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Abstract

Let R be an integral domain and A a symmetric cellular algebra over R with a cellular basis {Cλ
S,T | λ ∈

3, S, T ∈ M(λ)}. We construct an ideal L(A) of the centre of A and prove that L(A) contains the so-
called Higman ideal. When R is a field, we prove that the dimension of L(A) is not less than the number
of nonisomorphic simple A-modules.
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1. Introduction

In 1996, Graham and Lehrer [11] introduced cellular algebras in order to provide a
systematic framework for studying the representation theory of a class of algebras.
By the theory of cellular algebras, one can parameterize simple modules for a finite-
dimensional cellular algebra by methods in linear algebra. Many classes of algebras
from mathematics and physics are found to be cellular, including Hecke algebras of
finite type, Ariki–Koike algebras, q-Schur algebras, Brauer algebras, Temperley–Lieb
algebras, cyclotomic Temperley–Lieb algebras, partition algebras, Birman–Wenzl
algebras and so on; see [8, 11, 16–18] for details.

There are many papers on centres of Hecke algebras of finite type, which are all
cellular algebras [8]. In [13], Jones found bases for centres of Hecke algebras of type
A overQ[q, q−1

], where q is an indeterminant. This basis is an analogue of conjugacy
class sums in a group algebra. In [10], Geck and Rouquier found bases for the centres
of generic Hecke algebras over Z[q, q−1

] with q an indeterminant. However, it is not
easy to write the basis explicitly. Then one should ask, is there any basis which can
be written explicitly? In [4], Francis gave an integral minimal basis for the centre of a
Hecke algebra. Then in [5], he used the minimal basis approach to provide an entirely
combinatorial way of describing and calculating elements of the minimal basis for
the centre of an Iwahori–Hecke algebra. In [7], Francis and Jones found an explicit
nonrecursive expression for the coefficients appearing in these linear combinations
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for the Hecke algebras of type A. The relations between the so-called Jucys–Murphy
elements and centres of Hecke algebras are also investigated widely. In [3], Dipper and
James conjectured that the centre of a Hecke algebra of type A consists of symmetric
polynomials in the Jucys–Murphy elements. This conjecture was proved by Francis
and Graham [6] in 2006. An analogous conjecture for Ariki–Koike algebras is still
open.

Jeong et al. [12] firstly studied centres of semisimple Hecke algebras of some finite
types using the cellular basis. The fact that Hecke algebras of finite type are all cellular
led us to consider how to describe the centres of cellular algebras in general. Clearly,
most of the approaches for studying Hecke algebras cannot be used directly for cellular
algebras, since we have no Weyl group structure to use. Thus we have to look for
some new methods. In fact, the symmetry of Hecke algebras provides us with a way
to do so. In the present paper, we consider the centres of symmetric cellular algebras.
Note that Hecke algebras of all finite types [8], Ariki–Koike algebras with invertible
parameters [15] and Khovanov’s diagram algebras [1] are all symmetric.

In order to describe our result exactly, we fix some notation first. Let A be
a symmetric cellular R-algebra with a nondegenerate symmetric bilinear form f :
A × A→ R. Then f determines a map τ : A→ R which is defined by τ(a)= f (a, 1)
for every a ∈ A. We call the map τ a symmetrizing trace. Denote by

{Dλ
S,T | S, T ∈ M(λ), λ ∈3}

the dual basis determined by τ . Let

H(A)=

{ ∑
λ∈3,S,T∈M(λ)

Cλ
S,T aDλ

S,T

∣∣∣∣ a ∈ A

}
;

this is the Higman ideal of Z(A). For any λ ∈3 and T ∈ M(λ), set eλ =∑
S∈M(λ) Cλ

S,T Dλ
S,T , where eλ is independent of T and L(A)= {

∑
λ∈3 rλeλ | rλ ∈ R}.

Then we have the following theorem.

THEOREM 1.1. Let A be a symmetric cellular algebra with a cellular basis {Cλ
S,T |

S, T ∈ M(λ), λ ∈3} and a dual basis {Dλ
S,T | S, T ∈ M(λ), λ ∈3} determined by a

symmetrizing trace τ . Then L(A) is an ideal of Z(A) containing the Higman ideal.

