
n = x1(�)An

1W(1) + x2(�)An
2Z0. (5)

Recall that the constants σ 2

 , for 
 = 0, . . . , J − 1, are defined as

σ 2

 = σ 2


 (�) = ρ−


(2
 + 1)(
!)2

∑
λ∈σ 2

A

Var
[
x2(�)πλ(A − λI)
L

]
u. (6)
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Let 
 be the maximal integer such that σ
(�) > 0, and set 
 = − 1
2 if there is no such integer.

Then Theorem 3.5 of [8] states that, for a standard normal variable N (0, 1) independent of W,
the following stable convergence holds:

Z�
n − F�

n

n
+ 1
2 ρn/2

√
W

st,S−−→ G�, as n → ∞, (7)

where G� = σ
(�)N (0, 1) if not all σ
 are zero, and G� = σ (�)N (0, 1) otherwise, while
σ (�) is defined by

σ 2(�) =
∑
k∈Z

ρ−kVar
[
�(k) + �(k)

]
u, (8)

and � is the centered characteristic given by

�(k) =
∑

∈Z

E�(k − 
 − 1)A
P(k, 
)(L − A).

Above, the matrices P(k, 
), for k, 
 ∈ Z are defined as

P(k, 
) =
⎧⎨
⎩−π (1)1{
<0} + π (2)1{
≥0} + π (3)1{
≥0}, if k ≤ 0,

−π (1)1{
<0} − π (2)1{
<0} + π (3)1{
≥0}, if k > 0.

3. The embedding of the urn model into the branching process

Notation. We slightly abuse notation and write �t (respectively �j, j ∈ [J]) for the whole
family

{
�t

x

}
x∈[0,1) (respectively

{
�

j
x
}

x∈[0,1)) of characteristics indexed over the threshold x ∈
[0, 1). We denote by C the set of characteristics � which are linear combinations of �t and
�j, for j ∈ [J]. Again by abuse of notation, by � ∈ C we actually refer to the whole family of
characteristics {�x}x∈[0,1); that is,

� = {
�x ∈ C : x ∈ [0, 1)

}= {
a�t

x + b�j
x : a, b ∈R, j ∈ [J], x ∈ [0, 1)

}
.

Extension of x ∈ [0, 1) to x ∈R. Instead of working with thresholds x ∈ [0, 1) and corre-
sponding characteristics �x, we can extend the domain of x to the whole of R as follows. For
any � ∈ C and any x ∈R we define

�x(k) = �{x}(k + �x�).

The corresponding CMJ process (Z�x
n )n∈N satisfies Z�x

n = Z�x+n
0 for every n ∈N and x ∈R,

and finally we define

Z�(x) = Z�x
0 ,

and similarly F�(x) = F�x
0 . For any x ∈R, (7) yields the existence of a Gaussian process

{G�(x); x ∈R} such that the following convergence holds:

Z�(x + n) −F�(n + x)

n
+ 1
2 ρn/2

√
W

st,S−−→ G�(x), as n → ∞. (9)
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12 K. KOLESKO AND E. SAVA-HUSS

The Cramér–Wold device implies that, in fact, the convergence holds for finite-

dimensional distributions and the limiting process G� is jointly Gaussian with G�(x)
d=

ρ�x�/2σ
(�{x})N (0, 1) or G�(x)
d= ρ�x�/2σ (�{x})N (0, 1) depending on the value of the con-

stants σ
 or σ , respectively. Furthermore, we write Z t,F t, Gt (respectively Z j,F j, Gj) for
Z�,F�, G� if � = �t (respectively � = �j). Since, with probability one, all the random vari-
ables (Uu)u∈U∞ are different, the process (Z t(x))x≥0 at its jump point increases by 1. Therefore,
the following stopping times are well defined: for k ∈N, define τk as

τk = inf
{
x ≥ 0 : Z t(x) = k

}
. (10)

Remark 1. With the stopping times (τk)k∈N just introduced, we have

Bj(k) =Z j(τk),

and this is exactly the number of balls of type j added to the two urns after k draws, for which we
seek first- and second-order asymptotics. Our strategy is as follows: first we prove functional
limit theorems for the processes {Z t(x); x ∈R} and {Z j(x); x ∈R}, and then we conclude the
corresponding limit theorems for Bj(k), for j ∈ [J]. We start with the description of the leading
term in the asymptotics of Z�(x), for any characteristic � ∈ C.

Periodic functions. For any λ ∈C, we introduce the function

lλ : [0, ∞) →R defined as lλ(x) = (1 + (λ − 1){x})λ−{x}, (11)

where λt = et log λ and z �→ log z is the principal branch of the logarithm. The function lλ is
continuous and 1-periodic, and it satisfies

λxlλ(x) = λ�x�(1 + (λ − 1){x}).
Moreover, the mapping x �→ λxlλ(x) equals λx for integer x and is linear in between.

Proposition 2. Assume (GW1), (GW2), and (GW4) hold, and for any j ∈ [J] let � = a�t +
b�j, with a, b ∈R. Then it holds that

lim
x→∞

Z�(x)

ρxlρ(x)
= lim

x→∞
Z�(x)

ρ�x�(1 + (ρ − 1){x}) = (a + bρuj)
1

ρ − 1
W, P

S -almost surely. (12)

Proof. Because of the linearity of CMJ processes, for x ∈R it holds that

Z�(x) = aZ t(x) + bZ j(x) for any a, b ∈R and j ∈ [J],

so it suffices to prove the PS-almost sure convergence for Z t(x) and Z j(x) separately,
as x → ∞.

Case 1: x ∈ [0, 1). For n ∈N and x ∈ [0, 1), since Z t(x + n) = Z
�t

x
n , in view of Proposition 2.1

we get
Z t(x + n)

ρn(1 + (ρ − 1)x)
→ 1

ρ − 1
W, P

S -almost surely as n → ∞. (13)

Case 2: x ∈ [0, ∞). This case can be reduced to the previous one, where x ∈ [0, 1), as follows.
In view of Equation (13), for any x ∈ [0, ∞), with m = n + �x� we obtain

Z t(x + n)

ρx+nlρ(x)
= Z t(�x� + n + {x})

ρ�x�+n(1 + (ρ − 1){x}) = Z t({x} + m)

ρm(1 + (ρ − 1){x})
a.s.−→ 1

ρ − 1
W, as m → ∞.
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In the last equation above, we used the fact that

ρx+nlρ(x) = ρ�x�+n(1 + (ρ − 1){x}) = ρx+nlρ(x + n).

We still have to prove that the above PS -almost sure convergence holds for x → ∞, that is,
that

lim
x→∞

Z t(x)

ρxlρ(x)
= 1

ρ − 1
W, P

S -almost surely.

Indeed, from any sequence tending to infinity we may choose a subsequence (xn) such that {xn}
converges to some x0 ∈R. Then for any δ > 0 and large n, in view of

Z t(�xn� + x0 − δ) = Z
�t{�xn�+x0−δ}
��xn�+x0−δ� = Z

�t{x0−δ}
��xn�+x0−δ�,

we have

Z t(�xn� + x0 − δ)

ρ�xn�+x0−δlρ (x0 − δ)
· ρx0−{xn}−δ · lρ(x0 − δ)

lρ(xn)
≤ Z t(xn)

ρxn lρ (xn)

≤ Z t(�xn� + x0 + δ)

ρ�xn�+x0+δlρ (x0 + δ)
ρx0−{xn}+δ · lρ (x0 + δ)

lρ (xn)
.

Taking the limit first as n goes to infinity and then as δ goes to 0, we get the desired conver-
gence, since x �→ lρ(x) is uniformly continuous. The same argument can be used to show that
for any j ∈ [J] we have

lim
x→∞

Z j(x)

ρxlρ(x)
= 1

ρ − 1
Wρuj, P

S-almost surely,

and this proves the claim. �
An immediate consequence of Proposition 2 is the following corollary.

