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2. We may also, by reference to the pedal line, find the equation
to tJie drcum-circle of a triangle formed by three lines the equations
to which are given in Cartesian co-ordinates.

We have to express analytically the fact that the area of the
triangle formed by joining the feet of perpendiculars on the sides of
the given triangle from the point (x, y) is zero, since it becomes a
pedal line of the given triangle.

If, therefore, DEF be the pedal line of the triangle ABC corre-
sponding to the point P, we have

APFE + APDE - APFD = 0,
that is,

PFPEsinA + PD PEsinC - PFPDsinB = 0 ;
so that, if the equations to the sides of the triangle ABC be of the
form xcosa + ysina - p = 0, the equation to the circum-circle is

(o;cosa2 + i/sina2 - p^fxcosa^ + i/sinaj - />j)sin(a2 - a3)
+ two similar terms = 0.

If the equations to the sides of the triangle be given in the form
ax + by + c = O, the equation to the circum-circle is

(a.J>3 - aj>t)(al + bf)(a^c + b.$ + c.^x + b-jy + c3)
+ two similar terms = 0.

[We may also show absolutely that this equation does represent
the circum-circle. For the locus represented by it goes through
A, B, C, since the co-ordinates of each obviously satisfy the equa-
tion ; and, further, the equation represents a circle, since on
examination it will be found that the coefficients of a? and y2 are
eqilal, while that of xy is zero.

The pedal line of a triangle and theorems connected with it.

By GEORGE A. GIBSON, M.A

Most of the following theorems occur in a more or less explicit
form in text-books on the geometry of the parabola; but it will not,
I hope, be without interest and value to consider them independently,
and to prove them by using only the propositions of Euclid.

1. If the perpendiculars AD, BE, CF of a triangle ABC are
produced to meet the circumcircle of the triangle in X, Y, Z respec-
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tively; and if through the orthocentre O any line be drawn meeting
the sides BC, CA, AB in TJ, V, W respectively, then XU, YV, ZW
intersect the circumcircle at the same point S, the pedal of which is
parallel to the line through O and is midway between S and that
line.

From the orthocentre O (fig. 26) draw any line OT7 cutting BC
at TJ and let XU meet the circumcircle at S.

Draw SL perpendicular to BC, meeting OU at P.
Assume the property that OD is equal to DX.
Then since the triangle ODTJ, XDU are congruent, so are the

triangles SLU, PLU and therefore SL = LP.
Also LV0X= LVX0= LSCA.
Similarly it may be shown that if SY meet CA in V and if SM

be drawn perpendicular to CA and produced to meet OV at Q,*then
SM = MQand LY0Y= LSCB.

Hence L UOX + L VOY = L ACB = supplement of L XOY.
Therefore OTJ and OV are in the same straight line.
Similarly it may be shown that ZS meets AB at W, the point

of intersection of UO and AB, and that if SN be drawn perpen-
dicular to AB and produced to meet U W at R, then SN = NR.

L, M, N being the middle points of SP, SQ, SR respectively, are
therefore collinear, and obviously LM bisects SO.

2. If on the pedal line a point G be taken (fig. 27) and if through
G a line be drawn perpendicular to SG meeting the sides BC, CA,
AB in A', B', C respectively, then SA', SB', SC make equal angles
with the sides BC, CA, AB.

The points S, G, L, A' are concyclic, since the angles SGA',
SLA' are right angles. Hence the angle SA'L is equal to the angle
SGN. In the same way it may be shown that the angles SB'M,
SC'N are each equal to the angle SGN and therefore to the angle
SA'L.

It is easy to show, conversely, that if A', B', C are three collinear
points on the sides such that the angles SA'B, SB'A, SC'A are equal,
then S lies on the circumcircle of the triangle and the pedal line
of S meets A'B' at G so that SG is perpendicular to A'B'.