It is helpful to note that, when R is a field, the dimension of L(A) is not less than the
number of nonisomorphic simple A-modules (see Proposition 3.3 below). Therefore,
L(A) is the whole centre provided that A is semisimple. In particular, we give a
complete set of primitive orthogonal idempotents of a symmetric cellular algebra when
the algebra is semisimple. Note that Dipper and James did the same thing for a Hecke
algebra of type A in [3].

2. Preliminaries

In this section, we first recall some basic results on symmetric algebras and cellular
algebras, which are needed in the following sections. The so-called Higman ideal is
also described. References for this section are the books [2, 9].
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Let R be a commutative ring with identity and A an associative R-algebra. Assume
that A is finitely generated and free as an R-module. Suppose that there exists an
R-bilinear map f : A × A→ R. We say that f is nondegenerate if the determinant
of the matrix ( f (ai , a j ))ai ,a j∈B is a unit in R for some R-basis B of A. We say f
is associative if f (ab, c)= f (a, bc) for all a, b, c ∈ A, and symmetric if f (a, b)=
f (b, a) for all a, b ∈ A.

DEFINITION 2.1. An R-algebra A is said to be symmetric if there is a nondegenerate
associative symmetric bilinear form f on A. Define an R-linear map τ : A→ R by
τ(a)= f (a, 1). We call τ a symmetrizing trace.

Let A be a symmetric algebra with a basis B = {ai | i = 1, . . . , n} and τ a
symmetrizing trace. Denote by D = {Di | i = 1, . . . , n} the basis determined by the
requirement that τ(D j ai )= δi j for all i, j = 1, . . . , n. We will call D the dual basis
of B. For arbitrary 1≤ i, j ≤ n, we write ai a j =

∑
k ri jkak , where ri jk ∈ R. Fixing

a τ for A, we proved the following lemma in [14].

LEMMA 2.2. If A is a symmetric algebra with a basis B and the dual basis D, then
ai D j =

∑
k rki j Dk and Di a j =

∑
k r jki Dk .

It is well known that {
∑

i Di aai | a ∈ A} is an ideal of the centre of A, which is
called the Higman ideal [2]. We provide an elementary proof of this fact.

PROPOSITION 2.3. Let A be a symmetric algebra with a basis B and the dual basis D.
Then {

∑
i Di aai | a ∈ A} is an ideal of the centre of A.

PROOF. For arbitrary a j ∈ B and a ∈ A, by Lemma 2.2,∑
i

Di aai a j =
∑
i,k

ri jk Di aak

and ∑
i

a j Di aai =
∑
i,k

rk ji Dkaai .

Obviously, the right-hand sides of the above two equations are equal. Then
{
∑

i Di aai | a ∈ A} ⊆ Z(A). It is clear that the set is an ideal of the centre of A. 2

LEMMA 2.4 [14, Proposition 2.3]. Suppose that A is a symmetric R-algebra with a
basis {ai | i = 1, . . . , n}. Let τ, τ ′ be two symmetrizing traces. Denote by {Di | i =
1, . . . , n} the dual basis of B determined by τ and by {D′i | i = 1, . . . , n} the dual
basis determined by τ ′. Then, for 1≤ i ≤ n,

D′i =
n∑

j=1

τ(a j D′i )D j .

We now recall the definition of cellular algebras introduced by Graham and
Lehrer [11] and some well-known results.
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DEFINITION 2.5 [11, Definition 1.1]. Let R be a commutative ring with identity. An
associative unital R-algebra is called a cellular algebra with cell datum (3, M, C, i)
if the following conditions are satisfied.

(C1) The finite set3 is a poset. Associated with each λ ∈3, there is a finite set M(λ).
The algebra A has an R-basis {Cλ

S,T | S, T ∈ M(λ), λ ∈3}.
(C2) The map i is an R-linear anti-automorphism of A with i2

= id which sends Cλ
S,T

to Cλ
T,S .

(C3) If λ ∈3 and S, T ∈ M(λ), then, for any element a ∈ A,

aCλ
S,T ≡

∑
S′∈M(λ)

ra(S
′, S)Cλ

S′,T mod A(< λ),

where ra(S′, S) ∈ R is independent of T and where A(< λ) is the R-submodule
of A generated by {Cµ

S′′,T ′′ | S
′′, T ′′ ∈ M(µ), µ < λ}.

On applying i to the equation in (C3) we obtain
(C3′) Cλ

T,Si(a)≡
∑

S′∈M(λ) ra(S′, S)Cλ
T,S′ mod A(< λ).

