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Abstract. Singularities in space-time can be broadly divided into three classes: past-spacelike (in white 
holes or the big bang), timelike (naked singularities) and future-spacelike (in black holes or the final re-
collapse). In a closed Universe, if a simple restriction is made to eliminate timelike singularities, the in­
ference may be drawn that the topology of the Universe is unchanging with time. Thermodynamical 
considerations lead one to infer that the final singularity of recollapse must differ markedly in structure 
from the initial big bang. This may plausibly be related to the existence of black holes and the presumed 
non-existence of white holes. 

In this lecture I shall confine myself to making general qualitative remarks about 
singularities. The previous speaker, Prof. Lifshitz has given an excellent account 
Belinskii et al, 1974) of the very fine and detailed work (Khalatnikov and Lifshitz, 
1963; Belinskii et al, 1970, 1972) carried out over a number of years by the Soviet 
school. I do not feel able to add to that here. 

For the sake of simplicity I shall also confine my remarks to the case of closed 
universe models only. This is not intended to reflect any bias on my part as to whether 
I believe the Universe to be open or closed in fact. I have no strong feelings on the 
matter. It is merely that the statements of the results that I shall be concerned with are 
much more clear-cut in the case of closed universe models than open ones. Generaliza­
tions to the case of open universes are certainly possible and are treated to some extent 
in my other lecture (Penrose, 1974). 

Let me begin by reviewing the main singularity theorem from which we can infer 
the existence of some form of singularity in a general closed universe model: 

THEOREM (Hawking and Penrose, 1970): A space-time which 
(i) contains no closed timelike curves. 

(ii) satisfies Einstein's equations (without cosmological term) and the energy 
condition (Q+p{0, q + £ pt ^ 0), 

(iii) is sufficiently general (i.e. t[aRb]cd[etf]tctd^0 somewhere along each timelike or 
null geodesic, ta being the tangent vector), and 

(iv) contains a closed spacelike hypersurface, 
cannot be geodesically complete in all timelike and null directions. 

The concept of geodesic incompleteness is not quite the same as that of a physical 
singularity. One would expect that in the actual universe, the 'reason' for the geodesic 
incompleteness would be that space-time curvatures become so large that the local 
physics becomes drastically affected - to the extent that the normal ideas of space and 
time might break down. But the theorem says nothing about curvatures becoming 
large. That is its main weakness. Nevertheless, if one applies the theorem to a universe 
model which is maximally extended, then the association of geodesic incompleteness 
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with some form of physical singularity seems reasonable - even if in particular cases, 
the singularity might be, say, of the 'conical' type with curvatures remaining finite 
right up to the singularity. 

The theorem does not enable us to locate the singular points - it is very negative in 
this respect. Nor does it supply a definition of something that we could actually call a 
singular point. In fact various alternative definitions of singular points have been given, 
each with its own particular merits (cf. Hawking and Ellis, 1973). The definition I shall 
use here is basically that given by Geroch et al (1972). I shall apply the definition to 
universe models which are closed in the sense of having no points at infinity. Thus I 
assume, for simplicity, that ao timelike curves exist with infinite proper length. 

Let me first indicate in very crude and oversimplified terms how we might expect 
to classify singularities broadly into three groups: 

(i) past-spacelike (big bang, white hole) 
(ii) timelike (naked singularity) 

(iii) future spacelike (black hole, final singularity). 
I am including 'null' under the heading of 'spacelike' here; it is not hard to make a 
precise distinction but I shall not bother with it. The essential feature of a past spacelike 
singularity is that it supplies a past singular end-point to an otherwise past-endless 
timelike curve. A future spacelike singularity supplies a future singular end-point to 
an otherwise future-endless timelike curve. A timelike singular point may be thought 
of as supplying both a past end-point to a past-endless timelike curve and a future 
end-point to a future-endless timelike curve. (However, I shall not quite define things 
this way.) Two past-endless timelike curves y, rj are deemed to have the same (singular) 
past end-point if and only if they have the same futures (Figure 1). Likewise, two 
future-endless timelike curves / , rj' are deemed to have the same (singular) future 
end-point if and only if they have the same pasts. 

