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Abstract
The Lyman alpha (Lyα) forest in the spectra of z > 5 quasars provides a powerful probe of the late stages of the Epoch of Reionization
(EoR). With the recent advent of exquisite datasets such as XQR-30, many models have struggled to reproduce the observed large-scale
fluctuations in the Lyα opacity. Here we introduce a Bayesian analysis framework that forward-models large-scale lightcones of
intergalactic medium (IGM) properties, and accounts for unresolved sub-structure in the Lyα opacity by calibrating to higher-resolution
hydrodynamic simulations. Our models directly connect physically-intuitive galaxy properties with the corresponding IGM evolution,
without having to tune “effective” parameters or calibrate out the mean transmission. The forest data, in combination with UV luminosity
functions and the CMB optical depth, are able to constrain global IGM properties at percent level precision in our fiducial model. Unlike
many other works, we recover the forest observations without invoking a rapid drop in the ionizing emissivity from z ∼ 7 to 5.5, which
we attribute to our sub-grid model for recombinations. In this fiducial model, reionization ends at z = 5.44 ± 0.02 and the EoR mid-point
is at z = 7.7 ± 0.1. The ionizing escape fraction increases towards faint galaxies, showing a mild redshift evolution at fixed UV magnitude,
MUV. Half of the ionizing photons are provided by galaxies fainter than MUV ∼ –12, well below direct detection limits of optical/NIR
instruments including JWST. We also show results from an alternative galaxy model that does not allow for a redshift evolution in
the ionizing escape fraction. Despite being decisively disfavored by the Bayesian evidence, the posterior of this model is in qualitative
agreement with that from our fiducial model. We caution however that our conclusions regarding the early stages of the EoR and which
sources reionized the Universe are more model-dependent.

Keywords: cosmology: theory – dark ages, reionization, first stars – early Universe – galaxies: high-redshift – intergalactic medium

1. Introduction

The Epoch of Reionization (EoR) is a fundamental milestone
in the evolution of our Universe. Its timing and spatial fluc-
tuations encode invaluable information about the intergalac-
tic medium (IGM) and the first galaxies. Recent years have
witnessed a dramatic increase in the number and quality of
observations probing the EoR, including upper limits on the
cosmic 21-cm power spectrum (Mertens et al. 2020; Trott
et al. 2020; HERA Collaboration et al. 2023), the polariza-
tion anisotropy of the cosmic microwave background (CMB;
Planck Collaboration et al. 2020; Reichardt et al. 2021), and

the IGM Lyman-α (Lyα) damping-wing absorption seen in
spectra of high-redshift quasars (Eduardo Bañados et al. 2018;
F. Wang et al. 2020) and star-forming galaxies (Pentericci
et al. 2018; Umeda, Ouchi, Nakajima, et al. 2024; Heintz et
al. 2024).

Arguably the most mature of EoR datasets is the Lyα forest.
More than two decades of observational efforts have provided
over 70 high-quality quasar spectra at z > 5.5 (Fan et al. 2002;
Fan, Strauss, Richards, et al. 2006; Fan, Strauss, Becker, et
al. 2006; C. J. Willott et al. 2007; Becker et al. 2015; Wu et
al. 2015; E. Bañados et al. 2016; Jiang et al. 2016; Eilers, Davies,
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and Hennawi 2018; Yang et al. 2020; D’Odorico et al. 2023).
These data provide unparalleled statistics over large volumes of
the IGM. As such, the Lyα forest is one of the few EoR probes
that is not sensitive to the biased environments proximate to
the ionizing sources.

The high quality and quantity of Lya forest data provide an
invaluable stress test on our understanding of the EoR, as they
are quite sensitive to missing components in our theoretical
and systematic models. For instance, the observed large-scale
fluctuations in the Lyα optical depth cannot be reproduced by
the simplest, uniform ultraviolet background (UVB) models at
z > 5.2 (Becker et al. 2015; Bosman et al. 2022). Various theo-
retical models have attempted to reproduce the observations by
increasing fluctuations in the IGM temperature, mean free path
(MFP) of ionizing photons, ionizing emissivity, and/or includ-
ing an ongoing, patchy reionization (D’Aloisio, McQuinn, and
Trac 2015; Davies and Furlanetto 2016; D’Aloisio et al. 2017;
D’Aloisio et al. 2018; Chardin, Puchwein, and Haehnelt 2017;
Kulkarni et al. 2019; Keating et al. 2020; Meiksin 2020; Nasir
and D’Aloisio 2020; Asthana et al. 2024). However, moving
beyond “this particular model is (in)consistent with the data” to
“this is the distribution of IGM and galaxy properties inferred from
the data” is considerably more challenging, and can only be
achieved in a physically-motivated, efficient Bayesian infer-
ence framework.

Previous work that reproduced the data relied heavily on
effective (i.e. not physically interpretable) parameters and/or
ad-hoc assumptions that ignore or fine-tune the redshift evo-
lution of the mean transmission flux. For example, several
studies found that in order to reproduce the forest data, the
UV ionizing emissivity in their simulations has to be tuned to
drop rapidly towards the end of the EoR, with up to a factor of
2 decrement over just ∆z ∼ 0.5 (∼100 Myr at these redshifts;
e.g., Kulkarni et al. 2019; Ocvirk et al. 2021; Fig. 6). Such
short time-scales for the UVB evolution are difficult to justify
physically (e.g., Sobacchi and Mesinger 2013) or to recon-
cile with the observed gradual evolution of the cosmic star
formation rate (SFR) density from bright galaxies (Bouwens,
Illingworth, Oesch, Trenti, et al. 2015; Oesch et al. 2018). In-
deed subsequent analysis pointed to unresolved substructure in
the simulations as a possible explanation (e.g., see section 5.4 in
Qin et al. 2021, and the recent analysis in Cain, D’Aloisio, et al.
2024). Alternatively, simulations that tune the ionizing MFP
without modelling the time evolution of HII regions and/or
adopt effective parameters for inhomogeneous recombinations
are also difficult to interpret as they only provide a somewhat
opaque proxy for cosmic reionization (e.g., Choudhury, Paran-
jape, and Bosman 2021; Gaikwad et al. 2023; F. B. Davies et al.
2024).

Ideally, one should use a self-consistent model in which
the redshift evolution of the patchy reionization is simulated
directly from the galaxies that drive it. This would allow us
to set well-motivated priors on physical parameters that can
be constrained by complementary galaxy observations (e.g., J.
Park et al. 2019; Mutch et al. 2024). Anchoring the EoR models
on galaxies also allows us to constrain earlier epochs where we
have no forest measurements, since structure evolution (i.e.,

the halo mass function) is comparably well understood (e.g.,
Sheth, Mo, and Tormen 2001) and we have complementary
observations of UV luminosity functions (LFs) that constrain
how halos are populated with galaxies at these high redshifts.

However, such self-consistent modelling of the EoR is in-
herently extremely challenging, due to the enormous dynamic
range of relevant scales. Fluctuations in the Lyα forest are
correlated on scales larger than ∼100 cMpc (e.g., Becker et al.
2021; Zhu et al. 2021), while galaxies and IGM clumps are
on sub-kpc scales (e.g., Schaye 2001; Emberson, Thomas, and
Alvarez 2013; H. Park et al. 2016; D’Aloisio et al. 2020). As a
result, current simulations must rely on sub-grid prescriptions
that have to be calibrated against observations or other more
detailed, higher resolution simulations.

Here, we present an updated Bayesian inference frame-
work for the high-redshift Lyα forest that is arguably free from
“effective” parameters. We sample physically-intuitive galaxy
scaling relations to compute large-scale lightcones of the Lyα
opacity using 21cmFAST (Mesinger, Furlanetto, and Cen 2011;
S. Murray et al. 2020). This self-consistently connects galaxy
properties to the state of the IGM that is shaped by their ra-
diation fields. We account for missing small-scale structure
by calibrating to the Sherwood suite of high-resolution hy-
drodynamic simulations (Bolton et al. 2017). This calibration
allows us to eliminate the poorly-motivated hyperparameters
we previously used to account for missing systematics and/or
physics (Qin et al. 2021, hereafter Q21). For each astrophysical
parameter combination, we forward model the forest transmis-
sion, comparing against the observations (Bosman et al. 2022)
using an implicit likelihood. We present the resulting joint
constraints on reionization and galaxy properties, implied by
the combined data from the Lyα forest, UV LFs, and CMB
optical depth.

This paper is organized as follows. We summarize the
extended XQR-30 Lyα forest data in Section 2, and intro-
duce our Bayesian framework for forward-modelling Lyα
forests in Section 3. After summarizing the complementary
observations and free parameters used in this work in Sections
3.5 and 3.6, we present results in Section 4 including the re-
covered properties of the IGM and those of the underlying
galaxies. We then discuss the implication to our understanding
of reionization in Section 5, before concluding in Section 6.
In this work, we adopt cosmological parameters from Planck
(Ωm,Ωb,Ω˜, h,σ8, ns = 0.312, 0.0490, 0.688, 0.675, 0.815,
0.968; Planck Collaboration et al. 2016). Distance units are
comoving unless otherwise specified.

2. The Lyα opacity distributions from XQR-30+
The ultimate XSHOOTER legacy survey of quasars at z ∼ 5.8–
6.6 (XQR-30) is a ∼250-hour programme using the Very
Large Telescope (VLT) at the European Southern Observatory
(ESO; D’Odorico et al. 2023). While XQR-30 contains 30
high-quality quasar spectra, Bosman et al. (2022) assembled
67 sightlines at these redshifts by combining XQR-30 with
archival spectra. We refer to this extended dataset as XQR-30+.

The Lyα transmission in these spectra was quantified by the
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Figure 1. A flow chart showing the steps involved in computing the likelihood for a single sample of astrophysical parameters. See text for more details.

commonly-used “effective optical depth”, τeff ≡ – ln⟨Fα⟩∆z=0.1.
Here Fα(λ) is the continuum-normalized flux in the Lyα
forest, which is averaged over segments of width ∆z = 0.1
(roughly corresponding to ∼ 40 cMpc at these redshifts). Non-
detections (2σ) were assigned lower limits on τeff correspond-
ing to twice the mean flux noise in the corresponding segment.
The full XQR-30+ sample has at least ∼10 estimates of τeff
in each redshift bin spanning z = 5.1, 5.2, ..., 6.1. We show
the cumulative distribution functions (CDFs) of these τeff esti-
mates in Fig. 3, where we also compare them to our fiducial
posterior. For more details on how the observations were
processed, see Bosman et al. (2022).