By Definition 2.5, it is easy to check that

Cλ
S,SCλ

T,T ≡8(S, T )Cλ
S,T mod A(< λ),

where 8(S, T ) ∈ R depends only on S and T .
Let A be a cellular algebra with cell datum (3, M, C, i). We recall the definition

of cell modules.

DEFINITION 2.6 [11, Definition 2.1]. For each λ ∈3, define the left A-module
W (λ) as follows: W (λ) is a free R-module with basis {CS | S ∈ M(λ)} and A-action
defined by

aCS =
∑

S′∈M(λ)

ra(S
′, S)CS′ for a ∈ A, S ∈ M(λ),

where ra(S′, S) is the element of R defined in (C3).

For a cell module W (λ), define a bilinear form 8λ :W (λ)×W (λ)→ R by
8λ(CS, CT )=8(S, T ) and define

rad(λ) := {x ∈W (λ) |8λ(x, y)= 0 for all y ∈W (λ)}.

Graham and Lehrer proved the following results in [11].

THEOREM 2.7. Let K be a field and A a finite-dimensional cellular algebra. For
λ ∈3, denote the A-module W (λ)/rad(λ) by Lλ. Let 30 = {λ ∈3 |8λ 6= 0}. Then
{Lλ | λ ∈30} is a complete set of (representatives of equivalence classes of) absolutely
simple A-modules.
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3. Centres of symmetric cellular algebras

Let A be a symmetric cellular algebra with a cell datum (3, M, C, i). Denote the
dual basis by D = {Dλ

S,T | S, T ∈ M(λ), λ ∈3}, which satisfies

τ(Cλ
S,T Dµ

U,V )=

{
1 for λ= µ, S =U , T = V

0 otherwise.

For any λ, µ ∈3, S, T ∈ M(λ), U, V ∈ M(µ), write

Cλ
S,T Cµ

U,V =
∑

ε∈3,X,Y∈M(ε)

r(S,T,λ),(U,V,µ),(X,Y,ε)C
ε
X,Y .

In [14] we proved the following lemma.

LEMMA 3.1. Let A be a symmetric cellular algebra with a basis B. Let D be the
dual basis determined by a given τ . For arbitrary λ, µ ∈3 and S, T, P, Q ∈ M(λ),
U, V ∈ M(µ), the following equations hold.

(1) Dµ
U,V Cλ

S,T =
∑
ε∈3,X,Y∈M(ε) r(S,T,λ),(X,Y,ε),(U,V,µ)Dε

X,Y .
(2) Cλ

S,T Dµ
U,V =

∑
ε∈3,X,Y∈M(ε) r(X,Y,ε),(S,T,λ),(U,V,µ)Dε

X,Y .
(3) Cλ

S,T Dλ
S,T = Cλ

S,P Dλ
S,P .

(4) Dλ
S,T Cλ

S,T = Dλ
P,T Cλ

P,T .
(5) Cλ

S,T Dλ
P,Q = 0 if T 6= Q.

(6) Dλ
P,QCλ

S,T = 0 if P 6= S.

(7) Cλ
S,T Dµ

U,V = 0 if µ� λ.
(8) Dµ

U,V Cλ
S,T = 0 if µ� λ.

Let A be a symmetric cellular algebra with a symmetrizing trace τ . The dual basis
{Dλ

S,T | S, T ∈ M(λ), λ ∈3} is determined by τ . Then the Higman ideal is

H(A)=

{ ∑
λ∈3,S,T∈M(λ)

Cλ
S,T aDλ

S,T

∣∣∣∣ a ∈ A

}
.

For any λ ∈3 and T ∈ M(λ), set

eλ =
∑

S∈M(λ)

Cλ
S,T Dλ

S,T and L(A)=

{∑
λ∈3

rλeλ

∣∣∣∣ rλ ∈ R

}
.

Now we are in a position to give the main result of this paper.

