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This paper considers semiparametric sieve estimation in high-dimensional single
index models. The use of Hermite polynomials in approximating the unknown link
function provides a convenient framework to conduct both estimation and variable
selection. The estimation of the index parameter is formulated from solutions
obtained by the routine penalized weighted linear regression procedure, where the
weights are used in order to tackle the unbounded support of the regressors. The
resulting index parameter estimator is shown to be consistent and sparse, and the
asymptotic normality for the estimators of both the index parameter and the link
function is established. To perform variable selection in the ultra-high dimension
case, we further suggest a forward regression screening method, which is shown to
enjoy the sure independence screening property. This screening procedure can be
used before the penalized variable selection to reduce the burden of dimensionality.
Numerical results show that both the variable selection procedures and the associated
estimators perform well in finite samples.

1. INTRODUCTION

The semiparametric single index model has been an important tool for practitioners
to analyze the data with both linear and nonlinear features. By virtue of a linear
index and a nonparametric link function, the model circumvents the curse of
dimensionality but maintains the flexibility to capture possible nonlinear relation-
ships. The estimation of the index parameter and the nonparametric function has
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2 CHAOHUA DONG AND YUNDONG TU

been intensively studied in the literature. This includes the semiparametric (profile)
least square estimator (SLS, Ichimura, 1993; Hardle, Hall, and Ichimura, 1993), the
maximum quasi-likelihood estimator (MQLE, Klein and Spady, 1993), the average
derivative estimator (ADE, Hardle and Stocker, 1989; Power, Stock, and Stoker,
1989), the minimum average variance estimator (MAVE, Xia et al., 2002), the
penalized spline estimator (PS, Yu and Ruppert, 2002; Ma, Liang, and Tsai, 2014),
and the estimating function method (EFM, Cui, Hardle, and Zhu, 2011), to cite a
few.

Nevertheless, the implementation of the above estimators often encounters prac-
tical challenges. For example, SLS, MQLE, PS, and EFM involve optimizations
where there does not have an explicit solution. Consequently, numerical methods
are inevitably required, for which the choice of the initial values tends to be critical
and the convergence of the algorithm is often difficult to control, especially when
the dimension of the index vector gets large. Therefore, these methods become less
appealing for practitioners faced with high-dimensional covariates. Although ADE
allows estimating the index parameter directly, it is found to suffer from the curse
of dimensionality (Xia, 2006). In addition, MAVE may encounter the problem of
data sparseness (Cui et al., 2011). See Cui et al. (2011) and Ma et al. (2014) for
more discussions on the drawbacks of these methods.

This paper aims at addressing the above problems in a framework of high-
dimensional semiparametric single-index models with sparsity. To achieve this
goal, an explicit solution to the minimization of an objective function constructed
from weighted least squares is proposed to facilitate both numerical and asymptotic
analysis. In particular, an orthogonal series expansion of the nonparametric link
function is firstly implemented in terms of Hermite polynomials, then the expan-
sion of the single-index regression function is factorized into an additive form
by the products of functions of unknown index vector and Hermite polynomials
of regressors. Consequently, the semiparametric single index regression can be
approximated by a linear parametric regression so that the estimators of the
parameters can be obtained in explicit forms. This approach has been used in Dong,
Gao, and Peng (2015), but that study suffers from the curse of dimensionality
such that the number of covariates has to be less than four. It is our proposal of
high-dimensional sparse single-index models that endows a promising usage to
such an approach. Fortunately, through imposing penalization to a weighted least
squares objective function, we are able to detect the model sparsity satisfactorily
and establish the asymptotic properties of the proposed estimators.