3. Forwardmodelling
We use the public simulation code, 21cmFAST a(Mesinger and
Furlanetto 2007; Mesinger, Furlanetto, and Cen 2011; S. Mur-
ray et al. 2020), to compute 3D lightcones of the Lyα IGM
opacity. A single forward model and the corresponding like-
lihood evaluation are summarized in the flow chart of Fig. 1
and consist of the following steps:

1. Simulate large-scale 3D lightcones of the IGM density
(∆ ≡ ρ/ρ), neutral fraction due to inhomogeneous reionization
(xHI), photo-ionization rate (Γion), IGM temperature (Tg),
residual neutral fraction inside the ionized IGM (xHI,res) and
corresponding Lyα opacity (top left panel of Fig. 1);

2. Construct mock quasar sightlines and compute the ef-
fective optical depth by binning the sightlines over the same
redshift intervals as the XQR-30+ observation (lower left panels
of Fig. 1);

a. https://github.com/21cmfast/21cmFAST

3. Account for missing small scales by calibrating these ef-
fective optical depths against high-resolution hydrodynamic
simulations. Use the resulting probability density function
(PDF) of calibrated τeff to evaluate the likelihood of the ob-
served values (lower right panel of Fig. 1);

4. Multiply this forest likelihood with the corresponding
UV LF and CMB likelihoods in order to obtain the total like-
lihood of this parameter sample (upper right panels in Fig. 1;
c.f. Section 3.5).

We discuss this procedure in detail below, emphasizing the
improvements over our previous analysis in Q21.

3.1 Galaxy models
Our galaxy models are based on the semi-empirical parametriza-
tion in J. Park et al. 2019. We assume power laws relating the
fraction of galactic baryons in stars (f∗) and the UV ionizing
escape fraction (fesc) to the host halo mass (Mvir):

f∗ = min
[

1, f∗,10

(
Mvir

1010M⊙

)α∗]
(1)

and

fesc = min

[
1, fesc,10

(
Mvir

1010M⊙

)αesc (1 + z
8

)βesc
]

, (2)

where f∗,10, α∗, fesc,10, αesc and βesc are free parameters. Com-
pared to J. Park et al. 2019 and our previous analysis in Q21,
here we allow for an additional redshift dependence of fesc at a
given halo mass through the parameter βesc (e.g., Haardt and
Madau 2012; Kuhlen and Faucher-Giguère 2012; Mutch et al.
2016). Note that f∗ and fesc have to be in the range from zero
to unity as they are fractions.

https://doi.org/10.1017/pasa.2025.35 Published online by Cambridge University Press

https://github.com/21cmfast/21cmFAST
https://doi.org/10.1017/pasa.2025.35


4 Yuxiang Qin et al.

Table 1. Posterior distribution ([16, 84]th percentiles) and Bayesian evidence of the galaxy models used in this work. The Bayes ratio indicates a very strong
preference for the Evolving_fesc model, according to Jeffrey’s scale (e.g., Jeffreys 1939)

log10 f∗,10 α∗ log10 fesc,10 αesc βesc τ∗ log10 (Mturn/M⊙) lnB⊥

Prior range [-2, -0.5] [0, 1] [-3, 0] [-1, 0.5] [-3, 3] (0, 1] [8, 10] –
Evolving_fesc† –1.51 ± 0.03 0.48 ± 0.05 –1.52+0.12

–0.10 –0.94+0.09
–0.04 –1.61+0.27

–0.21 0.27+0.02
–0.01 8.10+0.16

–0.07 1
Constant_fesc‡ –1.42 ± 0.04 0.51 ± 0.07 –1.08+0.09

–0.06 –0.46+0.09
–0.13 fixed at 0 0.34 ± 0.02 8.46+0.51

–0.35 -17.5
⊥ Bayes ratio w.r.t. Evolving_fesc in natural logarithmic scale.
† Galaxies have a mass-dependent and time-evolving escape fraction.
‡ Galaxies have a mass-dependent and time-independent escape fraction.

The average SFRs of galaxies over the past 100Myr are com-
puted as SFR = M∗/

[
τ∗H–1(z)

]
, where M∗ ≡ f∗MvirΩb/Ωm

is the stellar mass, and τ∗ is an additional free parameter cor-
responding to the characteristic star formation time-scale in
units of the Hubble time, H–1(z), which scales as the halo
dynamical time during matter domination. Note that the
1500Å rest-frame luminosity used in photometric UV LF
observations is sensitive to star formation over the previous
100Myr (e.g., Flores Velázquez et al. 2021). When forward-
modeling UV LFs, we adopt the conversion factor, LUV/SFR =
8.7 × 1027erg s–1 Hz–1 M–1

⊙ yr (e.g., Madau and Dickinson
2014).

We also assume only a fraction fduty ≡ exp[–Mturn/Mvir]
of halos host star-forming galaxies. Here, Mturn characterizes
the halo mass below which star formation becomes inefficient
due to feedback and/or atomic cooling limits and is left as a
free parameter.

Below we explore two galaxy models, differing in their
treatment of the ionizing escape fraction:

1. Constant_fesc - the ionizing escape fraction is a func-
tion of halo mass only and is constant with redshift (fixing βesc
to zero in equation 2). Note that this model does effectively
allow for the population-averaged escape fraction to evolve
with redshift, since fesc depends on halo mass and the halo
mass function evolves with redshift. This sets a “characteris-
tic” halo mass that drives both the timing and morphology of
reionization.

2. Evolving_fesc - the ionizing escape fraction is a func-
tion of halo mass and evolves with redshift (treating both αesc
and βesc as free parameters in equation 2). Note that adding
an explicit redshift dependence to the escape fraction at a fixed
halo mass gives the Evolving_fesc model the flexibility to
decouple the EoR/UVB morphology from the mean EoR his-
tory.
In this work we perform inference with both models, compar-
ing their Bayesian evidences. We find that the data strongly
prefer Evolving_fesc, and we therefore refer to this model
as “fiducial”. We list the posterior distribution and Bayesian
evidence of these two models in Table 1.

3.2 Large-scale IGM simulations
Our simulation boxes are 250 cMpc on a side. Realizations
of Gaussian initial conditions are computed at z = 300 on
a 6403 grid, with the density fields evolved down to z = 5

using second order Lagrangian perturbation theory (2LPT;
Scoccimarro 1998) and smoothed down to a final resolution
of 1283. Galaxy abundances are identified from the evolved
density fields using excursion-set theory (Mesinger, Furlanetto,
and Cen 2011), and assigned properties including the stellar
mass, SFR, ionizing escape fraction and duty cycle according
to the galaxy models discussed in the previous section.

Reionization is modeled with the excursion-set approach
(Furlanetto, Zaldarriaga, and Hernquist 2004), accounting
for inhomogeneous recombinations (Sobacchi and Mesinger
2014). Unlike Q21, here we include a correction for photon-
conservation (Park, Greig, and Mesinger 2022), which further
decreases the need for the nuisance hyperparameters used in
our previous work. Specifically, a cell is flagged as ionized
when the cumulative number of ionizing photons per baryon
reaching it:

nion =
∫

dMvirϕfdutyM∗fescnγρ–1
b , (3)

exceeds the cumulative number of recombinations per baryon
(nrec; accounting for unresolved substructure with the analytic
framework of Sobacchi and Mesinger 2014):

n̄ion ≥ (1 + n̄rec) . (4)

In the above equations, ϕ, nγ and ρb represent the conditional
halo mass function, number of ionizing photons per stellar
baryon which we fix at 5000, and baryon density. The averag-
ing is performed over spherical regions around each cell for
radii R ≤ RMFP,LLS. Here RMFP,LLS corresponds to the MFP
through the ionized IGM and is governed by damped Lyα
systems (DLAs), Lyman limit systems (LLSs) and other unre-
solved systems with lower column densities (Nasir et al. 2021;
Feron et al. 2024; Georgiev, Mellema, and Giri 2024)

Before the end of the EoR, the total MFP determining
the local ionizing background is set by a combination of
RMFP,LLS and the distance to the surrounding neutral IGM,
RMFP,EoR, i.e. R–1

MFP = R–1
MFP,LLS + R–1

MFP,EoR (e.g., Alvarez
and Abel 2012). The reionization topology computed with
our excursion-set algorithm determines the local (inhomoge-
neous) RMFP,EoR around each cell. However, since we do not
directly resolve the spatial distribution of LSSs and DLAs when
these become rare/biased, we assume a homogeneous value for
RMFP,LLS = 66 [(1 + z) /6.3]–4.3 cMpc at z ≤ 6 motivated by
post-EoR measurements (Worseck et al. 2014; see also Songaila
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and Cowie 2010 and Becker et al. 2021).b In future work we
will expand our model to additionally sample the mean and
variance of RMFP,LLS, allowing us to extend our analysis to
even lower redshifts.

With the above, we compute the local photoionization rate
as

Γion = (1 + z)2 RMFPσH
αUVB

αUVB + βH

×
∫

dMvirϕfduty
M∗

τ∗H–1 fescnγm–1
p

(5)

where mp is the proton mass, αUVB = 2 corresponds to the ef-
fective spectral index of the UVB (see Becker and Bolton 2013;
D’Aloisio et al. 2019), βH = 2.75 and σH = 6.3 × 10–18cm2

characterize the photo-ionization cross-section σ(ν) = σH(
ν
νH

)βH
with νH corresponding to the Lyman limit. Af-

ter a cell is ionized, its residual neutral fraction is determined
assuming photo-ionization equilibrium:

xHI,resfion,ssΓion = χHeII∆nH(1 – xHI,res)2αB (6)

where nH is the mean hydrogen number density while ∆
is the cell’s overdensity, χHeII ∼ 1.08 accounts for singly
ionized helium, αB is the case-B recombination coefficient,
and fion,ss accounts for gas self-shielding (Rahmati et al. 2013;
see also Chardin, Kulkarni, and Haehnelt 2018). Note that sub-
grid physics are implemented (Sobacchi and Mesinger 2014)
when calculating recombinations with the sub-grid density
unresolved by our simulation cells assumed to follow a volume-
weighted distribution of PV(∆sub, z) from Miralda-Escudé,
Haehnelt, and Rees (2000). However, we use the cell’s mean
overdensity when computing the Lyα optical depth, which
neglects unresolved opacity fluctuations when calibrating to
the hydrodynamic simulations below. This will be improved
in future work.