THEOREM 3.2. Let A be a symmetric cellular algebra with a cellular basis {Cλ
S,T |

S, T ∈ M(λ), λ ∈3} and the dual basis {Dλ
S,T | S, T ∈ M(λ), λ ∈3} determined by

a symmetrizing trace τ . Then L(A) is an ideal of Z(A) containing the Higman ideal.
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PROOF.
Step 1. H(A)⊆ L(A). Clearly, we only need to show that

l :=
∑

S,T∈M(λ),λ∈3

Cλ
S,T Cµ

U,V Dλ
S,T ∈ L(A)

for any Cµ
U,V ∈ B, where µ ∈3, U, V ∈ M(µ). We divide l into three parts: l =

lλ=µ + lλ<µ + lλ�µ, where

lλ=µ :=
∑

S,T∈M(λ),λ=µ

Cλ
S,T Cµ

U,V Dλ
S,T

and the other two parts are defined similarly.
By Lemma 3.1(7), lλ�µ = 0. We claim that

lλ=µ =8µ(CU , CV )eµ.

In fact, by Lemma 3.1(5), Cµ
U,V Dµ

X,Y = 0 if V 6= Y . Then from Definition 2.5 and
Lemma 3.1(7) we deduce that

lλ=µ =
∑

X∈M(µ)

Cµ
X,V Cµ

U,V Dµ
X,V

=

∑
X∈M(µ)

8µ(CU , CV )C
µ
X,V Dµ

X,V

= 8µ(CU , CV )eµ.

This implies that lλ=µ ∈ L(A).
Now let us consider lλ<µ. For arbitrary λ < µ, we show that∑

S,T∈M(λ)

Cλ
S,T Cµ

U,V Dλ
S,T =

∑
T∈M(λ)

r(S,T,λ),(U,V,µ),(S,T,λ)eλ.

Note that∑
S,T∈M(λ)

Cλ
S,T Cµ

U,V Dλ
S,T =

∑
S,T∈M(λ)

( ∑
ε∈3,X,Y∈M(ε)

r(S,T,λ),(U,V,µ),(X,Y,ε)C
ε
X,Y

)
Dλ

S,T .

It follows from Definition 2.5(C3′) that r(S,T,λ),(U,V,µ),(X,Y,ε) = 0 if ε � λ and
Lemma 3.1(7) implies that Cε

X,Y Dλ
S,T = 0 if ε < λ. Thus∑

S,T∈M(λ)

Cλ
S,T Cµ

U,V Dλ
S,T =

∑
S,T∈M(λ)

∑
X,Y∈M(λ)

r(S,T,λ),(U,V,µ),(X,Y,λ)C
λ
X,Y Dλ

S,T .

By (C3′) of Definition 2.5, r(S,T,λ),(U,V,µ),(X,Y,λ) = 0 if X 6= S and Cλ
X,Y Dλ

S,T = 0 if
Y 6= T by Lemma 3.1(5). Hence∑

S,T∈M(λ)

Cλ
S,T Cµ

U,V Dλ
S,T =

∑
S,T∈M(λ)

r(S,T,λ),(U,V,µ),(S,T,λ)C
λ
S,T Dλ

S,T .

For arbitrary S, S′ ∈ M(λ), we have from (C3′) of Definition 2.5 that

r(S,T,λ),(U,V,µ),(S,T,λ) = r(S′,T,λ),(U,V,µ),(S′,T,λ).
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So ∑
S,T∈M(λ)

Cλ
S,T Cµ

U,V Dλ
S,T =

∑
T∈M(λ)

r(S,T,λ),(U,V,µ),(S,T,λ)eλ.

This implies lλ<µ ∈ L(A). Then we obtain l ∈ L(A).

Step 2. L(A)⊆ Z(A). It is sufficient to show that eλCµ
U,V = Cµ

U,V eλ for arbitrary
λ, µ ∈3, U, V ∈ M(µ).

On the one hand, by Lemma 3.1(1),

eλCµ
U,V =

∑
S∈M(λ)

Cλ
S,T Dλ

S,T Cµ
U,V

=

∑
S∈M(λ)

∑
ε∈3,X,Y∈M(ε)

r(U,V,µ),(X,Y,ε),(S,T,λ)C
λ
S,T Dε

X,Y .

By a similar method as in Step 1, we get

eλCµ
U,V =

∑
S,X∈M(λ)

r(U,V,µ),(X,T,λ),(S,T,λ)C
λ
S,T Dλ

X,T .

On the other hand,

Cµ
U,V eλ =

∑
S∈M(λ)

∑
ε∈3,X,Y∈M(ε)

r(U,V,µ),(S,T,λ),(X,Y,ε)C
ε
X,Y Dλ

S,T

=

∑
S,X∈M(λ)

r(U,V,µ),(S,T,λ),(X,T,λ)C
λ
X,T Dλ

S,T .