Corollary 1. Under the assumptions of Proposition 2, for � = ρuj�
t − �j, we have

lim
x→∞

Z�(x)

ρxlρ (x)
= lim

x→∞
Z�(x)

ρ�x�(1 + (ρ − 1){x}) = 0, P
S-almost surely.

Also, the strong law of large numbers for (Bj(k))k∈N follows immediately from Proposition 2.

Proof of Theorem 1. Since τk goes to infinity as k does, we have

lim
k→∞

Bj(k)

k
= lim

k→∞
Z j(τk)

Z t(τk)
= lim

k→∞
Z j(τk)

ρ�τk�(1 + (ρ − 1){τk}) · ρ�τk�(1 + (ρ − 1){τk})
Z t(τk)

= 1

ρ − 1
Wρuj · 1

1
ρ−1 W

= ρuj, P
S-almost surely,

and this finishes the proof. �
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4. Proof of the main result

The proof is completed in several steps:

• In Lemma 1 we investigate compositions of the fluctuations F t and F j.

• In Theorem 3 we prove weak convergence of the processes X t =Z t −F t and X j =
Z j −F j (rescaled appropriately) to Gaussian processes Gt and Gj respectively, for any
j ∈ [J].

• Continuity and strict positivity of the variances of the limiting processes Gt and Gj are
analyzed in Proposition 4 and in Lemma 2.

• Localization of the stopping times τn is done in Proposition 5.

• Finally, the limit theorems for Bj(n) are given in Proposition 6 and in Theorem 4.

4.1. Leading asymptotic terms

We start by describing the leading terms in the asymptotics of Z t and of Z j for any j ∈ [J].
We recall first that for a characteristic � ∈ C, the leading term in the asymptotics of Z� is
given by F�; for simplicity of notation, for x ∈R we write

X�(x) =Z�(x) −F�(x).

In particular, for � = �t and � = �j respectively, we write

X t(x) =Z t(x) −F t(x) and X j(x) =Z j(x) −F j(x).

Lemma 1. Assume (GW1)–(GW3) hold. Then for sufficiently large arguments the inverse
function F inv = (F t)−1 is well defined, and for every j ∈ [J] we have

lim
t→∞ sup

s≥1
s−1

∣∣∣F j(F inv(t + s)
)−F j(F inv(t)

)− ρujs
∣∣∣= 0, P

S -almost surely. (14)

Proof. For any k ∈N0, x ∈ [0, 1), the equality

E[�t
x(k)] = (1 − x)E[�t

0(k)] + xE[�t
0(k + 1)]

together with Equation (5) gives us

F
�t

x
n = (1 − x)F

�t
0

n + xF
�t

0
n+1;

that is, for any x ≥ 0, F t(x) is a linear interpolation between F t(�x�) and F t(�x� + 1). On the
other hand, as, in view of (4) and (5), for n ∈N we have

F t(n) = ρnx1(�t
0)An

1πρW(1) = ρn

ρ−1 W + o(ρn),

we conclude that the following holds:

F t(x) = ρx

ρ−1 lρ (x)W + o(ρx) and(F t)′(x) = ρ�x�W + o(ρx) for x /∈ Z.
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By the same argument, for j ∈ [J] we obtain

F j(x) = ρx

ρ−1 lρ(x)ρujW + o(ρx) and(F j)′(x) = ρ�x�ρujW + o(ρx) for x /∈Z.

In particular,F t is eventually increasing P
S -almost surely and thus the inverse function (F t)−1

is well defined for large arguments. Furthermore, if F inv(t) /∈N and t is large enough then we
have

(F j ◦F inv)′(t) = (F j)′
(F inv(t)

) · (F inv(t))′ = (F j)′
(F inv(t)

)
(F t)′

(F inv(t)
) → ρuj, as t → ∞,

since F inv(t) diverges to infinity. Finally, since for large t it holds that

F j(F inv(t + s)
)−F j(F inv(t)

)=
∫ t+s

t

(F j ◦F inv)′(u)du,

we obtain (14). �

4.2. Limit theorems for X t and X j

To prove weak convergence of the processes
{

1

n
+ 1
2 ρn/2

√
W
X j(n + x); x ∈R

}
, we follow the

well-known technique: we first prove weak convergence of the finite-dimensional distributions,
then prove tightness. According to [8, Theorem 3.5], the finite-dimensional distributions of the
aforementioned processes converge jointly; see also Equation (9) and the discussion thereafter.

Theorem 3. Suppose that (GW1)–(GW3) hold and L satisfies E
[‖L‖2+δ

]
< ∞ for some δ ∈

(0, 1). Then for every j ∈ [J], the family of distributions{
1

n
+ 1
2 ρn/2

X j(n + x); x ∈R

}

with respect to P is tight in the Skorokhod space D(R) endowed with the standard J1 topology.

Proof. First let us observe that for any k ∈Z, m ∈N, the concatenation is a continuous
mapping from D([k, k + 1)) × · · · ×D([k + m − 1, k + m)) to D([k, k + m)). Consequently, it
suffices to prove tightness in the space D([0, 1)). For x ∈ [0, 1), j ∈ [J], and n ∈N we set

Y j(n + x) = 1

n
+ 1
2 ρn/2

X j(n + x),

where 
 may be − 1
2 in Case (i) of [8, Theorem 3.5], and the characteristic �j = (�j

x)x∈[0,1) is
defined as in (3). In view of [3, Theorem 13.5], it suffices to show that for any 0 ≤ x ≤ y ≤ z < 1,
λ > 0, and n large enough, it holds that

P

(∣∣Y j(n + y) −Y j(n + x)
∣∣∧ ∣∣Y j(n + z) −Y j(n + y)

∣∣≥ λ
)

≤ Cλ−2p|z − x|p,
where p := (2 + δ)/2 ∈ (1, 3/2) and C > 0 is some constant. A more restrictive condition is the
following inequality:

E

[ ∣∣Y j(n + y) −Y j(n + x)
∣∣p · ∣∣Y j(n + z) −Y j(n + y))

∣∣p ]≤ C|z − x|p.
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By Hölder’s inequality, we have

E

[
|Y j(n + y) −Y j(n + x)|p · |Y j(n + z) −Y j(n + y)|p

]

≤E

[
E

[
|Y j(n + y) −Y j(n + x)|2 · |Y j(n + z) −Y j(n + y)|2

∣∣∣An

]p/2
]

,

so it remains to show the estimate

E

[
|Y j(n + y) −Y j(n + x)|2 · |Y j(n + z) −Y j(n + y)|2

∣∣∣An

]
≤ Hn|z − x|2,

for some random variables Hn with bounded p/2 moment. Recalling that for 0 ≤ x < 1 we
have

Z j(n + x) =
n−1∑
k=0

Zj
k +

∑
u∈T;|u|=n+1;t(u)=j

1{Uu≤x},

we deduce that for 0 ≤ x ≤ y < 1,

Z j(n + y) −Z j(n + x) =
∑

u∈T;|u|=n+1,t(u)=j

1{x<Uu≤y}.