The IGM temperature (Tg) is tracked following McQuinn
and Upton Sanderbeck (2016):

Tγ
g =Tγ

ion,I

[(
Z

Zion

)3 ρb
ρb,ion

] 2γ
3 exp

(
Z 2.5)

exp
(
Z 2.5

ion
)+Tγ

lim
ρb
ρb

, (7)

where we denote Z = (1 + z)/7.1 and use the subscript “ion”
to indicate values at the time the cell was first ionized for
convenience. γ = 1.7 is the equation of state index while
Tlim = 1.8Z × 104 K (Hui and Gnedin 1997; Theuns et
al. 1998; Puchwein et al. 2015) and Tion,I = 2×104 K (D’Aloisio
et al. 2019) are the relaxation and post I-front temperatures,
respectively. Note that the scatter in Tion,I has a negligible
impact on the Lyα forest (e.g., J. E. Davies et al. 2019).

b. At z > 6 where we do not have direct measurements, we set RMFP,LLS =
42 cMpc. The value of RMFP,LLS at these high redshifts is highly uncertain,
depending on the heating history of the IGM (Emberson, Thomas, and Alvarez
2013; H. Park et al. 2016; D’Aloisio et al. 2020). However, during reionization
the MFP is dominated by the reionization topology (i.e. RMFP,LLS > RMFP,EoR;
see Fig. 5 and Sobacchi and Mesinger 2014). Thus the exact value of RMFP,LLS
at z > 6 should have a negligible impact on the EoR and the corresponding
Lyα opacity distributions for realistic scenarios (see also Cain et al. 2023).

Finally, we compute the associated Lyα optical depth of
each 1.95 cMpc simulation cell using a form of the Fluctuating
Gunn-Peterson Approximation (FGPA; Gunn and Peterson
1965; Weinberg and et al. 1999) for ionized cells:

τα,GP =
√

3πσT
8

fαλαcH–1nHxHI. (8)

Here σT, fα=0.416, λα=1216Å and nH are the Thomson cross-
section, Lyα oscillator strength, Lyα rest-frame wavelength,
and hydrogen number density, respectively. Finally, we com-
pute the effective optical depth, τeff,GP, following the same
definition as the observation (see Section 2).

The FGPA approximates the cross-section of Lyα absorp-
tion as a Dirac delta function at resonance and ignores peculiar
velocities of the gas. In the following section we discuss how
we use high-resolution hydrodynamic simulations to correct
for the FGPA, accounting for missing small-scale structure.
This represents the main improvement of this work over our
previous analysis in Q21.

3.3 Accounting for missing small-scale structure
As mentioned above, our large-scale IGM simulations have a
cell size of 1.95 cMpc. This is a factor of few larger than the
typical Jeans length in the ionized IGM and the width of the
Lyα cross-section at resonance. As a result, we use the FGPA
in equation (8) instead of directly integrating over the full
Voigt profile for the Lyα cross-section, σα, and accounting
for gas peculiar velocities:

τα =
∫

dz
1 + z

cH–1nHxHIσα. (9)

Does this approximation impact our modelled τeff distribu-
tions?

The fact that τeff is defined over ∆z = 0.1 (corresponding
to roughly 20 of our IGM simulation cells) would suggest
that this summary statistic is mostly sensitive to (resolved)
large-scale fluctuations in flux. However, not resolving small-
scale structures can effectively alias power towards large scales
(e.g., Viel et al. 2005; Kooistra, Lee, and Horowitz 2022).
Here we use a high-resolution hydrodynamic simulation from
the Sherwood suite (Bolton et al. 2017) to compare τeff,GP
obtained from the low-resolution FGPA (equation 8) against
the correct calculation (equation 9).

We use a simulation with a cubic volume of 80h–1 cMpc
on a side and 2 × 5123 particles. It was performed using an
updated version of Gadget-2 (Springel et al. 2005) and with
a slightly different ΛCDM cosmology (Ωm,Ωb,Ω˜, h,σ8, ns
= 0.31, 0.048, 0.69, 0.68, 0.83, 0.96; Planck Collaboration
et al. 2016). The modelled universe is exposed to a Haardt
and Madau (2012) UVB switched on at z = 15. Although
this homogeneous UVB does not account for the effects of
patchy reionization, the simulated Lyα forests from Sherwood,
which has a spatial resolution of <60 kpc, agree very well with
observational data at z ≤ 5 (Viel et al. 2013; Bolton et al. 2017)
and therefore can be used to calibrate our forward models in
the post reionization regime (i.e., xHI = 0).

https://doi.org/10.1017/pasa.2025.35 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.35


6 Yuxiang Qin et al.

0

1

2

(
ef

f|
ef

f,
GP

; x
HI

,z
)

eff, GP
3
4
5

z = 5.0

0

1

2

(
ef

f|
ef

f,
GP

; x
HI

,z
)

2

4

6

8

10

ef
f,

GP

xHI = 0.0 xHI = 0.1 xHI = 0.2 xHI = 0.3

2 4 6 8 10

2

4

6

8

10

ef
f,

GP

xHI = 0.4
2 4 6 8 10

xHI = 0.5
2 4 6 8 10

xHI = 0.6
2 4 6 8 10

xHI = 0.7
0.0 0.2 0.4 0.6 0.8 1.0

eff

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Lower sub-panels: comparisons of the Lyα effective optical depth calculated using the full integral over the Lyα cross-section at the highest available
resolution (τeff ), to those calculated assuming the FGPA (τeff,GP). Both calculations use the Sherwood hydrodynamic simulation, with the latter obtained by
down-sampling to the same low resolution adopted in our IGM forward-models and ignoring peculiar velocities. These sub-panels show pairs of τeff – τeff,GP
at different values of the mean neutral fraction, xHI – an incomplete EoR is approximated by randomly placing spherical neutral patches in the simulation box
until the desired filling factor of xHI is reached. These distributions of (τeff , τeff,GP) pairs are fit with KDE, resulting in a conditional probability distribution
function p(τeff | τeff,GP; xHI, z), which is employed to correct our forward-modelled IGM lightcones for missing small scales. Upper sub-panels: example τeff
distributions conditioned at τeff,GP = 3, 4 and 5.

We project sightlines along each axis of the z = 5 snapshotc.
This results in 5000 segments of length 80 h–1 cMpc, which
we bin to ∆z = 0.1. As the physical scale corresponding to
∆z = 0.1 changes with redshift, we repeat the binning for all
redshifts spanned by the data, z = 5.1, 5.2, 5.3, ..., 6.1. For
each bin, we compute the “true” effective optical depth (τeff ;
i.e. averaging the flux obtained using equation 9). We then
recompute the effective optical depth of each segment assum-
ing the same approximations we make in our large-scale IGM
simulations (down-sampling the resolution and applying equa-
tion 8) to obtain the corresponding τeff,GP. We are then left
with pairs of τeff – τeff,GP, which act as samples of the condi-
tional probability of having a true τeff given the corresponding
FGPA value τeff,GP ∼ p(τeff | τeff,GP; z, xHI = 0).

c. Unfortunately, we did not have snapshots available at every redshift
probed by observations, z = 5.1, 5.2, 5.3... We therefore perform our calibra-
tion only using the z = 5 snapshot and assume the conditional distribution
functions to be self-similar at other redshifts. We crudely tested this assumption
by scaling the density field by its mean evolution, finding only a τeff ≲ 0.5
shift in the resulting conditionals. We plan to improve the calibration in the
future using more snapshots from higher resolution simulations.

We then generalize this conditional probability to higher
neutral fractions. Specifically, we randomly place spherical
neutral IGM patches in the Sherwood box until we obtain
an HI filling factor of xHI, repeating the above procedure
to obtain p(τeff | τeff,GP; z, xHI). We assume a log normal
distribution peaked at a constant value of 4 cMpc for the radii
of these HI patches. This is motivated by the results of Xu,
Yue, and Chen (2017), who find a very modest evolution in
the neutral patch size distribution during the final stages of
the EoR.

The resulting τeff – τeff,GP samples at z = 5 are shown
in Fig. 2 where τeff = τeff,GP is marked by a diagonal line in
each panel. At low values of the neutral fraction, the FGPA
tends to overestimate the true value of the effective optical
depth. This is especially evident at large overdensities with
high values of τeff (Kooistra, Lee, and Horowitz 2022). As
the neutral fraction increases, this bias decreases. However,
the scatter in p(τeff | τeff,GP; z, xHI) increases significantly. At
xHI ≳ 0.5 when damping-wing absorption becomes signif-
icant, the FGPA starts to instead underestimate the effective
optical depth.
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We fit these samples with kernel density estimators (KDEs)
in order to obtain an analytic form for p(τeff | τeff,GP; z, xHI)
that can be evaluated when forward modelling (c.f. Fig. 1).
Specifically, we use 2D conditional Gaussian distributions from
the conditional_kded package to fit the samples of 1/τeff –
1/τeff,GP (as the reciprocal of the optical depth more closely fol-
lows a Gaussian distribution). The parameters of the Gaussian
kernels (means and standard deviations) are explicit functions
of redshift and the neutral fractione, allowing us to easily eval-
uate p(τeff | τeff,GP; z, xHI) at any neutral fraction and redshift.
We show some examples of the fitted conditional distributions
in the upper sub-panels of Fig. 2.

3.4 Computing the forest likelihood
For each τeff,GP(xHI, z) calculated using equation (8) on our
IGM lightcones, we obtain a random sample from the condi-
tional distributions discussed in the previous subsection: τeff ∼
p(τeff | τeff,GP; z, xHI). Therefore, this leads to a set of effective
optical depths that are stochastically corrected for missing sub-
structure in the FGPA method. We additionally account for
uncertainty in the continuum reconstruction by adding ln(R)
to every τeff sample. Here, R is a random number following
a normal distribution centred at unity with a standard devia-
tion of 10%, typical of the continuum reconstruction relative
errors (Bosman et al. 2022). Note that we do not account for
wavelength correlations in the reconstruction errors or the
actual “usable” range of observed wavelengths in each quasar
spectrum (see more in Bosman et al. 2022); we plan on includ-
ing these in future work. We fit the resulting histograms of
τeff in each of the redshift bins defined by the data to obtain
the PDFs, p(τeff ; z).

These PDFs are our theoretical expectation of the real
Universe, for a given model and choice of astrophysical param-
eters. Therefore, each observed value of τi

eff at zi corresponds
to a sample from the theoretical PDF, with a corresponding
likelihood p(τeff = τi

eff ; z = zi). For non-detections, we take
τi

eff to be the 2 σ lower limit implied by the noise (Bosman
et al. 2022).