So eλCµ
U,V = Cµ

U,V eλ; that is, L(A)⊆ Z(A).

Step 3. L(A) is an ideal of Z(A). It suffices to show that, for arbitrary c ∈ Z(A)
and λ ∈3, the element ceλ belongs to L(A); that is,

∑
S∈M(λ) Cλ

S,T cDλ
S,T ∈ L(A).

Since c is an R-linear combination of elements of B, we only need to prove that, for
arbitrary Cµ

U,V ∈ B, the element
∑

S∈M(λ) Cλ
S,T Cµ

U,V Dλ
S,T belongs to L(A). Clearly,

this element is equal to∑
S∈M(λ)

∑
ε∈3,X,Y∈M(ε)

r(S,T,λ),(U,V,µ),(X,Y,ε)C
ε
X,Y Dλ

S,T .

We know that it is equal to r(S,T,λ),(U,V,µ),(X,Y,ε)eλ by an argument similar to Step 1.
This implies that

∑
S∈M(λ) Cλ

S,T cDλ
S,T ∈ L(A). 2

We obtain some properties of L(A) in the following proposition.

PROPOSITION 3.3. With the notation as above:

(1) L(A) is independent of the choice of τ ;
(2) if R is a field, then dimR L(A)≥ |30|.
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PROOF. (1) Let τ , τ ′ be two nonequal symmetrizing traces and D and d the dual
bases determined by τ and τ ′, respectively. For arbitrary dλS,T ∈ d , it follows from
Lemma 2.4 that

dλS,T =
∑

ε∈3,X,Y∈M(ε)

τ(Cε
X,Y dλS,T )D

ε
X,Y .

Then, by Lemma 3.1,∑
S∈M(λ)

Cλ
S,T dλS,T =

∑
S∈M(λ)

∑
ε∈3,X,Y∈M(ε)

τ(Cε
X,Y dλS,T )C

λ
S,T Dε

X,Y

=

∑
S∈M(λ)

∑
X∈M(λ)

τ(Cλ
X,T dλS,T )C

λ
S,T Dλ

X,T .

By the definition of τ , we have τ(Cλ
X,T dλS,T )= τ(d

λ
S,T Cλ

X,T ). Then, by Lemma 3.1,
τ(dλS,T Cλ

X,T )= 0 if X 6= S; that is,∑
S∈M(λ)

Cλ
S,T dλS,T =

∑
S∈M(λ)

τ(Cλ
S,T dλS,T )C

λ
S,T Dλ

S,T .

We now need to show that τ(Cλ
S,T dλS,T ) is independent of S. This is clear by the

equation dλS,T Cλ
S,T = dλS′,T Cλ

S′,T for arbitrary S′ ∈ M(λ).
(2) We only need to find |30| R-linear independent elements in L(A). By the

definition of30, for each λ ∈30, there exist S, T ∈ M(λ), such that8λ(CS, CT ) 6= 0.
Write eλ =

∑
U∈M(λ) Cλ

U,T Dλ
U,T . By Lemma 3.1, we know that the coefficient of

Dλ
S,T in the expansion of Cλ

S,T Dλ
S,T is r(S,T,λ),(S,T,λ),(S,T,λ) =8λ(CS, CT ) 6= 0 and

is 0 in the expansion of Cλ
U,T Dλ

U,T for any U 6= S. That is, the coefficient of Dλ
S,T in

the expansion of eλ is not zero. We also know that the coefficient of Dλ
S,T in the expan-

sion of eµ is zero for any µ� λ. Now let
∑
λ∈30

rλeλ = 0 and µ be a minimal element
in30. Then rµ must be zero. By induction, we know that rλ = 0 for each λ ∈30. This
implies that {eλ | λ ∈30} is R-linear independent. That is, dim L(A) is not less than
the number of (representatives of equivalence classes of) simple A-modules. 2

We could define e′λ =
∑

T∈M(λ) Dλ
S,T Cλ

S,T for any λ ∈3 and L(A)′ =
{
∑
λ∈3 rλe′λ | rλ ∈ R}. Then there are analogous results on L(A)′.