There are several closely related papers, to cite a few, Ma et al. (2014), Peng
and Huang (2011), and Radchenko (2015), in which the penalty functions have
been used in the estimation of single index models. However, the current paper
differs from the existing ones in at least two major aspects. First, the dimension of
the index parameter in Ma et al. (2014) and Peng and Huang (2011) is assumed
to be fixed and is not allowed to grow with the sample size n. Second, even
though Radchenko (2015) allows the dimension of the index parameter to diverge
with the sample size, the bounded support of the regressors has been imposed
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like other papers. This is due to the fact that the spline approach used in these
studies is restricted to functions defined on closed intervals for each n. The above
limitations hamper the practical application of the single index model, especially
in the presence of a number of potential regressors with unbounded support. By
contrast, this paper allows the unboundedness of the regressors and combines
the penalty function with a linear form approximation of the single index model
simultaneously, from which the variable selection and estimation of the high-
dimensional index vector and the link function are obtained by standard variable
selection procedures such as SCAD of Fan and Li (2001). From these perspectives,
our paper complements the above mentioned literature considerably.

From the practical point of view, when the dimension of the covariates is
extremely high, the variable selection methods via the penalization approaches
are known to suffer from drawbacks of computational inexpediency and algorithm
instability (Fan, Samworth, and Wu, 2009). Therefore, such a variable selection
problem in the single index model is beyond the scope of the existing studies, such
as Radchenko (2015) mentioned earlier. The use of screening, as an alternative
to penalized estimation, has proved successful in ultra-high-dimensional linear
regressions and semiparametric/nonparametric regression setting, since the semi-
nal work of Fan and Lv (2008). A number of screening procedures, including both
model-dependent and model-free approaches, have been developed afterwards.
See Kong, Xia, and Zhong (2019), Han (2019), Pan et al. (2019), Tu and Wang
(2023), and the references therein for the recent advancements. In the single
index setup, Gorst-Rasmussen and Scheike (2013) considered feature screening
for survival data, and Zhang, Lian, and Yu (2020) considered variable selection
in quantile regressions with the use of polynomial splines, thereby restricting
the support of regressors to be bounded. In this study, we adapt the forward
variable selection of Wang (2009) and Cheng, Honda, and Zhang (2016) to perform
variable screening in the ultra-high-dimensional single index model, making use
of the Hermite polynomial approximation as in the aforementioned penalized
regression. This screening procedure, with the sure screening property that we
shall demonstrate, can be used before the penalization-based variable selection
approach to effectively reduce the dimensionality burden.

This paper contributes to the literature in the following aspects. First, we deal
with regressors with possible unbounded support in the single index model using
series expansion. In the sieve literature, researchers often restrict the support of
the regressor to be compact (see, e.g., Newey, 1997; Ai and Chen, 2003; Peng
and Huang, 2011; Ma et al., 2014; Belloni et al., 2015; Radchenko, 2015). This
definitely hamstrings the use of plenty of regressors, especially the mostly encoun-
tered normal variables. Note that some recent studies (Chen and Christensen, 2015;
Hansen, 2015) have paid effort to relax the restriction by adopting expanding
intervals ([−an,an] with an → +∞ depending on n) to approximate the real
line. As an alternative, this paper allows the unbounded support for the regressor
directly, and tackle the analytical challenges with the weighted estimation in terms
of the density of the Hilbert space where the nonparametric function resides.
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Second, we consider the sparsity in the index parameter, and also entertain
the possibility that the link function is sparse as well. The dimensionality of the
nonzero parameters (d1) in the index vector and that of the index vector (d) are
both allowed to grow with the sample size n. This setup is similar to the high-
dimensional setting studied by Radchenko (2015). Further, while the number of
basis functions used to approximate the unknown link function can diverge fast
with the sample size, the vector of the coefficients in the combination can be
sparse, that is, the notion of function sparsity raised by Belloni, Chernozhukov, and
Wang (2014) in a nonparametric regression. To the best of our knowledge, such
function sparsity has not been entertained in the semiparametric index setting so
far. Moreover, the Hermite polynomial expansion used to obtain explicit solution
leads to an entanglement among the index parameter and the parameters in the
series approximation of the unknown function, which generates a complication
in the dimensionality allowed in these parameters. This is detailed carefully in
Assumption 3.5 in Section 3, which states that we may approximate the regression
function by K = exp(na) terms with 0 < a < 1. This feature coincides with the
sparse linear regression literature where the number of regressors can be as large
as exp(nε) for some 0 < ε < 1.