We also have

F j(n + y) −F j(n + x) =
(

x1(�j
y) − x1(�j

x)
)

An
1W(1) +

(
x2(�j

y) − x2(�j
x)
)

An
2Z0

= (y − x)Ae�
j π (1)An

1W(1) + (y − x)Ae�
j π (2)An

2Z0

= (y − x)Ae�
j

(
π (1)An

1W(1) + π (2)An
2Z0

)
= (y − x)F

n = (y − x)(Zj
n+1 − (Z

n − F
n )),

where  : N0 →R1×J is the characteristic given by (k) = 1{k=0}e�
j L = 1{k=0}〈ej, L〉. Hence

Z
n counts the number of individuals of type j in the (n + 1)th generation. We then obtain

Y j(n + y) −Y j(n + x) = 1

n
+ 1
2 ρn/2

(X j(n + y) −X j(n + x)
)

= 1

n
+ 1
2 ρn/2

[
(Z j(n + y) −Z j(n + x)) − (F j(n + y) −F j(n + x))

]

= 1

n
+ 1
2 ρn/2

[ ∑
u∈T;|u|=n+1;t(u)=j

1{x<Uu≤y} − (y − x)Zj
n+1 + (y − x)(Z

n − F
n )
]

= 1

n
+ 1
2 ρn/2

[ ∑
u∈T;|u|=n+1;t(u)=j

(
1{x<Uu≤y} − (y − x)

) · 1 + (y − x)(Z
n − F

n )
]
.
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Fluctuations for the two-urn model 17

Since Zj
n+1 and Z

n − F
n are An-measurable, by applying Lemma 5 to the intervals I = (x, y),

J = (y, z), with ai = 1, A = (y − x)(Z
n − F

n ), and B = (z − y)(Z
n − F

n ), we finally obtain

E

[
|Y j(n + y) −Y j(n + x)|2 · |Y j(n + z) −Y j(n + y)|2|An

]
≤ C

( 1

n2
+1ρn

)2(
(y − x)(z − y)

(
Zj

n+1

)2 + A4 + B4)
≤ C(z − x)2

( 1

n
+ 1
2 ρn/2

)4 [
(Z

n − F
n )4 + (Zj

n+1)2
]
= :C|z − x|2Hn,

for some absolute constant C. We have Zj
n+1 = Z

n , so Theorem 5(i) implies that E[(Zj
n+1)p] =

O(ρpn). On the other hand, Corollary 4 yields that E
[
(Z

n − F
n )2p

]= O(n(2
+1)pρpn). As a
consequence, the random variables Hn have bounded p/2 moments, and in turn the process{

1

n
+ 1
2 ρn/2

X j(n + x); x ∈R

}
is tight in D(R). �

As a consequence of the previous result we obtain the following.

Corollary 2. Suppose that the assumptions (GW1)–(GW3) hold and that the matrix L satisfies
E
[‖L‖2+δ

]
< ∞ for some δ ∈ (0, 1). Then the family of distributions{ 1

n
+ 1
2 ρn/2

X t(n + x); x ∈R

}
is tight in the Skorokhod space D(R) endowed with the standard J1 topology.

Proof. In view of the two equalities Z t(n + x) − 1 =∑J
j=1 Z j(n − 1 + x) and F t(n + x) =∑J

j=1 F j(n − 1 + x), together with

Y t(n + x) = 1

n
+ 1
2 ρn/2

X t(n + x) =
J∑

j=1

1

n
+ 1
2 ρn/2

X j(n − 1 + x),

we see that Y t(n + x) can be written as a finite sum of tight processes, so it is tight as well. �
The convergence of the finite-dimensional distributions together with the tightness gives the

weak convergence.

Proposition 3. Suppose that the assumptions (GW1)–(GW3) hold and that the matrix L sat-
isfies E

[‖L‖2+δ
]
< ∞ for some δ ∈ (0, 1). Then we have the following weak convergence of

sequences of processes in the Skorokhod space D(R) endowed with the standard J1 topology:
for every j ∈ [J] it holds that{

1

n
+ 1
2 ρn/2

√
W

(X t(n + x),X j(n + x)); x ∈R

}
st,S−−→ {(Gt(x), Gj(x)); x ∈R}.

4.3. Properties of the limiting processes Gt and G j

Notice that for �0 ∈ C, we have

�0(1) = a�t
0(1) + b�

j
0(1) = a1 + be�

j L and E[�0(1)] = a1 + be�
j A,
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18 K. KOLESKO AND E. SAVA-HUSS

where a, b ∈R and j ∈ [J]. On the other hand, taking a = −ρuj and b = 1, we recover

wj = e�
j A − ρuj1 =E[�j

0(1) − ρuj�
t
0(1)],

as defined in (1), whose ith entry is given by wji =E[L(i,j) − ρuj] = aji − ρuj.

Proposition 4. For any � ∈ C and j ∈ [J], assume that wj 	= 0 and that

∑
λ∈σA

J−1∑

=0

‖Var(wjN

πλL)‖ > 0. (15)

(i) If
∑

λ∈σ 2
A

∑J−1

=0 ‖Var(wjN
πλL)‖ > 0, then for any x ∈ [0, 1) it holds that

max{0 ≤ 
 ≤ J − 1 : σ 2

 (�x) > 0} = max

{

 ≥ 0 :

∑
λ∈σ 2

A

‖Var(wjN

πλL)‖ > 0

}
. (16)

In particular, the largest 
 such that σ 2

 (�x) > 0 does not depend on x.

(ii) Otherwise, for any x ∈ [0, 1) and 0 ≤ 
 ≤ J − 1, it holds that

σ 2

 (�x) = 0 and σ 2(�x) > 0.

Proof. (i) For any x ∈ [0, 1), the vector x2(�x) is given by

x2(�x) =
∞∑

k=0

E[�x(k)]π (2)A−k
2 = xwjπ

(2) + wjπ
(2)

∞∑
k=1

A−k
2 .

If k is at least the right-hand side of Equation (16), then for any λ ∈ σ 2
A we have wjNk

λ(L − A) =
0 almost surely. Since A2 is invertible, we have∑

j≥1

A−j
2 = A−1

2

∑
j≥0

A−j
2 =

∑
j≥0

A−j
2 − I,

so from the last two matrix equations we get
∑

j≥0 A−j
2 = A2

∑
j≥0 A−j

2 − A2, which in turn

implies (A2 − I)
∑

j≥0 A−j
2 = A2. Multiplying this equation by (A2 − I)−1 from the right

and by A−1
2 from the left, we obtain

∑
j≥1 A−j

2 = (A2 − I)−1; hence it holds that (A2 −
I)
∑

j≥1 A−j
2 πλ = πλ, and finally it follows that

∑
j≥1 A−j

2 πλ = ((λ − 1)I + Nλ)−1. In view of

the definition (6) of σ
(�), it is enough to understand the term x2(�)πλ(A − λI)
(L − A). It
holds that

x2(�x)πλ(A − λI)k(L − A) =
(

xwjπλ + wj

∞∑
j=1

A−j
2 πλ

)
(A − λI)kπλ(L − A)

= (
xwjπλ + wj((λ − 1)I + Nλ)−1)Nk

λ(L − A)

=
(

xwjπλ + wj

dλ−1∑
j=0

(−1

j

)
(λ − 1)−1−jNj

λ

)
Nk

λπλ(L − A) = 0,
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Fluctuations for the two-urn model 19

almost surely, and hence σ 2

 (�x) = 0. On the other hand, if 0 ≤ 
 ≤ J − 1 is the maximal

number such that P(wjN

λ(L − A) 	= 0) > 0 for some λ ∈ σ 2

A , then for such 
 and λ, similar
calculations give

x2(�x)πλ(A − λI)
(L − A) =
(

xwjπλ + wj

dλ−1∑
j=0

(−1

j

)
(λ − 1)−1−jNj

λ

)
N


λπλ(L − A)

= wj
(
x + (λ − 1)−1)N


λπλ(L − A) 	= 0

with positive probability, since x + (λ − 1)−1 	= 0 because λ /∈R. This implies that σ 2

 (�x) > 0,

and this proves (i).
(ii) Assume that wjN


λ(L − A) = 0 almost surely for any λ ∈ σ 2
A and any 
 ≥ 0. Let tj =

�0(1) = a1 + be�
j L ∈R1×J be the random row vector whose expectation is E[tj] = wj 	= 0 by

assumption, and whose ith entry is denoted by tji. Note that for x ∈ (0, 1), in view of (8), we
have

σ 2(�x) =
∞∑

k=0

ρ−kVar
[
�x(k) + �x(k)

]
u ≥ Var

[
�x(0) + �x(0)

]
u

≥E
[
Var

[
tj1{U≤x} + �x(0)

∣∣L]u]+ Var
[
E
[
tj1{U≤x} + �x (0)

∣∣L]u]
≥E

[
Var

[
tj1{U≤x}

∣∣L]u]= x(1 − x)E
[ J∑

i=1

t2jiui

]
≥ x(1 − x)