EXAMPLE 3.4. Let K be a field and Q be the quiver

•
α1 //

•
α2 //

1 α′1
2

oo • · · · •
3α′2

oo
αn−1 //

•

α′n−1
n−1 n

oo

with relation ρ given as follows:

(1) all paths of length ≥3;
(2) α′iαi − αi+1α

′

i+1, for i = 1, . . . , n − 2;
(3) αiαi+1, α′i+1α

′

i , for i = 1, . . . , n − 2.
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Let A = K (Q, ρ). Define τ by:

(1) τ(e1)= · · · = τ(en)= 1;
(2) τ(αiα

′

i )= τ(α
′

iαi )= 1, for i = 1, . . . , n − 1;
(3) τ(αi )= τ(α

′

i )= 0.

Then A is a symmetric cellular algebra with a cellular basis

e1;
α1α
′

1 α1
α′1 e2

;
α2α
′

2 α2
α′2 e3

; · · · ;
αn−1α

′

n−1 αn−1

α′n−1 en
; α′n−1αn−1.

The dual basis is

α1α
′

1;
e1 α′1
α1 α′1α1

; e2 α′2 α2 α′2α2; · · · ;
en−1 α′n−1
αn−1 α′n−1αn−1

; en.

It is easy to see that L(A) is an ideal of Z(A) generated by

{α1α
′

1, α1α
′

1 + α2α
′

2, α2α
′

2 + α3α
′

3, . . . , αn−2α
′

n−2 + αn−1α
′

n−1, α
′

n−1αn−1}

and H(A) is generated by

{2α1α
′

1 + α2α
′

2, α1α
′

1 + 2α2α
′

2 + α3α
′

3, α2α
′

2 + 2α3α
′

3 + α4α
′

4, . . . ,

αn−3α
′

n−3 + 2αn−2α
′

n−2 + αn−1α
′

n−1, αn−2α
′

n−2 + 2αn−1α
′

n−1}.

Then dimK L(A)= n since the rank of the following matrix is n:
1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
· · · · · · · · ·

0 0 0 0 · · · 1 1
0 0 0 0 · · · 0 1


(n+1)×n

.

We know that dimK H(A) < n if char K is a factor of n + 1 and dimK H(A)= n
otherwise, since the determinant of the following matrix is n + 1:

2 1 0 0 · · · 0 0
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
· · · · · · · · ·

0 0 0 0 · · · 2 1
0 0 0 0 · · · 1 2


n×n

.

Then H(A)( L(A) if char K is a factor of n + 1 and H(A)= L(A) otherwise.

There is an interesting orthogonal property of eλ which can be stated as follows.

LEMMA 3.5. Keep the notation as above. Then eλeµ = 0 for arbitrary λ, µ ∈3 with
λ 6= µ.
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PROOF. For arbitrary λ, µ ∈3 with eλeµ 6= 0, there exist S0 ∈ M(λ) and U0 ∈ M(µ)
such that

Cλ
S0,T Dλ

S0,T Cµ
U0,V

Dµ
U0,V
6= 0.

This implies Dλ
S0,T

Cµ
U0,V
6= 0. Then by Lemma 3.1 there exists some Cε

X,Y such that

r(U0,V,µ),(X,Y,ε),(S0,T,λ) 6= 0.

By (C3) of Definition 2.5 this implies that λ≤ µ. From eλeµ = eµeλ, we get eλeµ 6= 0
which implies µ≤ λ. Therefore, λ= µ if eλeµ 6= 0. 2

4. Semisimple case

In this section, we consider the semisimple case. We will construct all the central
primitive idempotents and give a complete set of primitive orthogonal idempotents for
a symmetric cellular algebra.

Firstly, let us recall the definition of Schur elements. For details, see [9].
Let R be a commutative ring with identity and A an R-algebra. Let V be an

A-module which is finitely generated and free over R. The algebra homomorphism

ρV : A→ EndR(V ), ρV (a)v = av where v ∈ V , a ∈ A

is called the representation afforded by V . The corresponding character is the R-linear
map defined by

χV : A→ R, a 7→ tr(ρV (a)),

where tr is the usual trace of a matrix.
Let K be a field and A a finite-dimensional symmetric K -algebra with

symmetrizing trace τ . Let B = {ai | i = 1, . . . , n} be a basis and D = {Di | i =
1, . . . , n} the dual basis determined by τ . If V is a split simple A-module, denote
the character by χV . Therefore,∑

i

χV (ai )χV (Di )= cV dimK V,

where cV ∈ K is the so-called Schur element associated with V . It is nonzero if and
only if V is a split simple projective A-module [9].