Third, we consider the recovery of the index parameter from its entanglement
with the coefficients in the Hermite polynomial expansion of the nonparametric
function. Dong et al. (2015) consider this recovery from the first block of the
linear regression coefficient estimates. This paper shows that the recovery here
is nonunique, and that the asymptotic variances of the resulted index parameter
estimators are quite involved to compare. However, the major conclusion backs
up the choice made in Dong et al. (2015) that the recovery from the first block is
generally acceptable.

Fourth, asymptotic normality of the index parameter estimator and that of the
refitted estimator for the link function are established. Under a set of regularity
conditions, we are able to show that the penalized estimator in the linear approxi-
mation of the single index model is oracle and the penalization procedure achieves
selection consistency. Furthermore, we show that the recovered index parameter
estimator is

√
n-consistent and asymptotically normal. The resulted sieve estimator

for the link function is shown to be consistent. However, the associated asymp-
totic distribution is quite involved to obtain. To circumvent this challenge, we
alternatively consider the refitted estimator of the link function by plugging in
the index estimator, the asymptotic normality of which is then attainable with the
standard nonparametric convergence rate. The proposed estimation procedure is
easily implementable with the standard algorithm used for linear regressions with
a penalty, such as Fan and Li (2001). Simulation studies show that the estimation
procedure performs quite well in finite samples.

Last but not least, we consider the more challenging variable selection problem
where the dimension of regressors is ultra-high. Under this setting the traditional
variable selection consistency becomes challenging or even impossible, while a
number of screening procedures have been proved successful in linear regressions
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and other nonparametric and semiparametric frameworks. To the best of our
knowledge, this is the first work that studies the variable screening for the
semiparametric single index regression model.1 Based on the linear approximation
used for variable selection, we show that a forward screening method married with
the extended Bayesian information criterion-based stopping rule, adapted from
Wang (2009) and Cheng et al. (2016), achieves the sure independence screening
property. The method is found to be computationally expedient and demonstrates
the sure screening property in finite sample experiments where the dimension
of covariates is much larger than the sample size. Consequently, this screening
method can precede the variable selection procedure when the latter fails to
produce a reliable solution in the high-dimensional case.

The rest of the paper is organized as follows: Section 2 describes the sieve
estimation approach for single index models, introduces the penalized estimation
approach to simultaneously estimate the parameters and select relevant variables.
Section 3 establishes the asymptotic properties of the penalized index estimator,
and presents the estimator for the link function and its asymptotic normality.
Section 4 presents a screening procedure to select variables in the ultra-high
dimension, and proves its sure screening property. Numerical studies are presented
in Section 5 to illustrate the finite sample performance of the proposed methods
in both simulations and a real data example. The last section concludes with
discussions on future research. All the proofs for the main results are collected
in the Appendix, while the proofs for the auxiliary lemmas and some additional
simulation results are relegated to Supplementary Material for space consideration.

Notation. ‖ · ‖ denotes Euclidean norm for vectors, or Frobenius norm for
matrices; ‖ · ‖1 is the �1 norm and ‖ · ‖∞ is the �∞ norm. Let |A| stand for the
cardinality of a set A. Given a vector b ∈RK and an index set S ⊂ {1, . . . ,K}, let bS

denote a vector in RK whose jth element equals to bj if j ∈ S, and zero otherwise,
let b(S) denote the subvector of b that only selects the elements bj’s for j ∈ S, and let
Sc be the complement of S. We use 0 to signify either a vector or matrix of zeros,
whose dimension may be inferred from the context.

2. METHODOLOGY

2.1. The Model and Sieve Estimation

Consider the semiparametric single index model

yt = g(x′
tθ0)+ εt, t = 1, . . . ,n, (2.1)

where g is an unknown link function, εt is an error sequence, xt is a d×1 regressor.
For identification purpose, the unknown index vector θ0 satisfies ‖θ0‖ = 1 with its

1Zhong et al. (2016) considered a screening problem in the conditional distribution, which is different from our
regression model. They used the penalized quantile regression approach and adopted the distance correlation to
perform screening (see Zhong et al., 2016 for details).
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first element θ01 > 0. We shall consider the case where the dimension d diverges
with the sample size n.