3. If in fig. 27, A'B'C be any line meeting the sides of the
triangle in A', B', C, then it is readily shown that the circumcircles
of the four triangles formed by the four lines, AB, BC, CA, A'B'
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intersect in some point S. All four triangles have obviously the
same pedal line with respect to S. Hence, if O be the orthocentre
of the triangle ABO, it follows from (1) that the orthocentres of all
four triangles lie on the line through O parallel to the pedal line
of S.

It is also readily seen that the lines joining S to the points in
which any one of the four lines cuts the other three are equally
inclined to these three.

4. In fig. 26 it is not necessary that O should be the orthocentre
in order that XU, YV, ZW should intersect the circumcircle of the
triangle at the same point; all that is necessary is that AX, BY,
CZ should be concurrent at the point O through which the line
UVW is drawn.

The converse is also true, viz., if any line cut the sides at U, V,
W and if any point S on circumcircle be joined to U, V, W and
produced to meet the circumference at X, Y, Z, then AX, BY, CZ
will be concurrent at some point 0 on the line UVW.

The proof is, in both cases, given immediately by Pascal's
Theorem. Thus if, as in (1), we suppose OU drawn, XU produced
to S and SY joined cutting CA in V, then applying Pascal's Theorem
to the hexagon AXSYBC we see that AX, YB intersect at O, XS,
BO at U, SY, CA at V and therefore V lies in UO produced.
Similarly it may be shown that W lies in UO produced.

It may be noticed that if the line be the pedal line of the point
in the converse theorem, then the point of concurrence is the point
at infinity on the line. Thus if in fig. 26, SL meet the circle at x,
then.Aa: is parallel to LM, for

L Sa;A = L SBA = L SLN since SBLN is a cyclic quadrilateral.

The figure AxePO is therefore a parallelogram ; xP is equal to AO
and the mid point of AP, being also the mid point of Ox, is on the
nine-point circle of the triangle.

5. If A'C'B' be any line drawn according to the construction of
paragraph (2), then the ratio of the intercepts A'C, C'B' is constant,
and also the ratios BC':CB', CA':AO', AB':BA: for (fig. 27)

the triangles A'C'S, LNS are similar

.-. A'C':C'S = LN:NS.
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In the same way from the triangles SC'B', SNM

CS:C'B' = NS:NM
.•. A'C':C'B'= LN:NM a constant ratio.

Again, the triangles BO'S, CB'S are equiangular, for
L SBC = L SCB' and L SC'B = L SB'C

.-. BC':OB' = BS:OS.

SimUarly CA':AC = CS:AS, AB':BA'= AS:BS.
Further if any other point H were taken on LM and a line

drawn through H perpendicular to SH and cutting BO, CA, AB,
B'C in T, U, V, W, then if the first four lines be fixed while TW
varies, the ratios UV:VW and UT:WT are constant so that the
cross ratio of the points T, U, V, W is constant and the ratio of
the three intercepts UV, VW, WT is constant.

6. It is obvious that the properties deduced in paragraph 5 are
those of tangents to a parabola with focus S. It might be easily
shown, for example, that when A'B' is consecutive to BO, the point
A' is such that A'B:BO is equal to LN:NM and L SA'L = L SLN.
Many of the properties of the parabola when it is determined by
means of its tangents are very easily deduced by constructing the
triangle formed by three of them and proceeding as in 5.

Thus, given four tangents, draw the tangents which pass through
a given point.

The second point, S, in which the circumcircles of any two
triangles formed by the four tangents intersect is the focus and the
pedal line of S is the tangent at the vertex. If on the line joining
S to the given point P a circle be described cutting the pedal line in
Q and R, PQ and PR are the tangents.

Or again, if on the sides AB, AC of a triangle (fig. 27) two points
B', C be taken such that BC':CB' = constant, then the envelope of
B'C is a parabola inscribed in the triangle and the locus of any
point I' dividing B'C in a given ratio is the (second) tangent through
I where BLIC = given ratio.