LEMMA 4.1 [9, (7.2.7)]. Let A be a split semisimple K -algebra. Then{
eV := c−1

V

∑
i

χV (ai )Di

∣∣∣∣ V is a simple A-module

}
is a complete set of central idempotents which are primitive in Z(A).

Let R be an integral domain and A a symmetric cellular algebra with cellular basis
{Cλ

S,T | S, T ∈ M(λ), λ ∈3}. Given a symmetrizing trace τ , the dual basis is {Dλ
S,T |

S, T ∈ M(λ), λ ∈3}. Let K be the field of fractions of R. Define AK := A
⊗

R K .
Consider A to be a subalgebra of AK and extend τ of A to AK . Then we can construct
all the central idempotents which are primitive in Z(AK ) by eλ.
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PROPOSITION 4.2. If AK is split semisimple, then {c−1
W (λ)eλ | λ ∈3} is a complete set

of central idempotents which are primitive in Z(AK ).

PROOF. The left AK -module W (λ) is split simple since AK is split semisimple. Then,
by Lemma 4.1,

eW (λ) = c−1
W (λ)

∑
µ∈3,U,V∈M(µ)

χW (λ)(C
µ
U,V )D

µ
U,V .

Note that the character afforded by W (λ) is given by the formula

χW (λ)(a)=
∑

S∈M(λ)

ra(S, S)

for all a ∈ A. Then we get χW (λ)(C
µ
U,V )=

∑
S∈M(λ) r(U,V,µ),(S,T,λ),(S,T,λ). Then

eW (λ) = c−1
W (λ)

∑
µ∈3,U,V∈M(µ)

∑
S∈M(λ)

r(U,V,µ),(S,T,λ),(S,T,λ)D
µ
U,V

= c−1
W (λ)

∑
S∈M(λ)

∑
µ∈3,U,V∈M(µ)

r(U,V,µ),(S,T,λ),(S,T,λ)D
µ
U,V

= c−1
W (λ)

∑
S∈M(λ)

Cλ
S,T Dλ

S,T . 2

REMARK 4.3. Clearly, {eλ | λ ∈3} forms a basis of the centre of AK by the above
proposition. Jeong et al. in [12, Theorem 3.7] gave a basis of the centres of semisimple
Hecke algebras of some finite types, consisting of the q-analogues of the conjugacy
class sums.

It is helpful to indicate that Dipper and James have given a complete set of
primitive orthogonal idempotents of Hecke algebras of general linear groups (see [3,
Theorem 5.2]). We could also give a complete set of primitive orthogonal idempotents
of symmetric cellular algebras.

COROLLARY 4.4. If AK is split semisimple, then

{EλS := c−1
W (λ)C

λ
S,S Dλ

S,S | λ ∈3, S ∈ M(λ)}

is a complete set of primitive orthogonal idempotents of AK .

PROOF. For any λ, µ ∈3, S ∈ M(λ), T ∈ M(µ), if λ 6= µ, the proof of Lemma 3.5
implies that EλS EµT = 0. If λ= µ and S 6= T , then EλS EλT = 0 follows from
Lemma 3.1(6). The identities EλS EλS = EλS and

∑
λ∈3,S∈M(λ) EλS = 1 are clear by the

proof of Proposition 4.2. Finally, the set {EλS | λ ∈3, S ∈ M(λ)} contains exactly∑
λ∈3 dimK (W (λ)) elements and therefore primitivity holds. 2

Note that the centre of A is equal to the intersection of A and the centre of AK . We
give a necessary condition for an element of the centre of AK being in A.

COROLLARY 4.5. Let aλ ∈ K for all λ ∈3 and a =
∑
λ∈3 aλeλ ∈ A. Then aλcW (λ)

nλ ∈ R for arbitrary λ ∈3, where nλ is the number of elements in the set M(λ).

https://doi.org/10.1017/S0004972710001620 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001620


522 Y. Li [12]

PROOF. For any λ ∈3, we know that c−1
W (λ)eλ is a central idempotent of AK by

Proposition 4.2; that is, e2
λ = cW (λ)eλ. This implies that aeλ = aλcW (λ)eλ. Clearly

aeλ ∈ A implies τ(aeλ) ∈ R. By the definition of the dual basis, τ(eλ)= nλ. This
completes the proof. 2
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