J∑
i=1

w2
jiui > 0,

since by assumption wj 	= 0. Now we prove that σ 2(�0) does not vanish. We have �0(k) =
wj · 1{k≥1}, so �0 : N0 �→R1×J is completely deterministic. Assume that σ 2(�0) = 0. Then for
any k ∈N0 it holds that Var

[
�0 (k)

]
u = 0, which in turn implies, as uj > 0 for j ∈ [J], that for

any k ∈N0 and j ∈ [J] we have Var
[
�0 (k)ej

]= 0. The latter is equivalent to∑

∈Z

1{k−
−1≥1}wjA

P(k, 
)(L − A)ej = 0 almost surely. (17)

We set Aλ = πλA + λ(I − πλ) and observe that for any n ∈Z and m ∈N we have

An
λπλ = (λI + Nλ)nπλ = λn

dλ∑
i=0

λ−i
(

n

i

)
Ni

λπλ

and

∑
0≤
≤m

A

1π1 =

∑
0≤
≤m

(I + N1)
π1 =
∑

0≤
≤m


∑
i=0

(



i

)
Ni

1π1 =
d1∑

i=0

Ni
1

m∑
l=i

(
l

i

)
π1,

where in the second equation we have used λ = 1 (if λ would be in the spectrum of A). Suppose
now that for some vector z ∈RJ we have

wjN
i
λπλz = 0 for any λ ∈ σ 2

A and i = 0, . . . , dλ − 1,
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20 K. KOLESKO AND E. SAVA-HUSS

and for any k ∈N0 it holds that

∑

∈Z

1{k−
−1≥1}wjA

P(k, 
)z = 0. (18)

Note that the left-hand side of the previous equation can be rewritten as

∑

∈Z

1{k−
−1≥1}wjA

P(k, 
)z =

∑
λ∈σA

∑

∈Z

1{k−
−1≥1}wjA


λπλP(k, 
)z

=
∑

λ∈σ 1
A∪σ 3

A

∑

∈Z

1{k−
−1≥1}wjA


λπλP(k, 
)z

= −
∑
λ∈σ 1

A

∑

∈Z

1{k−
−1≥1}wjA


λπλ1{
<0}z +

∑
λ∈σ 3

A

∑

∈Z

1{k−
−1≥1}wjA


λπλ1{
≥0}z.

Setting −n = k − 2 ≥ −2, we get

0 =
∑
λ∈σ 1

A

∑

≤−n

wjA


λ1{
<0}πλz =

∑
λ∈σ 1

A

wj(I − A−1
λ )−1A−n

λ πλz

=
∑
λ∈σ 1

A

wj(I − A−1
λ )−1(λπλ + Nλ)−nπλz

=
∑
λ∈σ 1

A

λ−n
dλ∑

i=0

(−n

i

)
λ−i

(
wj(I − A−1

λ )−1Ni
λπλz

)
,

which in view of Lemma 6 implies that

wj(I − A−1
λ )−1Ni

λπλz = 0 for λ ∈ σ 1
A and i < dλ. (19)

Now we can use the decomposition

(I − A−1
λ )−1πλ =

dλ−1∑
i=0

ciN
i
λπλ,

for some c0, . . . , cdλ−1, and since (I − A−1
λ )−1 is invertible, we conclude that the matrix

(I − A−1
λ )−1πλ is not nilpotent and hence c0 	= 0. Now, taking i = dλ−1 in (19), we infer that

c0wjN
dλ−1
λ z = 0; that is, we have wjN

dλ−1
λ z = 0. Recursively, we see that for i = dλ − 1, dλ −

2, . . . , 0 Equation (19) implies wjNi
λz = 0, for any λ ∈ σ 1

A . Taking this into account and setting
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n = k − 2 > 0, from the condition (18) we get

0 =
∑
λ∈σ 3

A

∑
0≤
≤n

wjA


λπλz =

∑
λ∈σ 3

A\{1}

∑
0≤
≤n

wjA


λπλz + 1{1∈σ 3

A}
∑

0≤
≤n

wjA


1π1z

=
∑

λ∈σ 3
A\{1}

wj(Aλ − I)−1(An+1
λ − I)πλz + 1{1∈σ 3

A}
∑

0≤
≤n

wj(I + N1)
π1z

=
∑

λ∈σ 3
A\{1}

dλ−1∑
i=0

wj(Aλ − I)−1Ni
λπλzλnpλ,i(n) + 1{1∈σ 3

A}
d1−1∑
i=0

wjN
i
1π1zp1,i+1(n) + c,

where pγ,i is some polynomial of degree i and c does not depend on n. Lemma 6 implies that

wj(Aλ − I)−1Ni
λπλz = 0 for λ ∈ σ 3

A \ {1} and i < dλ,

and also

wjN
i
1π1z = 0 if 1 ∈ σ 3

A and i < d1.

The same argument as before gives that wjNi
λz = 0, for any λ ∈ σ 3

A and i < dλ. Suppose now
that σ 2(�0) = 0 and also σ 2


 (�0) = 0 for all 0 ≤ 
 ≤ J. Then by setting z = (L − A)ej with
j ∈ [J] we conclude that for any λ ∈ σA and 
 ≥ 0,

wjN


λπλL = wjN



λπλA almost surely.

This contradicts the assumption. �

Continuity of the limit processes G t and Gj

We recall once again the notation G�(x) = ρ�x�/2G�{x} , where G�{x} d= σ
(�{x})N or

G�{x} d= σ (�{x})N , with N := N (0, 1) denoting a standard normal variable independent of
W, and Gt (respectively G�) denoting G� if � = �t (respectively � = �i).

Lemma 2. For j ∈ [J], let H(x) = ρujGt(x) − Gj(x). Under the assumptions of Theorem 3, H(x)
is continuous for any x ∈ [0, ∞).

Proof. Since H is a linear combination of the Gaussian processes Gt and Gj, it is enough
to show continuity for the two terms separately. We start with the continuity of Gj. For any
0 ≤ x ≤ y ≤ 1, since either

Gj(y) − Gj(x)
d= (σ (�j

y) − σ (�j
x))N = σ (�j

y − �j
x)N

or

Gj(y) − Gj(x)
d= (σ
(�j

y) − σ
(�j
x))N = σ
(�j

y − �j
x)N ,

depending on whether we are in Case (i) or Case (ii) of Theorem 3.5 in [8], we have to upper-
bound σ 2(�j

y − �
j
x) and σ 2


 (�j
y − �

j
x) by some power of |y − x|. The definition of σ 2(�)

applied to the characteristic �
j
y − �

j
x yields

σ 2(�j
y − �j

x) =
∑
k<0

ρ−kVar[ejπ
(1)(y − x)Ak−1)(L − A)]u

+Var[ej1{x<U≤y} − ejπ
(1)(y − x)A−1(L − A)]u + ρVar[(y − x)ejπ

(3)(L − A)]u ≤ C(y − x).
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On the other hand, as for �
j
y − �

j
x it holds that x2 = x2(�j

y − �
j
x) = (y − x)ejπ

(2), we conclude
that

σ 2

 (�j

y − �j
x) = ρ−


(2
 + 1)(
!)2

∑
λ∈σ 2

A

Var
[
x2πλ(A − λI)
L

]
u ≤ C(y − x)2.

In particular, in both of the cases (i) and (ii) of [8, Theorem 3.5] we have

E[|Gj(y) − Gj(x)|2] ≤ C(y − x),

and therefore, since Gj is Gaussian, we obtain

E[|Gj(y) − Gj(x)|4] = 6E[|Gj(y) − Gj(x)|2]2 ≤ C|y − x|2,
which by the Kolmogorov continuity theorem implies that Gj is continuous. The same calcula-
tions as for Gj can be carried out to prove that Gt is continuous, so also H(x) = ρujGt(x) − Gj(x)
is continuous. �
Localization of the stopping times

This section addresses the localization of the stopping times (τk)k∈N. On the non-extinction
event S, for any n ∈N, we define the random variable

Tn = logρ

n(ρ − 1)

W
,

and we define the function h : R→R by

h(x) = �x� + ρ{x} − 1

ρ − 1
= x + ρ{x} − 1

ρ − 1
− {x}. (20)

Note that h−1 is uniformly continuous and given by h−1(x) = �x� + logρ

(
1 + (ρ − 1){x}).