It is worth noting that the likelihood distribution, p(τeff , z),
is forward-modeled, meaning it is sampled by running the
simulator many times, varying the most relevant sources of
stochasticity together with the astrophysical parameters. This
is known as an implicit likelihood, as it avoids the need to spec-
ify an explicit likelihood function such as a Gaussian, when
comparing data to model. Instead, the simulator itself gener-
ates data realizations allowing the observed data to be treated as
a sample of this data distribution, for the correct astrophysical
parameters. This makes it particularly powerful for cases where
the likelihood is too complex or intractable to express analyt-
ically (Cranmer, Brehmer, and Louppe 2020; F. B. Davies
et al. 2024). Indeed, inferences using an implicit likelihood

d. https://github.com/dprelogo/conditional_kde
e. Throughout this paper, we list the fitted functional dependencies of prob-

ability distributions to the right of a semi-colon. Thus p(τeff | τeff,GP; z, xHI)
is a conditional probability of τeff given τeff,GP, whose parameters (mean and
sigma) are functions of z and xHI.

(also called simulation-based inference) are becoming increas-
ingly popular in this field (e.g., Zhao, Mao, and Wandelt 2022;
Prelogović and Mesinger 2023; F. B. Davies et al. 2024; Greig,
Prelogović, Mirocha, et al. 2024; Greig, Prelogović, Qin, et
al. 2024) as most EoR datasets do not have an analytically-
tractable likelihood; and common assumptions of Gaussian
pseudo-likelihoods can result in biased posteriors (see Prelo-
gović and Mesinger 2023).

We obtain the final forest likelihood by multiplying the
implicit likelihoods over all XQR-30+ quasars, i, and over
all redshift bins used in the analysis. Specifically, we take
Lforest =

∏z=6.1
z=5.3

∏
i p(τeff = τi

eff ; z). We do not include data at
z ≤ 5.2 in order to make our likelihood more sensitive to the
EoR (see e.g., Bosman et al. 2022 who showed that the EoR
ends sometime before z ∼ 5.2).

Note that this procedure does not account for higher order
correlations in the mapping from τeff,GP to τeff . Moreover,
it assumes that each ∆z = 0.1 (∼ 40 cMpc) segment is an
independent sample of p(τeff ; z); i.e. we ignore the covariance
between the ∆z = 0.1 segments extracted from a single quasar
spectrum. We expect the covariance on such large scales to
have only a minor impact on the total likelihood. Nevertheless,
we plan on relaxing this approximation in future work in
which we will use simulation-based inference for the total
likelihood, accounting for large scale correlations in both the
effective optical depths and reconstruction errors.

3.5 Combining with complementary observations
We also account for complementary, independent data when
performing inference. Specifically, we compute additional
likelihood terms for: (i) the galaxy non-ionizing UV LFs well-
established by Hubble at 6 ≤ z ≤ 10 (Bouwens, Illingworth,
Oesch, Trenti, et al. 2015; Bouwens et al. 2016; Oesch et
al. 2018); and (ii) the CMB polarization power spectra ob-
served by Planck (Planck Collaboration et al. 2020). These two
datasets are independent and mature, and can therefore be in-
terpreted robustly. Unlike Q21, we do not include a likelihood
term for the pixel Dark Fraction (Mesinger 2010; McGreer,
Mesinger, and D’Odorico 2015) as this statistic is also based
on Lyman forests and therefore is technically not fully inde-
pendent from the optical depth distributions discussed above.
Thus our total likelihood consists of the product of three terms:
Ltot = Lforest×LLF×LCMB, where the final two correspond
to the LF and CMB likelihoods, discussed further below.

We construct the UV LF likelihood following J. Park et
al. (2019). Specifically, we assume a Gaussian likelihood in
each magnitude bin, MUV,i, with a negligible covariance be-
tween bins (see e.g., Leethochawalit et al. 2023 for an alter-
native approach). The UV LF likelihood is thus LLF,tot =∏z=10

z=6
∏

i exp
{

–
[
∆ϕ(MUV,i)/σϕ(MUV,i)

]2
}

, where∆ϕ is the
difference between forward-modelled and observed galaxy
number densities in a given magnitude and redshift bin, and
the corresponding observational uncertainties are σϕ. As dust
is thought to significantly suppress the UV LFs in the bright
end (Mason, Trenti, and Treu 2023; Qin, Balu, and Wyithe
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2023), we only consider magnitudes fainter than MUV = –20
to avoid modelling dust attenuation, and use the redshift range
between z = 6 and 10 spanning the EoR.

We construct the Planck CMB likelihood as a two-sided
Gaussian on the Thomson scattering optical depth summary
statistic inferred by Qin, Poulin, et al. (2020): τe = 0.0569+0.0073

–0.0066.

Specifically, we take the form LCMB = exp
[
– (∆τe/στe )

2
]
,

where ∆τe represents the difference between the forward-
modelled and measured optical depths while στe is the ob-
servational uncertainty. Note that Qin, Poulin, et al. (2020)
found very little difference in the inferred posteriors when
using a likelihood defined directly on the E-mode polarization
power spectra compared to using a Gaussian likelihood on the
τe summary derived from the power spectra. We thus use the
latter as it is much more computationally efficient.

3.6 Summary of model parameters and associated priors
Before showing our inference results, we summarize the free
parameters used in our galaxy models and their associated prior
ranges (see also Table 1).

1. log10 f∗,10 ∈ [–2, –0.5]: the fraction of galactic baryons
in stars, normalized at Mvir = 1010M⊙. This parameter sets
the normalization of the stellar-to-halo mass relation, and its
prior range is motivated by observations and simulations of
high-redshift galaxies (Dayal et al. 2014; Mutch et al. 2016;
Behroozi et al. 2019; Bird et al. 2022; Stefanon et al. 2021).

2. α∗ ∈ [0, 1.0]: the power law index relating the stellar
fraction to the halo mass. This parameter determines the slope
of the stellar-to-halo mass relation. Observations of the faint
end of the UV LFs suggest more efficient star formation in
more massive galaxies (Bouwens, Illingworth, Oesch, Trenti,
et al. 2015; Oesch et al. 2018), motivating our prior range.

3. log10 fesc,10 ∈ [–3, 0]: the amplitude of the power-law
relating the UV ionizing escape fraction to halo mass, nor-
malized at Mvir = 1010M⊙. The wide prior reflects the large
uncertainties in both low-redshift observations (Vanzella et al.
2010; Vanzella et al. 2016; Boutsia et al. 2011; Nestor et al.
2013; Guaita et al. 2016; Grazian et al. 2016; Shapley et al.
2016; Bian et al. 2017; Steidel et al. 2018; Naidu et al. 2018;
Fletcher et al. 2019; Izotov et al. 2021; Pahl et al. 2021) and
reionization simulations (Kostyuk et al. 2023; Choustikov et al.
2024; Mutch et al. 2024).

4. αesc ∈ [–1, 0.5]: the power law slope of the UV ionizing
escape fraction to halo mass relation. Galaxy simulations seem
to suggest boosted Lyman continuum leakage in less massive
galaxies as supernovae evacuate low column density channels
from shallow gravitational potentials (Paardekooper, Khochfar,
and Dalla Vecchia 2015; Xu et al. 2016; Kostyuk et al. 2023;
Mutch et al. 2024). This motivates a wider negative range in
the prior, although we caution that this is highly uncertain
and therefore still allow positive values in our prior (e.g., Ma
et al. 2015; Naidu et al. 2020; Rosdahl et al. 2022; Bhagwat
et al. 2024).

5. βesc ∈ [–3, 3]: the power law scaling index of the UV

ionizing escape fraction as a function of redshift, used only
in Evolving_fesc. The prior is somewhat arbitrary with the
upper and lower limits allowing fesc to scale similarlyf.

6. τ∗ ∈ (0, 1]: the star formation timescale in units of the
Hubble time. The flat prior encompasses extreme cases where
the entire stellar mass is formed in an instantaneous burst event
or gradually built over the age of the universe.

7. log10 (Mturn/M⊙) ∈ [8, 10]: the characteristic halo mass
below which star formation becomes exponentially suppressed.
The lower and upper limits of the flat prior are motivated
by the atomic cooling threshold and the faintest, currently
observed high-redshift galaxies (e.g., Bouwens, Illingworth,
Oesch, Trenti, et al. 2015; Bouwens et al. 2016; Oesch et al.
2018), respectively.

4. Fiducial inference results
As can be seen from Table 1, the Bayesian evidence ratios sug-
gest that the data have a very strong preference (Jeffreys 1939) for
the Evolving_fesc model. We therefore treat this model as
“fiducial”, presenting its posterior in this section, before compar-
ing it to the Constant_fesc model in the following section.g
Alternatively, one could do Bayesian model averaging to com-
bine the derived IGM and galaxy properties from different
models; however the evidence ratio in this case is so strongly
skewed towards Evolving_fesc, that the model-averaged pos-
teriors would just follow the Evolving_fesc ones.

We show the posteriors in the space of galaxy parameters
in Appendix 1. Here we focus on the inferred IGM properties
and galaxy scaling relations.

4.1 Effective optical depth distributions
In Fig. 3 we plot the recovered optical depth CDFs in red
enclosing the 95% confidence interval (C.I.). Observational
data from Bosman et al. (2022) are shown in grey. The red
shaded regions are constructed from the posterior samples,
each having the same number of randomly-selected sightlines
per redshift bin as in the data to account for cosmic variance.
We note that the cosmic variance dominates the widths of the
CDFs, especially at the highest redshifts.