I should like to indicate why I feel that this method of identifying singular points is 
rather natural from the physical point of view. Let us consider the big bang singularity 
of the normal cosmological models. If we think of the initial singularity as a single 
point then we have the unnatural situation that because of the existence of particle 
horizons, this point gives rise to an infinity of causally disconnected regions at the 
next instant. It seems more natural to think of the singularity as a three-dimensional 
spacelike surface. (This picture can be obtained by a conformal rescaling of the other 
one (cf. Penrose, 1968).) Each point of this surface has a distinct domain of influence, 
the 'future' of that point (Figure 2). The above definition of singular points leads 
naturally to such a three-dimensional description of the big bang singularity. Each 
point of the singular set is directly associated with the region of space-time that it 
can influence. 

Let us see why, from this point of view, the normal black hole (r = 0) singularity of 
the Schwarzschild solution must be regarded as future-spacelike. The situation is 
depicted in Figure 3. All future-endless curves inside the event horizon must hit the 
singularity and no timelike curve can leave it. This singularity turns out also to be 
three-dimensional like that of the big bang. Timelike curves entering the singularity 
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big bang 

Fig. 2. 

from different directions or at different 'times' will have distinct pasts. The space-like 
character of this singularity is perhaps at variance with ones initial intuition since 
there is clearly a sense in which it persists with time. Nevertheless its local spacelike 
nature seems inescapable. I shall indicate later a possible criterion for distinguishing 
the black hole type of singularity from the more cosmological sort. The situation for 
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black hole white hole 
Fig. 3. 

white holes is just the time-reverse of that for black holes. Again the singularity is 
three-dimensional and spacelike - at least, in the spherically symmetrical case. 

The situation arising with a naked singularity can be formulated as follows. Suppose 
there is a point p in the space-time and a past-endless timelike curve y whose future is 
contained in the future of p (Figure 4). Since y is past-endless and since points at 
infinity have been excluded, we must assign a singular past end-point q to y. But the 
future of q (being the future of y) lies in the future of p. Thus the singular point q itself 
may be reasonably thought of as lying to the (causal) future of p. Thus q is both in the 
future of some observer (say p) and in the past of another (the points of y). So we may 
regard q as a timelike singular point. Indeed, since y lies to the future of p, we may choose 
some observer (timelike curve) who starts at p and travels to some point r on y. 
Then the singular point q lies to his future when he is at p and to his past when he is at r. 
This is the situation of a naked singularity. We may, for example, envisage a gravita­
tional collapse taking place, where the state is initially non-singular but where the 
system evolves into a singular configuration, the resulting singularity being, unlike 
that in a black hole, visible to observers at large distances. Such singularities are called 
naked, and it is customary to rule out their existence by a hypothesis: the hypothesis 
of cosmic censorship (cf. Penrose, 1974). In fact, it turns out that if we adopt the form 
of this hypothesis that excludes singular points q of just the type considered above, 
then the space-time must be globally hyperbolic. This means (cf. Geroch, 1970) that 
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the entire space-time can be evolved from a single Cauchy hypersurface - indeed that 
the topology of the Universe must be unchanging for all time. For a closed universe 
(no points at infinity) we may regard the condition of global hyperbolicity as equiva­
lent to cosmic censorship. The condition is actually time-symmetrical: exactly the 
same condition arises if, in the above, q had been taken as the singular future end-point 
of a future-endless timelike curve / and r as a point whose past contains the past of / . 

It is perhaps hard to visualize how the topology of the Universe can be unchanging 
in a situation where there are black holes, and possibly also white holes, where new 
black holes may be forming, perhaps old white holes disappearing, and where distinct 
black holes may be congealing into one. In fact, the Cauchy hypersurface must have 
the property that it passes 'underneath' all the black hole singularities and 'above' all 
the white hole singularities. The situation is indicated in Figure 5. The Cauchy hyper­
surface remains spacelike inside the black holes' horizons owing to the 'tipping' effect 
on the light cones. 