7. As another application to the parabola, I had selected the
theorem that the centre of every triangle self-polar with respect to
a parabola lies on the directrix. The proof required the theorem
that the circles on the three diagonals of a complete quadrilateral
have a common radical axis, namely the line containing the four
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orthocentres of the four triangles determined by the four sides of 
the quadrilateral. I reached a proof that seemed to leave nothing 
to be desired in point of simplicity ; but I have since found that it 
is practically the same as that given in Townsend's Mod. Geom., vol. 
i., p, 253, and I have therefore struck it out. 

It may be noted, however, that this elementary demonstration 
gives at once the theorem on the self-conjugate triangle, for the 
circle circumscribing the diagonal triangle cuts the circles on the 
three diagonals orthogonally and hence its centre must lie on the 
radical axis of the circles, i.e., on the directrix of the parabola which 
is inscribed in the quadrilateral. Further the line of collinearity of 
the mid-points of the three diagonals must be parallel to the axis of 
the parabola. 

8. Several of the ordinary standard theorems on the parabola are 
readily deducible as special cases of the properties of the complete 
quadrilateral mentioned in the preceding paragraph. 

(i) Let, in fig. 27, AB, A'B' become consecutive to CA, BC re­
spectively and suppose their points of contact b, a. Then the 
diameter of the quadrilateral becomes the line through C and the 
mid-point of the chord ab and by the theorem of (7) this line is 
parallel to the axis of the parabola. 

(ii) Again, let AB remain while A'B' becomes consecutive to 
BC, then the diameter of the quadrilateral becomes the line through 
the mid point of BO and the mid point of Aa. Hence if any triangle 
circumscribe a parabola, the mid point of any side and the mid point 
of the line from the point of contact of that side to the opposite 
vertex are on a line parallel to the axis of the parabola. 

(iii) Suppose now the tangent AB (fig. 27) bisected at its point 
of contact c, then by (ii) c and the mid point of Cc are on a line 
parallel to the axis, i.e. Cc is parallel to the axis. Hence by (i) C, 
c, and the mid point of the chord of contact ab are on a line parallel 
to the axis. In other words, any point c on the parabola, the mid 
point of any chord parallel to the tangent at c and the point of in­
tersection of the tangents at the ends of the chord are on a line 
parallel to the axis—the fundamental property of a diameter. By 
the principle of paragraph (5), A, B are the mid points of cb, ca 
when c is the point of AB and therefore Cc = cd if d be the mid­
point of ab. 

(iv) When AB, A'B' become consecutive to CA, BC as (i), the 
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circles on BB', C C as diameters become the point circle 0, and the 
directrix is by (7) the radical axis for the circle on ab as diameter 
and the point circle C. Hence if C be on the directrix the circle 
on the chord ab must touch it at C and therefore the tangents from 
a point on the directrix are at right angles. 

(v) Again taking d as the mid point of the chord ab and assum­
ing that acP varies as Gd, where 0 is the point of intersection of 
tangents at ends of a, b, then the distance of d from the image of 
C in the directrix will be constant for all tangents drawn from a 
point on the same diameter. 

For the image of 0, say e, is the second limiting point for the 
system C and circle on ab. Hence de.dG = ab2 ; .-.de is constant. 

Eighth Meeting, June 12, 1891. 

R. E. ALLARDICE, Esq., M . A . , F.R.S.E., President, in the Chair. 

On a Representation of Elliptic Integrals by Curvilinear 
Arcs. 

By JOHN M'COWAN, M . A . , B.Sc. 

It is well known that the elliptic integral of the second kind may 
be represented by the arc of an ellipse, and mathematicians have 
sought with various success to represent similarly by the arc of an 
algebraic curve the elliptic integral of the first kind. The general 
solution of the problem has not been obtained, but Serret and 
Cayley have given solutions of a very general character. 

If, however, the condition that the curve be algebraic be not 
imposed solutions may be obtained without difficulty. That here 
given has the peculiarity that the set of elliptic integrals of the first 
kind for all values of the modulus is represented by the arcs of one 
system of curves, in several distinct ways, each of a very simple 
geometric character. The system of curves is further interesting, as 
representing in the different groupings which naturally arise dif­
ferent systems of stream lines due to vortices in two dimensional 
fluid motion. 
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