Suppose that the regression function g(z) ∈ L2(R,e−z2/2) := { f (z) :
∫

f 2(z)e−z2/2

dz < ∞}, a Hilbert space in which the inner product is defined by 〈 f1,f2〉 =∫
f1(z)f2(z)e−z2/2dz for f1(z),f2(z) ∈ L2(R,e−z2/2) and the induced norm ‖ f ‖ =√〈 f,f 〉. Two functions f1(z) and f2(z) in L2(R,e−z2/2) are called orthogonal if

〈 f1,f2〉 = 0. Note that the tail of the density in the space L2(R,e−z2/2) is very thin
such that the space is sufficiently large and contains at least all bounded functions,
polynomials, power functions, and even some exponential functions.

It is worth pointing out that the supposition g(z) ∈ L2(R,e−z2/2) relaxes the
sieve literature where the regression function is defined on a compact set (e.g.,
Newey, 1997; Ai and Chen, 2003; Ma et al., 2014; Belloni et al., 2015). The
compactness definitely excludes some crucial regressors of interest such as normal
and exponential distributions that are typically encountered in both theory and
practice. We note that as long as one element of xt possesses unbounded support the
domain of g(·) should be treated as unbounded. To work with unbounded support,
we will employ Hermite orthogonal polynomial sequence defined on the entire real
line, and the unknown regression function will be estimated by the sieve method
in the Hilbert space.

To begin, we introduce the following Hermite polynomial sequence {Hi(z)} that
forms an orthogonal basis of L2(R,e−z2/2). By definition,

Hi(z) = (−1)i exp(z2/2)
di

dzi
exp(−z2/2), i ≥ 0, (2.2)

are Hermite polynomials which are orthogonal, 〈Hi,Hj〉 = √
2π i!δij, where δij is

the Kronecker delta. Define hi(z) = (i!)−1/2Hi(z) for the ease of exposition. Note
that a crucial property about Hermite polynomials that shall be used frequently in
our proofs is the uniform boundedness, that is, supi≥0,z∈R |hi(z)|e−z2/4 < ∞ (see
Szego, 1975, p. 242).

Thus, any continuous function g(z) ∈ L2(R,e−z2/2) has an orthogonal series
expansion in terms of hi(z), that is,

g(z) =
∞∑

i=0

cihi(z), where ci = 1√
2π

〈g,hi〉. (2.3)

Let k be a positive integer, and define gk(z) = ∑k−1
i=0 cihi(z) the truncation series

and residue γk(z) = ∑∞
i=k cihi(z). It is known that, as k → ∞, gk(z) converges to

g(z) in norm (i.e., ‖gk − g‖ → 0), whereas the pointwise convergence of gk(z) to
g(z) (i.e., gk(z)−g(z) → 0) on the real line relies on the smoothness of g(z). With
the above notations, model (2.1) can be written as

yt = gk(x′
tθ0)+γk(x′

tθ0)+ εt, t = 1, . . . ,n. (2.4)
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Meanwhile, by virtue of the property of the Hermite polynomials given by
Lemma A.1 in the Appendix, we further write each term in gk(x′

tθ0) as

cihi(x′
tθ0) =

∑
|p|=i

aip(θ0)Hp(xt), 0 ≤ i ≤ k −1, (2.5)

where

p =(p1, . . . ,pd)
′ with nonnegative integers pj, |p| = p1 +·· ·+pd,

aip(θ0) =
√(

i

p

)
ciθ

p
0,

(
i

p

)
= i!

p1!. . . pd!
, θ

p
0 =

d∏
j=1

θ
pj
0j , Hp(xt) =

d∏
j=1

hpj(xt,j).

(2.6)

Thus, each term cihi(x′
tθ0) corresponds to the sum of elements in the set

{aip(θ0)Hp(xt), |p| = i}. Note that if ci = 0, each element in the set must be
zero in view of the expression of aip(θ0); if all terms in the set are zeros, we then
conclude that ci = 0 because at least θ01 > 0. This fact will be utilized later to
derive the estimators of nonzero ci and θ0 from the estimators of aip(θ0).