We see from the figure that our fiducial model excels at
recovering the observed τeff CDFs throughout this redshift
range – despite individual τeff data being used in the likelihood,
our model can recover both the mean and the shape of the ob-
served optical depth distribution. We stress that most previous
work either used hyperparameters to account for the mean
opacity evolution (e.g., Q21), calibrated the models to have

f. Because of the wide prior, we save computational time by initially per-
forming a fast, approximate likelihood estimate, which shows that the posterior
peaks at negative values of βesc. We then perform our fiducial inference on
a narrower prior range βesc∈[–3.0, 0] to save computational overheads, but
scale the Bayesian evidence to account for the missing prior volume (see e.g.,
S. G. Murray et al. 2022).

g. Note that having a much higher Bayesian evidence does not necessarily
mean that the model is “the correct” one. Compared to the alternate model,
the fiducial one is more flexible and predictive given the observed data, without
wasted prior volume.
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Figure 3. Inferredτeff CDFs from our fiducial model (red) from z =5.3 to 6.1. To account for cosmic variance, we randomly select from each model in the posterior
the same number of sightlines as in the XQR-30+ observational dataset. The red regions indicate the 95% C.I. For comparison, the XQR-30+ observations are
shown in grey with non-detections denoted with the shaded regions spanning the flux range between zero and double the noise (Bosman et al. 2022). A
number of theoretical results are shown for comparison (Kulkarni et al. 2019; Garaldi et al. 2022; Cain, D’Aloisio, et al. 2024; F. B. Davies et al. 2024, optimistic;
with earlier works using slightly different binning for τeff ).

the same mean opacity as the data and/or treated each redshift
bin independently (e.g., Kulkarni et al. 2019; Meiksin 2020;
Cain, D’Aloisio, et al. 2024, Gaikwad et al. 2023h, F. B. Davies
et al. 2024). Some more expensive coupled hydrodynamic and
radiative-transfer simulations such as CODA and THESAN
(Ocvirk et al. 2021; Garaldi et al. 2022) do not directly tune
their simulations to reproduce the forest data; however their
predicted CDFs do not agree with the data as well as most of
the other previously-mentioned works. For illustration, we
show some of these results in Fig. 3.

4.2 EoR history
In Fig. 4 we show the main result of this work – the inferred
reionization history in our fiducial model. In blue we show
the posterior resulting from using only the LLF and LCMB
likelihood terms. This roughly corresponds to our previous
state of knowledge, without using the forest data.i From the

h. In order to constrain the MFP and UVB using Kolmogorov–Smirnov
test statistics, Gaikwad et al. (2023) treated non-detections in slightly different
ways when calculating the CDFs from data and their model.

i. The literature has many additional estimates of the EoR history that we
do not include in our inference (see for instance data points shown in Fig.
4). As mentioned above, interpreting these observations is very challenging
and prone to observational and modelling systematics. Robust interpretation
would require dedicated forward-models of each observation and associated
systematics. In any case, these alternate probes only weakly constrain the EoR
history using current data (Mesinger and Haiman 2004; Greig et al. 2022;

blue region we see that the CMB optical depth and the UV
LFs do not result in tight constraints on the EoR history. The
UV LFs loosely constrain the evolution of the star formation
rate density (SFRD), while the CMB optical depth additionally
constrains the corresponding ionizing escape fraction (see the
parameter posterior shown in blue in Fig. 12). Given that
these constraints are not tight, the posterior is prior dominated
(as opposed to being likelihood dominated). Since we chose
broad priors, allowing the ionizing escape fraction to extend
to unity, most of the posterior volume traces a relatively early
reionization, with midpoints around z = 8–9.

The red shaded region in the figure shows what happens to
the posterior when we further include the Lyα forest data, i.e.
with the total likelihood of Lforest × LLF × LCMB. The EoR
history, xHI(z), of the maximum-a-posteriori (MAP) model is
listed in Table 2, and is well fit by a rational function

f (z) =
m0 + m1z + m2z2 + m3z3

n0 + n1z + n2z2 + n3z3 , (10)

with parameters {m0, m1, m2, m3, n0, n1, n2, n3} = {292.6, -
105.47, 7.824, 0.312, -24.3, 22.9, -4.96, 0.694}. It is obvious
that the τeff data are extremely constraining, resulting in a
very narrow posterior. The uncertainties are over an order of
magnitude smaller than without the forest data, with most of

Bruton et al. 2023; Ouchi et al. 2018; Reichardt et al. 2021). We therefore
expect our results to not be impacted by the inclusion of additional datasets.
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Figure 4. The inferred EoR history using our fiducial model. The blue shaded region uses only UV LFs and CMB τe data (a likelihood of LLF × LCMB), while the
red additionally includes the Lyα forest τeff distributions (likelihood of Lforest ×LLF ×LCMB). In both cases the dark (light) regions indicate the 68% and 95%
C.I. The XQR-30+ forest data are very constraining; including them makes the posterior transition from being prior-dominated to being likelihood-dominated.
PDFs of the redshifts corresponding to xHI = 0.01 and 0.5 are presented in the inset panels, showing that in our fiducial model reionization ends at z = 5.44±0.02
and the EoR mid-point is at z = 7.7 ± 0.1. Estimates of the ionization state of the universe coming from other probes are also shown for illustrative purposes
including the dark pixel upper limits (McGreer, Mesinger, and D’Odorico 2015; Jin et al. 2023), Lyman-α damping-wing absorption in QSOs (Eduardo Bañados
et al. 2018; F. B. Davies et al. 2018; F. Wang et al. 2020; Greig et al. 2022; see also Mesinger and Haiman 2004; Greig et al. 2017; Greig, Mesinger, and Bañados
2019), in galaxies (Curtis-Lake et al. 2023; Hsiao et al. 2024; Umeda, Ouchi, Nakajima, et al. 2024), or in forests (Spina et al. 2024; Zhu et al. 2024)), Lyman-α
equivalent widths (Mason et al. 2019; Jung et al. 2020; Whitler et al. 2020; Bolan et al. 2022; Bruton et al. 2023; Nakane et al. 2024; Tang et al. 2024; Jones et al.
2025; see also Mesinger et al. 2015), and the LF (Inoue et al. 2018; Morales et al. 2021; Wold et al. 2022; Umeda, Ouchi, Kikuta, et al. 2024; Kageura et al. 2025) or
clustering of Lyα emitters (Sobacchi and Mesinger 2015; Ouchi et al. 2018; Umeda, Ouchi, Kikuta, et al. 2024), most of which are consistent with our results
despite not being included in the inference.

the history constrained to better than ∆z ∼ 0.1 at the 68% C.I.
The forest data require the EoR to be ongoing below z ≤ 6 (see
also the previous results in Choudhury, Paranjape, and Bosman
2021 and Q21). From the inset panels in the figure, we see
that in this fiducial model reionization ends at z = 5.44 ± 0.02
and the EoR mid-point is at z = 7.7 ± 0.1. Consequently, the
inferred CMB optical depth is also tightly constrained with
τe = 0.0589 ± 0.001 (1σ) compared to τe = 0.0571 ± 0.006
when the forest is not included.

Perhaps surprisingly, the forest data tightly constrain the
EoR history at redshifts beyond where we have forest data,
z > 6.3. These constraints are indirect, coming from the com-
bination of HMF evolution, the SFR to halo mass implied by
UV LF observations, and the ionizing escape fraction scalings
required to match the forest. The forest in particular provides a
firm anchor for our models. The forest data requires a photon-
starved end to reionization, with recombinations starting to
balance ionizations, in order to smoothly transition into the
post EoR regime (Bolton and Haehnelt 2007; Sobacchi and
Mesinger 2014). Such a “soft-landing” is difficult to achieve
with small-box EoR simulations (e.g., Barkana and Loeb 2004)
and/or with those that cannot resolve recombinations in the
late EoR stages (c.f. Fig. 6 in Sobacchi and Mesinger 2014,
and Qin et al. 2021; Cain, D’Aloisio, et al. 2024). Such limi-
tations tend to result in an overly rapid evolution of the late
EoR stages, which in turn requires ad-hoc corrections/tuning
(e.g., a very rapid drop in emissivity) in order to match forest
data (see Fig. 7 and associated discussion). The fact that our

box sizes are 250 Mpc and that sub-grid recombinations are
computed analytically (and thus not limited by resolution),
likely allows us to capture this “soft-landing” preferred by the
forest data. We caution however that these constraints on the
EoR history at z > 6.3 are indirect, and as such become in-
creasingly model-dependent at increasingly higher redshifts.
We will revisit this in the future using alternate galaxy models
that evaluate star-forming duty cycles based on cooling effi-
ciencies and feedback, and include an additional population of
early, molecular-cooling galaxies, which might dominate the
ionizing background at z > 10–15 (e.g., Qin, Mesinger, et al.
2020; Muñoz et al. 2022; Ventura et al. 2024).

For illustration, we also plot various independent estimates
of the IGM neutral fraction using other probes:

1. Our results are consistent with upper limits from the dark
pixel fraction, applied to smaller forest samples (McGreer,
Mesinger, and D’Odorico 2015; Jin et al. 2023). These
constraints are the most model-independent and probe
large volumes of the high-redshift IGM.

2. A significant portion of these probes relies on IGM damping-
wing absorption observed in high-redshift spectra. These
measurements depend heavily on the accurate modeling
of the intrinsic Lyα profile, particularly its red side:

(a) Observations of high-redshift QSOs, including DESJ0252-
0503 at z = 7 (F. Wang et al. 2020), ULASJ1120+0641
at z = 7.09 (Mortlock et al. 2011), J1007+2115 at
z = 7.51 (Yang et al. 2020), and ULASJ1342+0928
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at z = 7.54 (Eduardo Bañados et al. 2018) are gen-
erally consistent with our posterior distribution (e.g.,
Eduardo Bañados et al. 2018; F. B. Davies et al. 2018;
Greig et al. 2022), lending confidence that these anal-
yses can be reasonably trusted despite the associated
systematics and modelling challenges (see also Mesinger
and Haiman 2004; Hennawi et al. 2024; Kist, Hennawi,
and Davies 2024).

(b) Deep Spectroscopic observations from JWST have ex-
tended damping-wing analysis to higher redshifts us-
ing bright galaxies such as JADES-GS-z11 at z = 11.5
(Curtis-Lake et al. 2023) and MACS0647-JD at z =
10.2 (Hsiao et al. 2024) as well as stacked spectra span-
ning z = 7–12 (Umeda, Ouchi, Nakajima, et al. 2024).
These results are broadly consistent with our inferred
EoR history, although high-redshift measurements
(e.g., MACS0647-JD) suggest a more neutral early
universe. However, we caution the observed sample at
these high redshifts are extremely limited and acknowl-
edge our conclusions regarding the early stages of the
EoR are also more model-dependent.

(c) Damping-wing absorption adjacent to Gunn-Peterson
troughs can also be measured using stacked QSO spec-
tra at lower redshifts. Recent results from Spina et
al. (2024) and Zhu et al. (2024) reveal the presence
of neutral regions at the end of EoR. Their inferred
neutral fractions align with our posterior distribution,
except at z = 5.6, where discrepancies may arise from
the simplistic smoothed step function used to model
local neutral fractions near Gunn-Peterson troughs (see
more in Spina et al. 2024).

