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COMPLETELY REGULAR MAPPINGS AND HOMO­
GENEOUS, APOSYNDETIC CONTINUA 

JAMES T. ROGERS, JR. 

The purpose of this note is to prove an improved version of Jones' 
Aposyndetic Decomposition Theorem. Corollaries to the new theorem 
re-emphasize the importance of understanding aposyndetic, homo­
geneous continua. 

The proof is a synthesis of results about homogeneous continua with 
results from an unexpected source: completely regular mappings. Com­
pletely regular mappings occur naturally and often in the study of homo­
geneous continua, which is a surprising and pleasing phenomenon, since 
these mappings were invented for quite another purpose [1]. The author 
believes that these maps are likely to provide even more new information 
about homogeneous continua. 

A continuum is a compact, connected, nonvoid metric space. A curve 
is a one-dimensional continuum. A continuum M is homogeneous if for 
each pair of points p and q belonging to M, there exists a homeomorphism 
h:M—> M such that h(p) = q. 

A mapping f:X —•» F of X onto F is completely regular [1] if given 
e > 0 and y £ F, there exists an open set V in Y containing y such that 
if y' £ V, then there is a homeomorphism h îromf~l(y) t o / - 1 (y') such 
that d(x, h(x)) < e. Each completely regular mapping is open. 

We will need the following theorem, which should be well-known. A 
proof is included for completeness. 

THEOREM 1. If X is a curve and H1(X) = 0, then X is hereditarily 
unicoherent. 

Proof. We first show that if F is a subcontinuum of X, then H1 ( F) = 0. 
Consider the following part of the long exact sequence of the pair (X, F) : 

. . . -+ H^X) -> Hl(Y) -> H2(X, F) . . . 

Since X is a curve, it follows that H2(X, F) = 0 and hence Hl(Y) = 0. 
We now show that F is unicoherent. Suppose F = Y\ \J F2, where Y\ 

and F2 are proper subcontinua of F. Consider the following part of the 
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reduced Mayer-Vietoris sequence of the triod (F ; Y\, F2): 

. . . - ^ ( F O + ff°(Y2) - > # ° ( F i n F 2 ) - ^ i J 1 ( F ) - > . . . 

It follows that i ï 0 (F i H F2) = 0 and so Fi H F2 is connected. 

1. Jones' aposyndetic decomposition theorem. Let x and y be 
points of the continuum M. If M contains an open set G and a continuum 
H" such that x Ç G C H C. M — {y}, then M is said to be aposyndetic at 
x with respect to y. If M is aposyndetic at each of its points with respect 
to every other point, then M is said to be aposyndetic. 

The set Lx has as members the point x together with all points z of M 
such that M is not aposyndetic at z with respect to x. In the case that the 
homogeneous, decomposable continuum M is not aposyndetic, then the 
collection {Lx:x £ M} yields the following decomposition of M [8]. 

THEOREM 2. (Jones' Aposyndetic Decomposition Theorem). Suppose 
that M is a decomposable, homogeneous continuum. Then there exists a non-
degenerate collection G of mutually exclusive continua filling up M such 
that 

(a) the decomposition space N is a homogeneous, aposyndetic continuum, 
(b) if x is a point of M, then Lx is an element of G, 
(c) if g is an element of G and K is a sub continuum of M that contains 

both a point of g and a point of M — g, then g is a subset of K, 
(d) the associated quotient mapping TT'.M —> N is a monotone, open map, 

and 
(e) if g is an element of G, then g is a homogeneous continuum. 

We offer the following improvements of Theorem 2. 

THEOREM 3. / / the continuum M in the Jones' Aposyndetic Decomposi­
tion Theorem is a curve, then conditions (d) and (e) can be strengthened as 
follows: 

(d) the associated quotient map ir:M—> N is monotone and completely 
regular, and 

(e) if g is an element of G, then g is a homogeneous, indecomposable, 
acyclic curve. 

Proof. Let e > 0 and let y belong to N. Let x belong to 7r_1(^). 
According to a corollary [4] of a theorem of Effros [2], x belongs to an 
open set W of M such that for every pair of points a and b in W, there 
exists a homeomorphism h\M —> M such that h (a) = b and h moves no 
point more than e. 