It should be observed that our hypotheses have not ruled out the possibility of 
white holes. Indeed, it is difficult to distinguish, on purely qualitative grounds, between 
a white hole singularity and the big bang itself. An argument has been given by Zel'do­
vich (1974) to the effect that white holes ought spontaneously to decay in a very short 
period of time owing to particle creation effects at or near the singularity. It should be 
emphasized that the distinction between black and white holes which seems to occur 
here is closely bound up with the statistical nature of time-directivity and to the asym­
metric behaviour of radiation. We recall that radioactive nuclei are observed to decay, 

Fig. 4. 
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Fig. 5. 

accompanied by the emission of radiation to infinity. But we do not expect such nuclei 
spontaneously to assemble themselves while absorbing radiation sent in from infinity. 
The local physical laws are the same in each case, but the type of boundary conditions 
that one allows are quite different for the two cases. 

When the implications of this distinction between past and future are examined 
in the setting of a closed universe, one is inevitably confronted with the question as 
to whether there is an essential difference between the past and future space-time 
singularities. The 'blame' for any statistical difference in the boundary conditions in 
the past and future gets pushed back into the singularities themselves. One possi­
bility for the distinction between past and future is that the very slight violations of 
time-reversal in variance in local physics which are observed (Casella, 1968) might 
play some crucial and greatly magnified role in the high curvature regimes which 
neighbour the singularities themselves. Another possibility that is sometimes con­
sidered (although I personally find it hard to take too seriously - particularly when 
examined in relation to black holes) is that the statistical time's arrow will somehow 
reverse itself when the Universe - assumed closed - reaches maximum expansioa 
Setting aside such possibilities, and still retaining, for simplicity, the picture of a 
closed universe, we are driven to ask how a possible difference in singularity structure 
between the big bang and the final recollapse might in some way be related to the 
statistical time's arrow. 

We can look at this question in a somewhat different way. Let us imagine that 

black hole 
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some appropriate definition of entropy can be found which refers to the whole Uni­
verse and includes gravitational effects (i.e. it does not refer just to systems of par­
ticles on a given curved background, (cf. Tolman, 1934), but the curvature itself must 
contribute appropriately to the entropy). In the early stages of the big bang one has 
a picture of something resembling thermal equilibrium - at least that is how calcu­
lations are done. So we envisage that the entropy (ignoring possible gravitational 
curvature contributions) is somehow almost at its maximum for the given 'size' that 
the Universe has at that time. As the Universe expands, the entropy increases, but 
lags behind the possible theoretical maximum that might be allowed for a universe 
of that size (Figure 6). Then the Universe recontracts and the theoretical maximum 
entropy is reduced with it. But since the entropy of the Universe has been increasing 
all the time, the Universe cannot reach a state resembling the compact system in 
thermal equilibrium in which it appeared to start out. Somehow the gravitational 
irregularities - apparently contributing positively to the entropy - must have grown. 
The model is now presumably riddled with black holes, or something similar which 
can be defined for a closed universe. One seems driven to some sort of concept of 
black hole entropy - or, at least, some sort of positive entropy residing in curvature 
irregularities. 

In this connection one is reminded of the concept, due to Beckenstein (1973) (and 
the related ideas due to Bardeen et al, 1974) of a black hole entropy Sbh defined by 
the formula 

where rj is some numerical constant of order unity, k is Boltzman's constant, and 

ent ropy 

thermal > 

equilibrium ? > 
t ime 

big bang 
singularity 

final collapse 
singularity 

Fig. 6. 
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where A is the surface area of the black hole. This definition is intended for use only 
in asymptotically flat space-times and the formula has been the subject of some con­
troversy. I do not propose to take sides on the issue here. I only mention it as one 
possible line of approach which has some bearing on the difficult and somewhat 
nebulous questions that I am attempting to raise. 