3. Probes involving Lyα emission from galaxies come with
significant uncertainties due to poor constraints on the
Lyα emerging into the IGM.

(a) Most inferred neutral fractions from Lyα LF studies are
consistent with our results (e.g., Inoue et al. 2018; Wold
et al. 2022; Kageura et al. 2025). However, Morales
et al. (2021) report a rapid evolution in the reionization
history, finding a lower xHI at z = 6.6 and a higher xHI
at z = 7.3 compared to our results. Their assumption
of a fully ionized universe at z = 6 may lead to an
underestimation of the neutral fraction at all redshifts,
aligning their z = 6.6 estimate more closely to ours
while elevating the z = 7.3 neutral fraction to > 0.83.
Similarly, recent work by Umeda, Ouchi, Kikuta, et
al. (2024) also reports a high neutral fraction at z = 7.3
with xHI ∼ 0.75. Given that the survey areas (∼ 1deg2)
in these studies suggest minimal cosmic variances, the
discrepancy may point to an evolution in the intrinsic
Lyα profile between these redshifts.

(b) The redshift evolution of LAE clustering offers smaller
uncertainties in intrinsic profile modeling compared to
the LF. Current clustering data at z = 6.6, enabled by
the Subaru narrow-band filter at 921 nm, are consistent
with our inferred xHI ∼ 0.25 (Sobacchi and Mesinger
2015; Ouchi et al. 2018; Umeda, Ouchi, Kikuta, et

al. 2024).
(c) JWST has significantly expanded direct measurements

of Lyα equivalent width of EoR galaxies, with the
inferred neutral fractions largely aligning with our re-
sults (Bruton et al. 2023; Nakane et al. 2024; Tang et
al. 2024; Jones et al. 2025). Similarly, earlier studies
using ground-based telescopes are also mostly consis-
tent with our inferred EoR history. Notable exceptions
include Mason et al. (2019, xHI > 0.76 at z ∼ 8) and
Bolan et al. (2022, xHI ∼ 0.83 at z ∼ 8), which sug-
gest a more neutral universe and a rapid reionization
timeline compared to our results. These discrepancies
likely arise from a combination of small sample sizes
and significant uncertainties in modeling the intrinsic
Lyα profiles, highlighting the need for larger, more
robust datasets to constrain the high-redshift neutral
fraction more accurately.

In summary, our EoR posterior is qualitatively consistent with
most of these estimates, despite not including them in our
likelihood.

4.3 UVB and MFP evolution
Fig. 5 shows the inferred redshift evolution of the photo-
ionization rate and MFP in our fiducial model. The forest
data are able to constrain these global IGM quantities at per-
cent level precision. The total MFP converges to our assumed
uniform value for the ionized IGM post EoR at z ≲ 5.2 (i.e.
RMFP,LLS). Neutral patches during the EoR contribute in-
creasingly to the MFP at earlier stages, as discussed in Sec. 3.2
(see also Roth et al. 2024). This results in a more rapid drop in
the MFP from z ∼ 5 to 6 than would be expected in simple,
uniform-UVB, post-EoR models (e.g., Becker et al. 2021).

In the figure we also show several independent estimates
from the literature. These come from: (i) adjusting simulated
Lyα optical depths to match the observed flux evolution (e.g.,
Bolton and Haehnelt 2007; (ii) estimating the column-density
evolution of HI absorbers (Songaila and Cowie 2010); (iii)
modelling the size evolution of quasar near zones (Wyithe and
Bolton 2011); (iv) modelling flux profiles around near zones
(Calverley et al. 2011; Worseck et al. 2014; Becker et al. 2021;
Zhu et al. 2023; Satyavolu et al. 2024); and (v) co-varying the
MFP and UVB to match forest fluctuations independently at
each redshift (F. B. Davies et al. 2024; Gaikwad et al. 2023).
Our results are generally in good agreement with these inde-
pendent estimates, despite the fact that we do not use them
in our analysis. Our recovered MFP at z ∼ 6 is on the up-
per end of the 68% error bars from Becker et al. (2021) and
Zhu et al. (2023). This mild tension could point to additional
systematics in these observational interpretations (see more in
Satyavolu et al. 2024) and/or missing physics in our models,
such as gas relaxation (e.g., H. Park et al. 2016; D’Aloisio et al.
2020) or the inhomogeneous post I-front temperature (e.g.,
D’Aloisio et al. 2019; J. E. Davies et al. 2019). We plan on
investigating these effects in future work.

In the bottom panel of Fig. 5, we additionally present
the volume distribution of the MFPs derived from our MAP
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Figure 5. The posterior of our fiducial model in the space of the mean photo-
ionization rate (top panel) and proper mean free path (bottom panel). As in the
previous figure, the dark (light) shaded region corresponds to 68% (95%)
C.I. In the lower panel, we additionally show the volume distribution of the
MFPs from the MAP model (median and scatters). The dotted line indicates
the assumed RMFP,LLS. Various previous estimates from the forests (Bolton
and Haehnelt 2007; Wyithe and Bolton 2011; Calverley et al. 2011; Worseck
et al. 2014; Songaila and Cowie 2010; Becker et al. 2021; Gaikwad et al. 2023;
Zhu et al. 2023; F. B. Davies et al. 2024; Satyavolu et al. 2024) are also shown
with their 68% error bars. Our results are in general agreement with these
independent estimates, despite not having used them in the inference.

model. The black curve represents the median while the grey
shaded regions indicate 68% and 95% of the volume distribu-
tion. We see that 68% of the volume has an MFP determined
by RMFP,EoR at z ∼ 5.5, even though reionization completes
at z = 5.44. This finding underscores that the assumed func-
tional form of RMFP,LLS likely has a minor impact on the MFP
at these EoR redshifts. Nevertheless in future work we will
additionally sample the uncertainties in the mean and scatter
of RMFP,LLS.

4.4 UV ionizing emissivity
In Fig. 6, we present the inferred ionizing emissivity evolu-
tion, ṅion(z) (c.f. Eq. 3). Unlike many previous studies (e.g.,
Kulkarni et al. 2019; Keating et al. 2020; Cain et al. 2021), we
reproduce the Lyα opacity distribution without requiring a
sharp drop in the emissivity at z ≲ 7. Such a rapid drop in
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Figure 6. The inferred UV ionizing emissivity, ṅion. On the left axis we denote
the number of ionizing photons per time per comoving volume, while on
the right axis we show the number of ionizing photons per time per baryon.
As in the previous figure, the dark (light) shaded red region corresponds to
68% (95%) C.I. For comparison, we include other estimates from: (i) simula-
tions tuned to match the forest opacity distributions (Kulkarni et al. 2019;
Keating et al. 2020; Cain et al. 2021); (ii) coupled hydrodynamic and radiative-
transfer simulations (Garaldi et al. 2022; Ocvirk et al. 2021); and (iii) a simple
empirical relation based on assuming a constant escape fraction and SFRD
extrapolated down to a fixed limiting magnitude of MUV = –13 (Bouwens,
Illingworth, Oesch, Caruana, et al. 2015).

the emissivity would be difficult to reconcile with the more
gradual evolution implied by observations of galaxy UV LFs
(e.g., Bouwens, Illingworth, Oesch, Caruana, et al. 2015), as
it requires either fast evolving feedback in faint galaxies (e.g.,
Ocvirk et al. 2021; though see e.g., Sobacchi and Mesinger
2014; Katz et al. 2020) or in their ionizing escape fractions.
Even under both such putative scenarios, it is difficult to phys-
ically justify cosmological evolution that is more rapid than
characteristic time-scales during this epoch which are gener-
ally ≳ 200 Myrs (e.g., the duration of the EoR, halo dynamical
and/or sound crossing times; c.f. Sobacchi and Mesinger 2013).
As discussed in Section 4.2, one possible explanation is that
simulating the end stages of the EoR requires very large-scale
and very high-resolution hydrodynamic simulations to track
the rapid evolution of self-shielding in the IGM and the strong
spatial correlation between ionizing sinks and sources. Our
calibrated sub-grid approach could allow us to capture the
relevant recombination physics without requiring very high
resolution (Sobacchi and Mesinger 2014).

To better quantify this claim, we rerun the MAP model,
turning off inhomogeneous recombinations. Fig. 7 shows the
predicted mean EoR history, photoionization rate, MFP and
ionizing emissivity. In the absence of sub-grid recombinations,
the end of reionization progresses significantly more rapidly,
leading to a correspondingly sharp rise in both the MFP and
photo-ionization rate (see also Sobacchi and Mesinger 2014).
Since our models fix the post-reionization MFP to RMFP,LLS,
these quantities eventually asymptote to the same values as in
the fiducial run. In the emissivity sub-panel, we also adjust the
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emissivity by rescaling it with the ratio of Γ ion from w/ rec to
that from w/o rec. We see that by matching the UVB (which
roughly corresponds to what forest observations would require
for the w/o rec case), the emissivity would need to decrease
rapidly during the second half of the EoR, countering the pre-
mature rise in the MFP caused by the lack of recombinations.
This lends further credibility to our claim that unresolved,
inhomogeneous recombinations are responsible (at least in
part) for the rapid drop in the emissivity required by some
large-scale hydro simulations in order to match the forest data.

We note from Fig. 6 that our inferred emissivity is consis-
tent with simple estimates assuming a constant escape fraction
and integrating the observed UV LFs down to MUV = –13.
This is somewhat coincidental, since in our fiducial model
more than half of the ionizing photons are provided by galax-
ies fainter than MUV > –13 due to a strong MUV-dependence
of the ionizing escape fraction (see later Fig. 10). As discussed
further in Section 5, the forest data combined with UV LFs
strongly constrain the redshift evolution of the EoR and the
ionizing emissivity. However, determining which galaxies
produce the ionizing photons responsible is more model de-
pendent.

4.5 Effective clumping factor in HII regions
Modelling the complex interplay between ionizing sinks and
sources during the EoR is best achieved with large-scale nu-
merical simulations. However, simple analytic estimates of the
EoR history can be very convenient and help build physical
intuition. A common choice is the following (e.g., Bouwens,

Illingworth, Oesch, Caruana, et al. 2015):

Q̇HII = ṅion,H – QHII/trec,H (11)

where

trec,H≡ 1
Ceff nHαB

=
(

1+z
6

)–3 (Ceff
3

)–1 ( T
104K

)0.75
Gyr.