Proposition 5. Under the assumptions (GW1)–(GW3), and if for k ∈N we set tk = h(Tk), then
for (τk) defined as in (10), we have

lim
k→∞ (tk − τk) = lim

k→∞ (h(Tk) − τk) = 0, P
S-almost surely.

Proof. By Proposition 2, the following PS -almost sure convergence holds:

lim
x→∞

Z t(x)

ρ�x�(1 + (ρ − 1){x}) = lim
x→∞

Z t(x)

ρxlρ(x)
= 1

ρ − 1
W.

We recall that lρ : [0, ∞) →R is defined as lρ(x) = (1 + (ρ − 1){x})ρ−{x}. Since Z t(τk) = k,
we infer that for any δ > 0 and large enough k we have

k

ρτk lρ(τk)
≤ 1

ρ − 1
Weδ and

k

ρτk−δlρ (τk − δ)
≥ 1

ρ − 1
We−δ .

This can be rewritten as

τk + logρ lρ (τk − δ) − logρ e−δ ≤ Tk ≤ τk + logρ lρ(τk) + logρ eδ .
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Notice that we have

τk + logρ lρ(τk) = �τk� + logρ (1 + (ρ − 1){τk}) = h−1(τk),

and the inverse of the increasing function h−1(x) is given by �x� + ρ{x}−1
ρ−1 = h(x), which then

yields the following inequalities:

�Tk − logρ eδ� + ρ{Tk−logρ eδ} − 1

ρ − 1
≤ τk ≤ �Tk − logρ e−δ� + ρ{Tk−logρ e−δ} − 1

ρ − 1
+ δ.

From the uniform continuity of h(x), by letting δ → 0, we obtain the claim. �
The above proposition implies that

τn = logρ n + O(1), P
S -almost surely.

4.4. Limit theorems for Bj

Proposition 6. Under the assumptions of Theorem 3, let � : Z→R1×J be any characteristic
such that the following stable convergence holds:

X�(n + x)

n
+ 1
2 ρn/2

√
W

st,S−−→ G�(x) in D(R), (21)

for some continuous Gaussian process G� with Var
[G�(x)

]
> 0, for any x ∈R. Then there

exists a continuous, positive, 1-periodic function Ψ� such that for τn as in (10) and Tn =
logρ

n(ρ−1)
W , it holds that

X�(τn)
√

n( logρ n)l+ 1
2 Ψ�(Tn)

d,S−→N (0, 1), as n → ∞. (22)

Proof. The key idea in the proof is to use the functional limit theorem for X� to replace
X�(τn) by X�(tn). Recall that for h as defined in (20), which is continuous and strictly increas-
ing, we have used the notation tn = h( logρ n − logρ

W
ρ−1 ) = h(Tn). Furthermore, for any x ∈R

and n ∈N it holds that h(n + x) = n + h(x). Consequently, by (21), we have

X�
(
h(n + x)

)
n
+ 1

2 ρn/2
√

W
= X�

(
n + h(x)

)
n
+ 1

2 ρn/2
√

W

st,S−−→ G�
(
h(x)

)
in D(R),

and the latter convergence can be rewritten as

X�
(
h(n + x)

)
(

n2
+1ρnWVar
[G�

(
h(x)

)] )1/2
st,S−−→ G(x) in D(R),

for some stationary and continuous process G with G(0)
D=N (0, 1). Note that one consequence

of the convergence in (21) is the following property of the limiting process: G�(x + 1)
d=√

ρG�(x). Hence, the previous convergence is equivalent to

X�
(
h(n + x)

)
((

(n + x) ∨ 1
)2
+1

ρn+xρ−{x}WVar
[G�

(
h({x}))] )1/2

st,S−−→ G(x) in D(R).
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In other words, for the function Ψ� defined by

Ψ�(x) =
(

(ρ − 1)ρ−{x}Var
[G�

(
h({x}))] )1/2

,

which is continuous and positive, and for

X(x) = X�
(
h(x)

)
((

x ∨ 1
)2
+1

ρx W
ρ−1

)1/2
Ψ�(x)

,

it holds that X(n + x)
st,S−−→ G(x), and therefore an application of Lemma 3(ii) with an = logρ n

yields

X
(
h−1(tn)

)= X
(

logρ n − logρ
W

ρ−1

) d,S−→ G(0). (23)

Since h−1(x) is uniformly continuous, by Proposition 5 we get

h−1(τn) − h−1(tn) → 0, P
S -almost surely. (24)

We claim that from Lemma 3(i) with Nn = �logρ n� and δn = 2−n it follows that

X
(
h−1(τn)

)− X
(
h−1(tn)

) P
S−→ 0, as n → ∞. (25)

Indeed, for fixed m ∈N, on the event | logρ W| ≤ km − 2δm − 1 − logρ (ρ − 1) and |h−1(τn) −
h−1(tn)| ≤ δm we have ∣∣X(h−1(τn)

)− X
(
h−1(tn)

)∣∣≤ ω(XNm, km, δm).

In turn, for any ε > 0 we get

P
S(∣∣X(h−1(τn)

)− X
(
h−1(tn)

)∣∣> ε
)

≤ P
S(ω(XNm, km, δm) > ε

)
+ P

S(| logρ W| > km − 2δm − 1 − logρ (ρ − 1)
)+ P

S(|h−1(τn) − h−1(tn)| > δm
)
.

Taking the limit first as n → ∞ and then as m → ∞ and using (24), we get (25). Finally, (25)
and (23) imply that

X�(τn)(
h−1(τn) ∨ 1

)
+ 1
2
√

nρ(h−1(τn)−h−1(tn))/2Ψ�(h−1(τn))
= X

(
h−1(τn)

) d,S−→ G(0),

which together with (24) and the P
S-almost sure convergence of Ψ�(h−1(τn))

Ψ�(h−1(tn))
and h−1(τn)

logρ n to 1

yields that

X�(τn)
√

n( logρ n)
+ 1
2 Ψ�(Tn)

d,S−→N (0, 1);

that is, (22) holds. This completes the proof. �
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Using the auxiliary result that we have just proved, we can now state and prove our main
result.

Theorem 4. Suppose that (15) holds and all assumptions from Theorem 3 are satisfied. Then
there exists a continuous, positive, and 1-periodic function Ψ such that, for Tn = logρ

n(ρ−1)
W

and any j ∈ [J], we have

Bj(n) −F j
(F inv(n)

)
√

n( logρ n)
+ 1
2 Ψ(Tn)

d,S−→N (0, 1), as n → ∞.

Proof. Since for any j ∈ [J] we have Z j(τn) = Bj(n) and X j(n) =Z j(n) −F j(n), we can
write

Bj(n) =F j(τn) +X j(τn)

=F j(F inv(n)
)+X j(τn) + (F j ◦F inv ◦F t(τn) −F j(F inv(n))).

From the fact that F t(τn) = n −X t(τn) together with Lemma 1, we obtain

F j ◦F inv ◦F t(τn) −F j ◦F inv(n) + ρujX t(τn) =X t(τn)o(1), P
S-almost surely,

and therefore

Bj(n) −F j(F inv(n)) =X j(τn) − ρujX t(τn) + o(1)X t(τn) P
S-almost surely.

By Proposition 4 (positivity of the variances of the limiting process) and Lemma 2
(continuity of the limit processes), the characteristics � = �j − ρuj�

t and � = �t and the cor-
responding processes X� with these characteristics satisfy the assumptions of Proposition 6.
Thus we can apply Proposition 6 to the processes X� =X j − ρujX t and to X t to obtain

X j(τn) − ρujX t(τn)
√

n( logρ n)
+ 1
2 Ψ(Tn)

d,S−→N (0, 1),

for some function Ψ which is continuous, positive, and 1-periodic; moreover, X t(τn)
√

n( logρ n)
+
1
2

·

o(1)
P−→ 0 as n → ∞, which completes the proof. �

Finally, in view of Theorem 4, it suffices to find an expansion of F j(F inv(n)) up to an error
of order o(nlogρ γ ) to prove Theorem 2 ; the latter will then follow immediately from the next
corollary.