In Figure 7 I have tried to depict how an irregular closed universe full of black 
holes might look from the space-time point of view, where I am assuming that the 
cosmic censorship principle holds and that the model is free of white holes. But from 
the point of view of the topological or causal structure, all the 'stalactites' which 
represent black hole singularities could be straightened out and the final singularity 
might appear indistinguishable from the initial singularity. How, in fact, are we to 
make precise, in mathematical terms, the very real distinction between the initial and 
final singularities? I shall just give one possible criterion, for what it is worth, and 
then leave the matter there. 

One virtue of global hyperbolicity is that any two points with a timelike separation 
have a well-defined maximum time interval between them, this being the length of 
a maximal timelike geodesic connecting them (cf. Penrose, 1972). This time interval 
is actually a continuous function of the pair of points. We can extend this concept 
to apply also to the singular points. We can then ask, for each given past singular 
point, what is the maximum time-interval to future singular points. We find that this 
maximum varies little as the past singular point is varied. In a corresponding way, 
we can ask for the maximum interval from past singular points to some given future 

FINAL COLLAPSE 
maximum t ime f rom initial singularity ve ry variable 

maximum t ime to final singularity fairly constant 
BIG BANG 

Fig. 7. 
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singular point. We now find that this maximum varies very greatly as the future 
singular point is varied. The interval will be small for a singular point on a black 
hole singularity which occurs early in the Universe's history but it will be large for 
a singular point which only results from the final recollapse of the entire universe. 
How one could precisely relate such a time-asymmetry in the singularity structure 
to the statistical asymmetry of the details of the physical universe is a very open 
question, however. 
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D I S C U S S I O N 

Zel'dovich: What changes occur in the case when Q< 1 and the Universe is open? In this case black holes 
also form but most of the geodesies do not end in these black holes but go to the future infinity. 

Penrose: I discussed the question of open models in my contribution to Symposium N o . 64 in Warsaw. 
The corresponding considerations for open models are similar to those for the closed models provided, in 
the former case, we consider points at infinity to be in the same category as singular points. 

Misner: Suppose white holes are admitted. Consider the following possibility. The initial singularity 
contains a small white hole which will not explode out into the Universe until a late time. Before that time 
it has fallen within the horizon of a large black hole. Where now can the Cauchy hypersurface be fitted in? 

Penrose: There is no difficulty about the Cauchy hypersurface entering the event horizon of the black 
hole and then leaving it again, since this hypersurface is spacelike. It can approach the singularity as closely 
as you like and then slip underneath it. 

Misner: You referred to ZePdovich's arguments in Symposium N o . 64 to support the hypothesis that 
white holes may be avoided. The theoretical necessity for pair creation seems inevitable, but I do not see 
that this controls the epoch at which the white hole ejects matter into the external universe. Since time 
translations t->t —10 in the external Schwarzschild field correspond to space translations along the past 
spacelike singularity in the white hole (Schwarzschild r->0), it would seem that some inhomogeneity 
feature of the pair creation process fixes the white hole explosion epoch, and ZePdovich did not estimate 
such an inhomogeneity parameter. 

Novikov: The Schwarzschild singularity is spacelike. Pair creation does not change this property. But 
pair creation near the spacelike singularity changes the initial conditions which determine the evolution of 
the space-time from the singularity to the future. It must change the sewing together of the singularity 
region and the external space. (The external space is in the absolute future from the singularity.) It can 
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control the epoch at which the white hole ejects matter into the external space. My calculations are not 
finished yet, however. 

Zel'dovich: I don't agree with Prof. Penrose when he said that the entropy of the Universe might decrease 
when a black or white hole forms. The entropy of the Universe increases with time and this law does not 
contradict the fact that we cannot measure the entropy of matter which has already fallen into balck holes. 
To put it in other words, we cannot consider a man to be destroyed when he has turned round the corner 
of a house and we don't see him. 
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