(12)
Here, QHII∼1 – xHI and Q̇HII are the volume filling factors
of HII regions and its growth rate while trec,H is a characteris-
tic recombination time-scale parameterized by an “effective”
clumping factor, Ceff . The first term on the right-hand side
of equation (11) is the ionizing emissivity per hydrogen atom
while the second term approximates the global recombination
rate per hydrogen atom. This equation is especially useful
in high-redshift galaxy studies, as it allows us to connect the
ionizing emissivity from galaxies to the EoR history simply
by assuming some value of Ceff to capture the impact of re-
combinations. Common choices for Ceff range from ∼ 1 –
10 (e.g., Bouwens, Illingworth, Oesch, Caruana, et al. 2015;
Mason et al. 2018; J. E. Davies et al. 2019; Bruton et al. 2023).

One can compute the recombination rate in a given patch
of the IGM by defining Ceff = ⟨n2

HII⟩/⟨nHII⟩2, where the
averaging is performed over the ionized hydrogen (accounting
for self-shielding and using local values of temperature and
ionization rates; e.g. Finlator et al. 2012) with nHII being
the local HII density. However, when estimating the global
recombination rate to be used in equation (11) there is not an
obvious way of defining Ceff in terms of other global IGM
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the effective clumping factor obtained by solving equation (11) for Ceff (z)
when assuming the EoR history and emissivity from the MAP model.

quantities. In particular, ionizing sources and sinks are strongly
correlated on large scales. Recombinations preferentially occur
in regions proximate to galaxies that were the first to reionize,
which have biased, time-evolving, and spatially fluctuating
properties.

Here, we investigate what choice of Ceff can give the
same EoR history as the MAP parameter set in our fiducial
model. Specifically, we assume the EoR history and emissivity
of our MAP model (c.f. Figures 4 & 6), and solve for Ceff (z)
using equation (11). The resulting effective clumping factor
is plotted as a red curve in the bottom panel of Fig. 8. We
see Ceff starts around unityj and then rises rapidly towards
the late stages of reionization when ionization fronts penetrate
deeper into overdensities (e.g., Furlanetto, Oh, and Briggs
2006; Finlator et al. 2012; Sobacchi and Mesinger 2014; Cain,
Lopez, et al. 2024; Davies, Bosman, and Furlanetto 2024).

Fundamentally, Ceff cannot be a constant during the EoR.
We illustrate EoR histories resulting from common assump-
tions of a constant Ceff = 1, 3, 10 in the top panel of Fig. 8. All

j. The clumping factor can also decrease rapidly during earlier stages of
reionization as the gas relaxes from an increase in the Jeans mass after it is
photo-heated (e.g., Emberson, Thomas, and Alvarez 2013; H. Park et al. 2016;
D’Aloisio et al. 2020). However, it is likely that X-ray preheating (e.g., HERA
Collaboration et al. 2022; HERA Collaboration et al. 2023) diminishes this
evolution in practice.

curves assume the same emissivity as the MAP. However, no
constant choice of Ceff can reproduce the EoR history of the
MAP (red curve).

We offer a fit for Ceff (z) using a rational function (equation
10) with coefficients {m0, m1, m2, m3, n0, n1, n2, n3} = {238.9,
-94.35, 11.76, -0.404, 22.6, -3.97, -0.877, 0.1636}. This can
be used in analytic models to approximate the EoR history
resulting from a given emissivity. In future work we will quan-
tify how sensitive this effective clumping factor is to different
reionization or emissivity models.

4.6 Galaxy UV LFs and scaling relations
In Fig. 9 we show the inferred UV LFs for our fiducial model.
As in Fig. 4, the blue shaded regions correspond to our pos-
terior without including forest data (i.e. only including UV
LF data and τe), while the red regions additionally include the
τeff distributions from XQR-30+. In the figure we also show
observational estimates from both Hubble and JWST, with blue
points highlighting those Hubble datasets that are used in the
likelihood (see section 3.5). The MAP model and [16, 84]th
percentiles are also listed in Table 3.

From the figure we see that the Hubble estimates we use in
the likelihood already constrain the inferred UV LFs at magni-
tudes brighter than -17, where we have observational estimates.
Overall, the predictions also remain consistent with recent
JWST measurements (e.g., Donnan et al. 2023; Harikane et
al. 2023; Chris J. Willott et al. 2024), though observations at
10 < z ≲ 13 appear slightly higher. At z ∼ 16, however, UV
variability (Shen et al. 2023; Nikolić et al. 2024) sourced by
enhanced star formation (e.g., Qin, Balu, and Wyithe 2023;
Y.-Y. Wang et al. 2023; Chakraborty and Choudhury 2024)
or differences in stellar populations (e.g., Ventura et al. 2024;
Yung et al. 2024) may be indeed necessary to explain the ob-
served trends. This offset suggests that a redshift evolution in
f∗ (or τ∗) might also be needed in our model, similar to the
adjustments made for fesc (see equation 2). We will explore
this further as JWST data continue to mature. On the other
hand, the posteriors in blue widen greatly at fainter magni-
tudes, since there is no observational consensus regarding a
faint-end turn-over (see also Gillet, Mesinger, and Park 2020
and Atek et al. 2024). Once we include the forest data however,
the posteriors shrink significantly at the faint end of the UV
LF. The forest data imply significant star formation in galaxies
down to the atomic cooling limit (MUV ∼ -10).

Note that the Lyα forest is not sensitive enough to directly
distinguish between different reionization morphologies (see
section 5.3 in Q21). Therefore the preference for star forma-
tion in UV faint galaxies indirectly comes from the mean EoR
history shown in Fig. 4. Abundant, faint galaxies appear earlier
and evolve more slowly, compared to rare, bright galaxies (e.g.,
Behroozi et al. 2019). Therefore they more naturally drive
the kind of slower reionization histories with a “soft-landing”,
which is preferred by the Lyα forest. Yet, given sufficient
flexibility in assigning ionizing escape fractions, one could in
principle force a bright-galaxy-dominated EoR to have the
same history as the one shown in Fig. 4, which is driven by
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Figure 10. The inferred (68% C.I.) ionizing contribution of galaxies as a func-
tion of their UV mgnitudes at z = 6, 8 and 11. The top panel shows the
normalized cumulative number of ionizing photons while the bottom panel
shows the escape fraction. Our results imply reionization is driven by faint
galaxies, far below current direct detection limits (roughly corresponding to
the grey shaded region).

faint galaxies. This, in practice, is constrained by the fact that
the escape fraction cannot exceed unity, and that bright galax-
ies reside in the exponential tail of the mass function. Thus
very extreme evolutions in the ionizing escape fractions, ex-
ceeding unity, would be required for our model to have a
“bright galaxy dominated EoR” that is consistent with Lyα
forest data. Such models are not in our prior volume.

We further quantify the contribution of faint galaxies to the
EoR in Fig. 10. In the top panel we plot the CDF of the galax-
ies contributing to the ionizing background at z = 6, 8, and 11
as functions of MUV. There is a mild evolution with redshift,
but in general we find that galaxies fainter than MUV ≳ –12
contribute more than half of the ionizing photons that have
reionized the universe. Galaxies above the current direct detec-
tion limits of MUV ≲ –15 only contribute a few percent to the
ionizing photon budget with gravitational lensing enabling
the detection of even fainter sources and extending constraints
on their contribution (e.g., Vanzella et al. 2023; Vanzella et al.
2024). This highlights the power of the IGM as a democratic
probe of the emissivity of all galaxies.

In the bottom panel of Fig. 10 we show the mean ionizing
escape fraction as a function of UV magnitude, at the same
three redshifts, z = 6, 8, and 11. We see that the data prefer
a population-averaged fesc that increases towards faint galax-
ies. This is consistent with simulations including RAMSES
by Kimm and Cen (2014), First Billion Years (Paardekooper,
Khochfar, and Dalla Vecchia 2015), Renaissance (Xu et al. 2016)
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Figure 11. Upper panels: lightcones of MAP models from Evolving_fesc and Constant_fesc. From top to bottom, the panels correspond to the overdensity
(∆), neutral hydrogen fraction (xHI), locally-averaged UVB (Γion), temperature (Tg), residual neutral fraction within the ionized regions (xHI,res) and Lyα
transmission. Bottom panels: Similar to Figs. 4 and 10 (z=6 only) but for comparisons between Evolving_fesc and Constant_fesc and showing the 68% and
95% C.Is of their posterior distributions. Although the two models reach qualitatively the same conclusions about the EoR, the fiducial Evolving_fesc model
favors an EoR that is driven by ultra-faint galaxies close to the atomic cooling threshold, resulting in a slightly more extended and patchy EoR.

and Cosmic Dawn II (Lewis et al. 2020) while others such as
FIRE-II (Ma et al. 2020), SPHINX (Rosdahl et al. 2022), Il-
lustrisTNG (Kostyuk et al. 2023), THESAN (Yeh et al. 2023),
SPICE (Bhagwat et al. 2024) show different trends in their
results. As the posterior distribution of βesc peaks at ∼ –1.6,
the ionizing escape fraction at a given halo mass decreases at
earlier times However, as shown in this panel, such a redshift
dependence becomes very mild when fesc is plotted against
UV magnitude. The fact that such a mild redshift evolution
in the ionizing escape fraction is so strongly preferred by the
Bayesian evidence (Evolving_fesc vs Constant_fesc) high-

lights again the incredible constraining power of the XQR-30+
forest data.

5. How do the results depend on our model?
In the previous section we presented constraints on IGM and
galaxy properties using the Evolving_fesc model, which was
strongly favored by the data. Here, we explore how our main
conclusions are affected by the choice of galaxy model. Specifi-
cally, we compare our fiducial model to Constant_fesc where
the UV ionizing escape fraction is solely dependent on the
host halo mass. If our results remain largely unaffected by the
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choice of galaxy model, this would increase confidence in their
robustness, regardless of their relative Bayesian evidences.

Fig. 11 shows lightcones corresponding to the MAP in
both models (upper panels) and their posteriors for the EoR
history (bottom left panel), the cumulative contribution to the
z = 6 ionizing background of galaxies below a given UV mag-
nitude (bottom middle panel), and the ionizing escape fraction as
a function of UV magnitude (bottom right panel). Note that the
inferred τeff CDFs look indistinguishable to those shown in
Fig. 3. Both models suggest a qualitatively similar conclusion
– reionization finishes at z < 5.5 with the process primarily
driven by ionizing photons emitted by faint galaxies. The end
(corresponding to xHI = 0.01) and midpoint of reionization
are at z = 5.33± 0.03 and z = 7.2± 0.1 in the Constant_fesc
model, respectively, compared to z = 5.44 ± 0.02 and z =
7.7 ± 0.1 in our fiducial Evolving_fesc model.