To write all the terms in gk(x′
tθ0) = ∑k−1

i=0

∑
|p|=i aip(θ0)Hp(xt) in order, we

introduce an ordering relationship among all p such that |p| = i for i ≤ k −1.

Definition 2.1. Let Pi = {p = (p1, . . . ,pd) : |p| = i}, where i is a nonnegative
integer. For any p̂,p̌ ∈ Pi, we say p̂ = (p̂1, . . . ,p̂d) < p̌ = (p̌1, . . . ,p̌d) if there exists
an � (1 < � ≤ d) such that p̂j = p̌j for all j = 1, . . . ,�−1 but p̂� < p̌�.

Noting that |Pi| = (i+d−1
d−1

)
, the total number of the terms in gk(x′

tθ0) is K =∑k−1
i=0

(i+d−1
d−1

) = (k+d−1
d

) = O(kd). In view of the expansion in (2.4) and (2.5) and
the ordering introduced above, we may write model (2.1) in matrix form as

Y = Zβ0 +γ + e, (2.7)

where Y = (y1, . . . ,yn)
′, Z = (Zk(x1), . . . ,Zk(xn))

′ an n×K matrix, in which Zk(xt)

is a column vector of dimension K consisting of all terms Hp(xt) for all p : |p| = i
and i = 0,1, . . . ,k − 1 in ascending order of i and p according to Definition 2.1,
β0 = (β01, . . . ,β0K)′ consists of all coefficients aip(θ0) in the same order as the
elements in Zk(·), γ = (γk(x′

1θ0), . . . ,γk(x′
nθ0))

′, e = (ε1, . . . ,εn)
′.

We remark that β0j and aip(θ0) are mutually determined uniquely. First, given
aip(θ0) with 0 ≤ i ≤ k − 1 and p ∈ Pi, if i = 0 (implying p = (0, . . . ,0) only),
then j = 1, that is, β01 = a0p(θ0); if i ≥ 1, then j = ∑i−1

�=0 |P�|+ up, where up is a
positive integer such that p is the upth element inPi. Second, given j with 1 ≤ j ≤ K,
if
∑i

�=0 |P�| ≤ j <
∑i+1

�=0 |P�| for some 0 ≤ i ≤ k − 1, then β0j → aip(θ0), where
|p| = i and p is the upth element in Pi with up = j −∑i−1

�=0 |P�| (the convention∑−1
�=0 = 0 applies if any). In addition, β0j and ci are also mutually determined

uniquely via Sub(β0,i) = (aip(θ0), |p| = i)′, the subvector of β0 associated with
ci, for i = 0, . . . ,k − 1. Consequently, both the index parameter θ0 and the sieve
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coefficients, c0,c1, . . . ,ck−1, can then be recovered from β0. The details will be
discussed in Section 2.3 when we derive their estimators.

Note that β0 is typically estimated by the ordinary least squares, whenever K<n.
However, it is worth noting that the optimal sieve order to approximate univariate
unknown functions that minimizes the mean squared error loss is k = O(n1/5).
Such a choice of k would make the number of parameters K = O(kd) in (2.7)
comparable to the sample size n if d is 5 or larger, which makes the ordinary least
square estimation of parameters in (2.7) infeasible. Below we shall consider the
case where θ0 is sparse and contains (a large number of) zeros, and potentially
the link function g(·) is sparse in the sense of Belloni et al. (2014). In this case,
the penalized estimation techniques can lend support to the estimation of β0, and
subsequent inferences on both θ0 and g(·).