Corollary 3. Under the assumptions of Theorem 4, suppose that all eigenvalues in � are
simple. Then the following hold:

(i) If γ >
√

ρ, then for any λ ∈ � there exist a 1-periodic, continuous function fλ : R→C

and a random variable Xλ such that

Bj(n) = ρuj · n +
∑
λ∈�

nlogρ λfλ(Tn)Xλ + oP
(

nlogρ γ
)

.
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26 K. KOLESKO AND E. SAVA-HUSS

(ii) If γ = √
ρ, then there is a 1-periodic, continuous function Ψ : R→ (0, ∞) such that the

following convergence holds:

Bj(n) − ρuj · n
√

n( logρ n)
1
2 Ψ(Tn)

d,S−→N (0, 1), as n → ∞.

(iii) If γ <
√

ρ, then there is a 1-periodic, continuous function Ψ : R→ (0, ∞) such that the
following convergence holds:

Bj(n) − ρuj · n√
nΨ(Tn)

d,S−→N (0, 1), as n → ∞.

Proof. We handle the case (i) in detail; the other two cases are identical, so we leave the
details to the interested reader. If γ >

√
ρ, then by (5) we have

F�(n) = x1(�)An
1W(1) + x2(�)An

2Z0 =
∑

λ∈�∪{ρ}
λnx1(�)πλW(1) + o(γ n)

= ρnx1(�)Wu +
∑
λ∈�

λnx1(�)Wλuλ + o(γ n),

where we define Wλuλ = πλW(λ) for some scalar random variable Wλ (this can be done since
πλ is a projection on the space spanned by the eigenvector uλ). In particular, as F j and F t are
piecewise linear between consecutive integer arguments, we conclude that

F j(x) = ρxlρ(x)x1(�j
0)Wu +

∑
λ∈�

λxlλ(x)x1(�j
0)Wλuλ + o(γ x),

and taking into account that x1(�j
0) = λ

λ−1 e�
j πλ, we finally get

F j(x) = ρx+1

ρ − 1
lρ(x)Wuj +

∑
λ∈�

λx+1

λ − 1
lλ(x)Wλuλ

j + o(γ x).

By the same argument, we also obtain

F t(x) =
J∑

j=1

F j(x − 1) = ρx

ρ − 1
lρ(x)W +

∑
λ∈�

λx

λ − 1
lλ(x)Wλ

( J∑
i=1

uλ
i

)
+ o(γ x).

In particular, it holds that

F j(x) = ρuj ·F t(x) +
∑
λ∈�

λx

λ − 1
lλ(x)

(
λuλ

j − ρuj

( J∑
i=1

uλ
i

))
Wλ + o(γ x).

Since for λ ∈ � we have

λx =
(

ρ − 1

lρ (x)W
F t(x)

)logρ λ

(1 + o(1)) =
(

ρ − 1

lρ (x)W
F t(x)

)logρ λ

+ o(γ x) on S,
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and F inv(n) = tn + o(1) = h(Tn) + o(1), we deduce that

F j(F inv(n)) = ρuj · n +
∑
λ∈�

nlogρ λ lλ(h(Tn))

lρ (h(Tn))logρ λ
·
(
λuλ

j − ρuj

( J∑
i=1

uλ
i

))(ρ − 1

W

)logρ λ Wλ

λ − 1

+ oP(nlogρ γ ),

and thus (i) holds with

fλ(x) = lλ(h(x))

lρ(h(x))logρ λ
and Xλ = (

λuλ
j − ρuj

( J∑
i=1

uλ
i

))(ρ − 1

W

)logρ λ Wλ

λ − 1
,

for every λ ∈ �.
In the case γ = √

ρ we have

F�(n) = ρnx1(�)Wu +
∑
λ∈�

λnx1(�)πλZ0 + o(γ n) = ρnx2(�)Wu + o(ρn/2),

and for γ <
√

ρ we have

F�(n) = ρnx1(�)Wu + o(ρn/2).

In both cases we can use the same approach as in the proof of (i), after an application of
Theorem 4; this proves (ii) and (iii). �

Appendix A. Example

We illustrate here the model with two alternating urns using an example with J = 3 colors
(1 = black, 2 = red, and 3 = green in the tree from Figure 1) and deterministic replacement
matrix L given by

L =
⎛
⎜⎝

1 0 2

0 2 1

1 1 1

⎞
⎟⎠

and j0 = 1; that is, we start with one black ball in U1 at time 0, so B(0) = (1, 0, 0). The first
column L(1) of L tells us that when we draw a black ball from some urn, we add one black
and one green ball to the other urn, so U2 is given by the nodes at level one of the tree and
B(1) = (2, 0, 1). Since after one step U1 has been emptied, we proceed to draw balls step by
step from U2 (from the first level of the tree). After drawing a green ball from U2, since
the third column of the matrix L gives the number of balls of each color added to the other
urn, with probability 1/2 the number of balls added after two steps is B(2) = (4, 1, 2) and
with probability 1/2 it is B(2) = (3, 0, 2). Then B(3) = (5, 1, 3) and U2 has been emptied,
so we proceed again to U1, which now contains 6 balls, and with probability 1/6 we have
B(4) = (5, 3, 4); now we have started to build the third level of the random tree and to fill U2
again.
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Appendix B. Higher-order estimates and additional results

Higher-moment estimates for Z�
n . We provide here, for a general random characteristic

�, higher-moment estimates for the random variable Z�
n − x1An

1W(1) − x2An
2Z0. These esti-

mates are needed in the proof of Theorem 3 for the characteristics �t and �j which fulfill the
assumptions of the next result. Recall that � is called centered if E[�(k)] = 0 ∈R1×J for any
k ∈Z.

Theorem 5. Let p ∈ [1, 2], and let � : Z→C1×J be a random characteristic. Moreover,
assume that (GW1)–(GW3) hold and the second moment of L is finite. Then the following
hold:

(i) If
∑

k∈Z
(
E
[‖�(k)‖p

])1/p
ρ−k < ∞, then E

[|Z�
n |p]= O(ρpn).

(ii) If
∑

k≤n

(
E
[‖�(k)‖p

])1/p
ρ−k = O(nr) for some r ≥ 0, then E

[|Z�
n |p]= O(ρpnnpr).

If in addition � is centered, then the following hold:

(i) If
∑

k∈Z
(
E
[‖�(k)‖2p

])1/p
ρ−k < ∞, then E

[|Z�
n |2p

]= O(ρnp).

(ii) If
∑

k≤n

(
E
[‖�(k)‖2p

])1/p
ρ−k = O(ρnnr), then E

[|Z�
n |2p

]= O(ρnpnpr).

Proof. From the decomposition

Z�
n = Z�−E�

n + ZE�
n ,

it is enough to get the desired bound on each term separately. If v is the right eigenvector of A
for the eigenvalue ρ > 1, then it holds that〈

1, Zn
〉≤ min

i
v−1

i

〈
v, Zn

〉= ρn min
i

v−1
i

〈
v, W(1)

n

〉
,

and further we have∣∣ZE�
n

∣∣≤∑
k≥0

‖E�(n − k)‖‖Zk‖ ≤
∑
k≥0

‖E�(n − k)‖〈1, Zk
〉

≤ min
i

v−1
i

∑
k≥0

‖E�(n − k)‖〈v, Zk
〉≤ min

i
v−1

i

∑
k≥0

‖E�(n − k)‖〈v, ρkW(1)
k

〉

= ρn × min
i

v−1
i

∑
k≤n

‖E�(k)‖ρ−k〈v, W(1)
n−k

〉
.