From the bottom panels of Fig. 11 we see that the models
differ quantitatively in which galaxies drive reionization. The
Constant_fesc model prefers the EoR to be driven by slightly
brighter galaxies, with half of the ionizing photons being con-
tributed by Muv ≳ –14 galaxies (compared to Muv ≳ –12 in
the fiducial model). This is due to the fact that without the ad-
ditional flexibility of a time-evolving fesc, the Constant_fesc
model results in an EoR history that is too rapid compared
with what the data prefer. It is a testament to the constraining
power of the XQR-30+ data that only a small redshift evo-
lution in the ionizing escape fraction (c.f. bottom panel of
Fig. 10) results in a much higher Bayesian evidence for the
Evolving_fesc model.

6. Conclusions
The Lyα forests observed in the spectra of high-redshift quasars
provide critical insight into the final stages of reionization. In
this work, we introduced a novel framework of 21cmFAST
that integrates large-scale lightcones of IGM properties and
incorporates unresolved sub-grid physics in the Lyα opac-
ity, calibrated against high-resolution hydrodynamic simu-
lations for missing physics on small scales. By sampling only
7 free parameters that are capable of characterizing the aver-
age stellar-to-halo mass relation, UV ionizing escape fraction,
duty cycle and timescale of stellar buildup for high-redshift
galaxies, we performed Bayesian inference against the latest
Lyα forest measurement from XQR-30+ complemented by
the observed high-redshift galaxy UV LFs and the CMB opti-
cal depth. We demonstrated that current data can constrain
global IGM properties with percent-level precision.

One of the key outcomes of our model is the ability to
reproduce the large-scale fluctuations in Lyα opacity without
requiring a sharp decline in the ionizing emissivity from z ∼ 7
to 5.5, a feature that has been invoked by several other models.
In particular, our fiducial model finds reionization occurs at
z = 5.44 ± 0.02 with a midpoint at z = 7.7 ± 0.1. The
ionizing escape fraction in this model increases towards fainter
galaxies, exhibiting only a mild redshift evolution at a fixed
UV magnitude. This suggests that half of the ionizing photons
responsible for reionization are sourced by galaxies fainter

than MUV ∼ –12, which lie below the detection threshold of
current optical and near-infrared instruments including JWST.

Additionally, we explored an alternative galaxy model that
limits the redshift evolution in the ionizing escape fraction,
allowing it to only vary with the host halo mass and reduc-
ing the number of free parameters to 6. Although this model
demonstrates lower Bayesian evidence relative to our fiducial
case, the posteriors for the evolution of IGM properties are
in qualitative agreement. This lends confidence that our con-
clusions on the progress of the EoR are robust. The models
do differ somewhat on which galaxies were driving reioniza-
tion, with the lower evidence model suggesting galaxies fainter
than MUV ∼ –14 provided half the ionizing photon budget
(compared to MUV ∼ –12 for the fiducial model).

Future observations both in the Lyα forest and in direct
galaxy surveys, will be crucial to further refining these mod-
els and improving our understanding of which galaxies drive
reionization as well as the early stages of the EoR (where
we currently only have indirect constraints). Our Bayesian
framework, allowing us to connect galaxy properties to IGM
evolution in a physically-intuitive manner, represents a sig-
nificant step forward, offering a versatile and efficient tool for
interpreting upcoming observational data.
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Appendix 1. Detailed posteriors
Fig. 12 presents the marginalized 1D and 2D posterior distri-
butions of the model parameters of various models discussed in
the work, including the fiducial model Evolving_fesc, and
this model without XQR-30+ data, as well as Constant_fesc.
Tables 2 and 3 list the inferred neutral fraction, UVB, MFP and
galaxy UV LFs for the MAP model and [16, 84]th percentiles
of Evolving_fesc.
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Table 2. The inferred neutral fraction, photoionzing rate and MFP for the MAP model and the [16, 84]th percentiles (see also Figures 4 and 5).

z xHI z xHI z Γ ion/10–12s–1 RMFP/pMpc
MAP† 16th 84th MAP† 16th 84th MAP 16th 84th MAP 16th 84th

15.20 0.99 0.99 0.99 14.88 0.99 0.99 0.99 8.68 0.01 0.01 0.01 0.04 0.04 0.05
14.57 0.99 0.99 0.99 14.26 0.98 0.98 0.99 8.49 0.01 0.01 0.01 0.05 0.05 0.06
13.96 0.98 0.98 0.98 13.67 0.98 0.98 0.98 8.30 0.01 0.01 0.02 0.06 0.06 0.08
13.38 0.97 0.97 0.98 13.10 0.97 0.97 0.97 8.12 0.02 0.02 0.02 0.08 0.07 0.09
12.82 0.96 0.96 0.97 12.55 0.96 0.96 0.96 7.94 0.02 0.02 0.02 0.09 0.09 0.11
12.29 0.95 0.95 0.96 12.03 0.94 0.94 0.95 7.77 0.02 0.02 0.02 0.12 0.11 0.14
11.77 0.93 0.93 0.94 11.52 0.92 0.92 0.93 7.60 0.02 0.02 0.03 0.14 0.13 0.17
11.28 0.91 0.91 0.92 11.04 0.90 0.90 0.91 7.43 0.03 0.02 0.03 0.17 0.16 0.20
10.80 0.89 0.89 0.90 10.57 0.87 0.87 0.89 7.26 0.03 0.03 0.03 0.21 0.20 0.25
10.34 0.86 0.86 0.87 10.12 0.84 0.84 0.85 7.10 0.03 0.03 0.04 0.26 0.25 0.30
9.90 0.82 0.82 0.84 9.69 0.80 0.80 0.82 6.94 0.04 0.04 0.04 0.32 0.30 0.37
9.48 0.77 0.77 0.79 9.27 0.75 0.75 0.77 6.78 0.04 0.04 0.05 0.40 0.38 0.45
9.07 0.72 0.72 0.75 8.87 0.70 0.70 0.72 6.63 0.05 0.05 0.06 0.50 0.47 0.57
8.68 0.67 0.67 0.69 8.49 0.64 0.64 0.66 6.48 0.06 0.06 0.07 0.62 0.59 0.71
8.30 0.61 0.61 0.63 8.12 0.57 0.58 0.60 6.34 0.07 0.07 0.08 0.79 0.74 0.89
7.94 0.54 0.54 0.57 7.77 0.51 0.51 0.54 6.19 0.08 0.08 0.09 1.02 0.97 1.15
7.60 0.47 0.48 0.50 7.43 0.44 0.44 0.47 6.05 0.10 0.10 0.11 1.37 1.29 1.53
7.26 0.40 0.41 0.44 7.10 0.37 0.37 0.40 5.91 0.13 0.12 0.14 1.86 1.77 2.04
6.94 0.33 0.34 0.36 6.78 0.29 0.30 0.33 5.78 0.16 0.16 0.18 2.55 2.44 2.78
6.63 0.26 0.26 0.29 6.48 0.22 0.23 0.25 5.64 0.20 0.21 0.23 3.32 3.46 3.89
6.34 0.19 0.19 0.21 6.19 0.15 0.15 0.17 5.51 0.32 0.30 0.33 5.65 5.32 5.86
6.05 0.11 0.12 0.14 5.91 0.08 0.08 0.10 5.39 0.43 0.42 0.45 8.23 7.94 8.47
5.78 0.05 0.05 0.07 5.64 0.03 0.03 0.04 5.26 0.54 0.53 0.57 10.91 10.88 11.06
5.51 0.01 0.01 0.02 5.39 0.00 0.00 0.01 5.14 0.58 0.56 0.61 12.12 12.12 12.32
5.26 0.00 0.00 0.00 5.14 0.00 0.00 0.00 5.02 0.62 0.60 0.65 13.46 13.46 13.68
5.02 0.00 0.00 0.00 4.90 0.00 0.00 0.00 4.90 0.66 0.64 0.70 14.96 14.95 15.19

† The inferred MAP xHI(z) can be represented by a simple ratio of two polynomials with high accuracy (|∆xHI | < 0.01) using
the following functional form: xHI(z) = (292.6 – 105.47z + 7.824z2 + 0.312z3)/(–24.3 + 22.9z – 4.96z2 + 0.694z3) .

Table 3. The inferred galaxy UV luminosity functions for the MAP model and the [16, 84]th percentiles (see also Fig. 9).

MUV z
log10[ϕ/Mpc–3mag–1]

z
log10[ϕ/Mpc–3mag–1]

z
log10[ϕ/Mpc–3mag–1]

z
log10[ϕ/Mpc–3mag–1]

MAP 16th 84th MAP 16th 84th MAP 16th 84th MAP 16th 84th
-20.0

16

-8.40 -8.51 -8.33

13.3

-6.54 -6.63 -6.48

12

-5.75 -5.83 -5.70

11

-5.19 -5.26 -5.14
-19.0 -7.18 -7.27 -7.15 -5.57 -5.65 -5.54 -4.89 -4.96 -4.87 -4.41 -4.47 -4.39
-18.0 -6.12 -6.22 -6.10 -4.73 -4.80 -4.71 -4.14 -4.20 -4.12 -3.73 -3.78 -3.71
-17.0 -5.20 -5.30 -5.17 -3.98 -4.06 -3.96 -3.47 -3.54 -3.46 -3.11 -3.18 -3.10
-16.0 -4.38 -4.50 -4.35 -3.31 -3.41 -3.29 -2.87 -2.96 -2.85 -2.56 -2.64 -2.55
-15.0 -3.65 -3.79 -3.62 -2.72 -2.83 -2.69 -2.33 -2.43 -2.31 -2.06 -2.15 -2.04
-14.0 -3.00 -3.16 -2.97 -2.18 -2.30 -2.15 -1.84 -1.95 -1.82 -1.61 -1.71 -1.59
-13.0 -2.43 -2.60 -2.41 -1.70 -1.84 -1.68 -1.40 -1.53 -1.38 -1.20 -1.31 -1.18
-12.0 -1.95 -2.13 -1.93 -1.29 -1.44 -1.27 -1.02 -1.16 -1.00 -0.84 -0.97 -0.82
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Figure 12. Marginalized 1D and 2D posterior distributions of model parameters from the fiducial model Evolving_fesc (red), and this model without XQR-30+
(blue) as well as Constant_fesc (purple). Regions inside the curves or indicated in shades represent the 95th percentiles.
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