Let y' belong to the open set ir(W). Let x' belong to Tr~l(y') C\ W. 
Let h:M —•> M be a homeomorphism such that h(x) — x' and h moves 
no point more than e. It follows that h maps iv~l(y) onto 7r-1(;y'), for to 
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do otherwise would violate the definition of the decomposition elements. 
Therefore, the map TT is completely regular. 

According to a theorem of [11, Theorem 1], for each element g of the 
decomposition, Hl{g) = 0. By Theorem 1, each element g of G is heredi­
tarily unicoherent. Jones [7] (see also [3]) has shown that each homo­
geneous, hereditarily unicoherent continuum is indecomposable. This 
completes the proof. 

Remark. If we only assume that M is a finite-dimensional continuum 
rather than a curve, then the map ir'.M —• N is still completely regular, 
but we may only conclude about each element g of G that Hn(g) — 0, 
where n = dim(ikf). 

Recall that a continuum M is \-connected if each two of its points lie 
in a hereditarily decomposable subcontinuum of M. 

COROLLARY 4. Each X-connected, homogeneous curve is aposyndetic. 

Piotr Mine once asked the author if it were possible to classify heredi­
tarily decomposable, homogeneous continua. The next corollary is a first 
step. 

COROLLARY 5. Each hereditarily decomposable, homogeneous continuum 
is apo syndetic. 

The next corollary, actually a corollary to the original Jones' theorem, 
seems to have gone unnoticed. 

COROLLARY 6. Each arcwise-connected homogeneous continuum is apo-
syndetic. 

2. More completely regular maps related to homogeneous con­
tinua. The author [9] has recently constructed an uncountable collection 
of homogeneous continua called solenoids of pseudo-arcs. These con­
tinua are so termed because each admits a continuous decomposition into 
pseudo-arcs such that the resulting quotient space is a solenoid. It is 
easy to show that the quotient maps associated writh these decompositions 
are completely regular. On the other hand, one can show that a ''solenoid 
of solenoids" cannot exist, using the theorem of Wilson [11] and the fact 
that the quotient map of the decomposition wrould be completely regular. 

The last theorem exploits a decomposition of a proper subcontinuum 
of a certain homogeneous curve. 

THEOREM 7. Suppose each proper subcontinuum of the homogeneous 
curve M is atriodic and unicoherent. Then each decomposable, proper sub­
continuum of M that is not an arc contains an indecomposable, homoge­
neous, acyclic subcontinuum. Furthermore each decomposable, proper sub­
continuum of M is acyclic. 

Proof. Let £ be a decomposable, proper subcontinuum of M. Since E 
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is unicoherent and not a triod, E is irreducible between two points [10]. 
We follow arguments similar to those of [4, Theorem 1] and [6, Lemma 
5] to find a monotone, open map k:E —* [0, 1] such that for each 
0 ^ s < / ^ 1, (a) &-1(s) is homeomorphic to k~l{t), and (b) k~l(s) is 
homogeneous. An argument similar to the proof of Theorem 3 of this 
paper shows that the map k is completely regular, and that the con­
tinuum &-1(s) is acyclic and indecomposable. The last claim of the 
theorem is a consequence of the Vietoris-Begle Theorem. 

The last corollary strengthens a theorem of [5]. 

COROLLARY 8. Suppose each proper sub continuum of the homogeneous 
continuum M is atriodic, unicoherent and decomposable. Then M is a 
solenoid. 

The following questions arise in trying to improve Jones' Aposyndetic 
Decomposition Theorem still further. 

Question 1. Is each homogeneous, aposyndetic curve locally connected ? 

Question 2. Is each acyclic homogeneous curve tree-like? hereditarily 
indecomposable ? 

For the purpose of this paper, an affirmative answer to the last question 
would enable us to bypass Question 2. 

Question 3. Suppose £ is a curve and / is a monotone map of E onto 
the unit interval I. If H1 ( / - 1 (/) ) = 0, for all /, must there exist a number 
5 such t h a t / - 1 (s) is tree-like? 
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