In view of Lemma 2.2 from [8], the random variables
〈
v, W(1)

k

〉
are bounded in L2, and

therefore by Minkowski’s inequality the L2 norm of ZE�
n is bounded by a multiple of

ρn ∑
k≤n ‖E�(k)‖ρ−k. As a result we get

E

[∣∣ZE�
n

∣∣2]= O(ρ2n)

in the case (i) and

E

[∣∣ZE�
n

∣∣2]= O(n2rρ2n)
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in the case (ii). By Jensen’s inequality, the pth moment of ZE�
n , for p ∈ [1, 2], is of order O(ρpn)

in the case (i) and of order O(nprρpn) in the case (ii).
Now we focus on the case with a centered characteristic  := � −E�. We consider an

increasing sequence (Gn)n∈N of subsets of U∞ that satisfies the following: ∪n≥1Gn = U∞; for
any n ∈N, Gn = n; if u ∈ Gn, then for any v ≤ u, v ∈ Gn. Such a sequence can be constructed
using the diagonal method. If Gn = σ ({L(u) : u ∈ Gn}), then one can see that

∑
u∈Gk

u(n −
|u|)et(u) is a Gk-martingale. Indeed, for any u ∈ Gk both t(u) and u are Gk-measurable, and the
fact that  is centered gives the martingale property. By the Topchii–Vatutin inequality [13,
Theorem 2] applied to

∑
u∈Gn

u(n − |u|)et(u) we get

E

[∣∣∣∑
u∈T

u(n − |u|)et(u)

∣∣∣p]≤ CpE

[∑
u∈T

∣∣u(n − |u|)et(u)
∣∣p]

≤ Cp

∑
k≥0

E
[‖(n − k)‖p]ρk ≤ 2pCp

∑
k≥0

E
[‖�(n − k)‖p]ρk

≤ 2pCp

(∑
k≥0

(
E
[‖�(n − k)‖p])1/p

ρk/p
)p ≤ 2pCp

(∑
k≥0

(
E
[‖�(n − k)‖p])1/p

ρk
)p

≤ 2pCpρ
pn
(∑

k≤n

(
E
[‖�(k)‖p])1/p

ρ−k
)p

,

and the latter expression is of the order O(ρpn) in the case (i) and O(nprρpn) in the case (ii).
This finishes the proof of the first two statements (i) and (ii).

Now we turn to the proof of (iii) and (iv). Observe that the Burkholder–Davis–Gundy
inequality [4, Theorem 1.1] yields

E

[∣∣Z�
n

∣∣2p
]
=E

[∣∣∣∑
u

�u(n − |u|)et(u)

∣∣∣2p]

≤ CpE

[∣∣∣∑
u

∣∣�u(n − |u|)et(u)
∣∣2∣∣∣p]= CpE

[∣∣Z
n

∣∣p],
where  is a new characteristic defined by u(k)ei := ∣∣�u(k)ei

∣∣2, i.e. the components of (k)
are squares of the components of �. Clearly ‖(k)‖ ≤ ‖�(k)‖2, and as a consequence (iii) and
(iv) follow from (i) and (ii) respectively applied to the characteristic  . �
Corollary 4. Let � : Z→C1×J be a random characteristic such that∑

k∈Z

∥∥E[�(k)]
∥∥(ρ−k + ϑ−k) < ∞, (26)

for some ϑ <
√

ρ, and ∑
k∈Z

‖Var[�(k)]‖ρ−k < ∞. (27)

Suppose that E
[‖L‖2p

]
< ∞ for some p ∈ (1, 2). Then, for F�

n defined by (5), it holds that

E

[∣∣Z�
n − F�

n

∣∣2p
]
=
⎧⎨
⎩O

(
ρnp

)
if for all 0 ≤ 
 ≤ J − 1, σ
 = 0,

O
(
n(2
+1)pρnp

)
if 0 ≤ 
 ≤ J − 1 is maximal with σ
 > 0.
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Proof. The decomposition from Equation (18) in [8] yields

Z�
n − F�

n = Z1
n + Z2

n + o(ρn/2), (28)

where 1 and 2 are two random centered characteristics such that

• for any k ∈Z we can decompose 1 as 1(k) = 1
′(k)(L − A) for some deter-

ministic characteristic 1
′(k) (see the paragraph after Equation (19) in [8]) and∑

k∈Z E
[‖1(k)‖2

]
ρ−k < ∞, and

• Z2
n = x2π

(2)(Zn − An
2Z0), i.e. 2(k) = x2π

(2)Ak−1(L − A)1{k>0}, for some row vector
x2.

Moreover, the last term o(ρn/2) in (28) is deterministic. By Minkowski’s inequality, we have

E

[∣∣Z�
n − F�

n

∣∣2p
]1/2p ≤E

[(
Z1

n

)2p
]1/2p +E

[(
Z2

n

)2p
]1/2p + o(ρn/2). (29)

We estimate each of the two terms on the right-hand side separately. In view of Lemma 4, there
is a constant C > 0 such that

E

[
‖1(k)‖2p

]
≤ C

(
E

[
‖1(k)‖2

] )p
,

and, in particular,∑
k∈Z

ρ−k(
E

[
‖1(k)‖2p

] )1/p ≤ C1/p
∑
k∈Z

ρ−k
E

[
‖1(k)‖2

]
< ∞.

Theorem 5(iii) applied to 1 yields E
[(

Z1
n
)2p]= O(ρnp). In order to deal with the second

term E

[(
Z2

n
)2p
]

on the left-hand side of (29), note that by the definition of 
 we may write

2(k) = 1{k>0}x2π
(2)

J−1∑
j=0

(
k − 1

j

)
Dk−1−jNj(L − A)

= 1{k>0}x2π
(2)

(J−1)∧
∑
j=0

(
k − 1

j

)
Dk−1−jNj(L − A).

In particular, as k goes to infinity we have

(
E

[
‖2(k)‖2p

] )1/p = O
(
ρkk2


)
, so

n∑
k=0

ρ−k(
E

[
‖2(k)‖2p

] )1/p = O
(
n2
+1),

and by Theorem 5(iv) applied to 2, we obtain E
[(

Z2
n
)2p]= O(n(2
+1)pρnp), which together

with (29) proves the desired. �
For any function f : R→R, let

ω(f , k, t) := sup{|f (x) − f (y)| : x, y ∈ [ − k, k], |x − y| ≤ t}
be the modulus of continuity of f on the interval [ − k, k].
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Lemma 3. For a stochastic process X taking values in the Skorokhod space D(R), and for
n ∈N, let Xn(t) = X(t + n). Furthermore, suppose that Y = (Y(t))t∈R is a stationary process
with almost surely continuous trajectories. Then we have the following:

(i) If Xn
d−→ Y, Nn is a sequence of natural numbers diverging to infinity, and δn ↘ 0, then

there is a sequence kn ↗ ∞ such that

ω(XNn, kn, δn)
P−→ 0, as n → ∞. (30)

(ii) If, for some real-valued random variable S independent of Y, it holds that (S, Xn)
d−→

(S, Y) as n → ∞, then for any sequence an that diverges to infinity we have

X(an + S)
d−→ Y(0), as n → ∞. (31)

Proof. (i): Fix δ > 0 and k ∈N. Then the mapping D(R) � f �→ ω(f , k, δ) ∈R is continuous
at any f ∈ C(R). The continuous mapping theorem yields

lim
n→∞E[ω(XNn, k, δ) ∧ 1] =E[ω(Y, k, δ) ∧ 1].

Hence, for any ε > 0 we have

lim sup
n→∞

E[ω(XNn, k, δn) ∧ 1] ≤E[ω(Y, k, ε) ∧ 1].

Since ε is arbitrary, we can take the limit as ε goes to 0, and from the continuity of Y we
conclude that

E[ω(XNn, k, δn) ∧ 1] → 0.

In particular, there is n(k) > n(k − 1) such that for all n ≥ n(k) it holds that

E[ω(XNn, k, δn) ∧ 1] ≤ 1/k.

Now for n ≥ n(1) we set kn = k whenever n(k) ≤ n < n(k + 1). Clearly kn ↗ ∞ and it holds
that

E[ω(XNn, kn, δn) ∧ 1] ≤ 1/kn,

which implies (30); this proves the first part of the claim.
(ii): The convergence in (31) holds if for any subsequence nk we can choose a further sub-

sequence nkl along which the convergence holds. Since we may replace the sequence an by
a subsequence ank , it suffices to show the convergence (31) along some subsequence. Thus,
without loss of generality, we may assume that {an} → a for some a ∈ [0, 1]. For Nn = �an�
and δn = 2|{an} − a|, we infer from Part (i) the existence of a sequence kn ↗ ∞ such that (30)
holds.

For Zn = X(Nn + {an} + S) − X(Nn + a + S), once again by Part (i) of the proof, we have

|Zn| ≤ |Zn|1{|S|≤kn} + |Zn|1{|S|>kn} ≤ ω(XNn, kn, δn) + |Zn|1{|S|>kn}
P−→ 0,

and thus, by Slutsky’s theorem, it suffices to prove

XNn(a + S) = X(Nn + a + S)
d−→ Y(0).
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Next, observe that the mapping R×D(R) � (s, x) �→ x(a + s) ∈R is continuous at any point
(s, x) ∈R× C(R). Therefore, by the continuous mapping theorem we have

XNn(a + S)
d−→ Y(a + S)

D= Y(0),

and this completes the proof. �
Lemma 4. Suppose that X is a random k × m matrix with E[‖X‖r] < ∞ for some r > 1. Then,
for any q < r, there is a constant C = C(m, k, q, r, X) > 0 such that for any m × k deterministic
matrix A it holds that

E[‖AX‖r] ≤ CE[‖AX‖q]r/q.

Proof. Without loss of generality, by the homogeneity of both sides, we may also assume
that ‖A‖ = 1. Now let N = {a ∈Rm×k : aX = 0 almost surely} be a linear subspace of Rm×k

and V its orthogonal complement. As both functions

a �→ E[‖aX‖r] and a �→ E[‖aX‖q]r/q

defined on the compact space V ∩ {‖x‖ = 1} are continuous and do not vanish, they achieve
their minimum and maximum. We define

C = maxa∈V,‖a‖=1 E[‖aX‖r]

mina∈V,‖a‖=1 E[‖aX‖q]r/q
< ∞.

Finally, by writing A = A1 + A2 with A1 ∈ N and A2 ∈ V , we obtain

E[‖AX‖r] ≤E[‖A2X‖r] ≤ CE[‖A2X‖q]r/q ≤ CE[‖AX‖q]r/q,

and this completes the proof. �
Lemma 5. Let I, J be two disjoint subintervals of [0,1], let N ∈N, and let U1, . . . UN be
an independent collection of random variables uniformly distributed on [0,1]. Then for any
sequence a ∈ 
2 and any numbers A, B ∈R, we have

E

[∣∣∣ N∑
i=1

(1{Ui∈I} − |I|)ai + A
∣∣∣2 ·

∣∣∣ N∑
i=1

(1{Ui∈J} − |J|)ai + B
∣∣∣2]

≤ C|I||J|‖a‖2(A2 + B2 + ‖a‖2) + A2B2

� |I||J|‖a‖4 + A4 + B4,

for some absolute constant C > 0.

Proof. For ease of notation, for i = 1, . . . , N we set

qi =
(
1{Ui∈I} − |I|)ai and ri = (

1{Ui∈J} − |J|)ai,

so E[qi] =E[ri] =E[qiqj] =E[rirj] = 0, for i 	= j. Simple calculations give

E[q2
i ] = (|I| − |I|2)a2

i and E[qiri] = −|I||J|a2
i ,

E[q2
i ri] = (− |I||J| + 2|I|2|J|)a3

i and E[q2
i r2

i ] = (|I||J|(|I| − 3|I||J| + |J|))a4
i .
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We first have
E
[(∑

i≤N

qi + A
)2
]
= (|I| − |I|2)N + A2 ≤ |I|N + A2. (32)

Expanding the expectation, we get

E

[∣∣∣∑
i≤N

qi + A
∣∣∣2 ·

∣∣∣∑
i≤N

ri + B
∣∣∣2]=

∑
i1,i2,j1,j2

E[qi1qi2rj1rj2 ] + 2A
∑

i,j1,j2

E[qirj1rj2 ]

+2B
∑

i1,i2,j

E[qi1qi2rj] + 4AB
∑
i,j

E[qirj] + A2B2 =: I + II + III + IV + A2B2.

We show that each of the terms I, II, III, IV is bounded by a multiple of the term |I||J|N(A2 +
B2 + N). Note that a nontrivial term of the form E[qi1qi2rj1rj2 ] is either of the form E[q2

i r2
j ] or

of the form E[qi1qi2ri1ri2 ], which in turn implies

I =
∑
i,j

E[q2
i r2

j ] + 4
∑
i 	=j

E[qiri]E[qjrj] = |I||J|(|I| − 3|I||J| + |J|)
∑

a4
i

+ 2(|I| − |I|2)(|J| − |J|2)
∑
i 	=j

a2
i a2

j + 4|I|2|J|2
∑
i 	=j

a2
i a2

j ≤ 8|I||J|‖a‖4.

Next, E[qi1qi2rj] is nonzero if it is of the form E[q2
i ri]. Hence, we have

III = 2B
∑

i

E[q2
i ri] = 2B( − |I||J| + 2|I|2|J|)

∑
i

a3
i = 2B|I||J|(2|I|− 1)

∑
i

a3
i

≤ 4|I||J||B|‖a‖3.

By symmetry, we have

II = 2A( − |I||J| + 2|I||J|2)
∑

i

a3
i = 2A|I||J|(2|J|− 1)

∑
i

a3
i ≤ 4|I||J||A|‖a‖3.

Finally, by the same reasoning as above, we get

IV = −4AB|I||J|
∑

i

a2
i ≤ 4|AB||I||J|‖a‖2,

and the claim follows from putting together the four quantities. �
Lemma 6. Let l, N ∈N and let λ1, . . . , λ
 be different, nonzero complex numbers. For (i, j) ∈
N0 × [
] we define fi,j : Z→C by fi,j(k) = kiλk

j . Then the collection of functions {fi,j : (i, j) ∈
N0 × [
]} is linearly independent. In particular, if, for any i ∈N0 and j ≤ 
, pj,i is a polynomial
of degree i, then the collection of functions {k �→ λk

j pj,i(k) : (i, j) ∈N0 × [
]} is also linearly
independent.

Proof. Let h =∑
i,j ci,jfi,j be a finite linear combination of the functions fi,j. Our aim is to

show that

if h(k) = 0 for k ≥ N, then ci,j = 0 for all i, j. (33)
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By dj(h) we denote the maximal power i such that the element fi−1,j appears in the combi-
nation of h. Furthermore, we set d(h) = d1(h) + . . . d
(h). We prove the claim by induction
on d(h). If d(h) = 1 then h(k) = λk

j for some j and the conclusion follows. Now suppose that
(33) holds for any h with d(h) = n and take h with d(h) = n + 1. If dj(h) ≤ 1 for all j ≤ 
, then
h(k) =∑n+1

m=1 cjmλk
jm for some j1, . . . , jn+1 ≤ n + 1. Since

(
λ−N+1

jm f0,jm(k)
)

1≤k,m≤n+1 forms a
Vandermonde matrix, this implies (33).

Therefore, we may now assume that for some j0 ≤ 
 we have dj0(h) ≥ 2. We denote by ∇ the
difference operator defined by ∇f (k) = f (k + 1) − f (k), and mj0 is defined by mj0 f (k) = λk

j0
f (k).

We now define a linear operator ∇j0 = mj0∇m−1
j0

. Clearly ∇j0 acts on the linear combinations
g of fi,j with dj(∇j0g) ≤ dj(g) and also dj0(∇j0 fi,j0) = dj0(fi,j0) − 1. In particular, 1 ≤ ∇j0h ≤ n,
and hence by the induction hypothesis ∇j0h(k) 	= 0 for some k ≥ N, which finally implies that
h(k) 	= 0 or h(k + 1) 	= 0, thus proving (33). �
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