2.2. Sparsity and Penalized Estimation

It is interesting to note that the sparsity of β0 could stem from two sources. The
main source is the sparsity of θ0. To be precise, decompose θ0 = (θ ′

1,θ
′
2)

′, where
θ1 and θ2 are of dimensions d1 and d2, respectively, with θ2 = 0 and d = d1 +d2.
Conformably, decompose p = (p′

1,p
′
2)

′. Then, a typical subvector of β0, aip(θ0) =√( i
p

)
ciθ

p1
1 θ

p2
2 is zero if p2 is nonzero; because d2 is large due to the sparsity of θ0,

β0 is sparse. The other source might be the sparsity of the link function, that is,
there are considerable number of coefficients ci = 0 in the expansion of g(z). This
happens, for example, when g(z) belongs to some finite-dimensional subspace of
the L2 space, so ci = 0 for all i ≥ k0 with some fixed k0 (Belloni et al., 2014). As
a result, Sub(β0,i) = 0 for all i ≥ k0, leading to further sparsity in β0. Noting that
the latter sparsity could depend on the type of sieve basis used, only the former
type of sparsity is required for the theory developed below. The sparse feature of
β0 permits the effective identification of the nonzero components, based on which
variable selection can be achieved.

Before presenting the penalized estimation, we emphasize that most studies
from the existing sieve literature (e.g., Newey, 1997; Ai and Chen, 2003; Belloni
et al., 2015; Chen and Christensen, 2015, etc.) require the support of regressors
to be bounded. Nonetheless, we allow some elements of xt possessing unbounded
support on R, which makes the practical choice of explanatory variables much
broader. The direct consequence is that the support of the unknown function g(·)
will become unbounded. Inevitably, this relaxation gives rise to an enormous
challenge for the asymptotic analysis when Hermite polynomials are utilized. This
is because the sieve method normally requires that the vector of basis functions
of dimension k be order of O(

√
k) or O(k) in Euclidean norm, uniformly over

the support of the regressor, in order to achieve the asymptotic normality of
nonparametric sieve estimator (see Newey, 1997; Chen and Shen, 1998; Belloni
et al., 2015, among others). Fortunately, we find that weighted estimation with
the density of the Hilbert space can eschew the unboundedness of the associated
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norm (i.e., ‖Zk(x)‖ in this paper), which renders the asymptotic theory applicable.
To do so, denote by x̃t a subvector of xt, whose support might be unbounded
and dimension d̃ is fixed. It is noteworthy that one is not required to know
which elements have unbounded support, instead it suffices to know the subvector
complement to x̃t that has bounded support.

To proceed, define W = diag(w(̃x1), . . . ,w(̃xn)), where w(̃xt) = exp(−‖̃xt)‖2/2)

for t = 1, . . . ,n. The penalized weighted least squares estimator of β0 is defined as

β̂ = argmin
β∈RK

Qn(β) ≡ Ln(β)+
K∑

j=1

Pn(|βj|), (2.8)

where Ln(β) := 1
n (Y − Zβ)′W(Y − Zβ) and Pn(·) is a penalty function, such

as the SCAD of Fan and Li (2001), to be discussed in the next section. Denote
β̂ = (β̂1, . . . ,β̂K)′ for later use. The use of the weighting of the function space will
turn the norm requirement on Zk(xt) to be that on Zk(xt)w1/2(̃xt) for the asymptotic
analysis, which is of order O(

√
K) uniformly in xt. In this way, we shall show that

the unbounded support issue is overcome.

2.3. Recovery of the Index Vector and Link Function

Of our primary interest are the index vector θ0 and the link function g(·). In what
follows, we shall discuss the relationship among θ0, g(·) and β0, based on which
the estimators will be constructed.

For i = 0, we simply let ĉ0 = β̂1 because c0 = β01. For i = 1, . . . ,k −1, let Qi =
(0,Id,0)d×K , where the first zero matrix has dimension d×[(d+ i−1)!/d!(i−1)! ],
while the second zero matrix has conformable dimension according to β0. Then
Qi facilitates to pick up the first d elements from the block Sub(β0;i). That is,

Qiβ0 = (ciθ
i
01,

√
iciθ

i−1
01 θ02, . . . ,

√
iciθ

i−1
01 θ0d)

′,

which implies that

θ0 = 1

ciθ
i−1
01

DiQiβ0, where Di := diag(1,1/
√

i, . . . ,1/
√

i), (2.9)

if ci �= 0.
Furthermore, we take out the elements in Sub(β0;i) that have the form of ith

power. They are

β0,i1 = ciθ
i
01, . . . ,β0,id = ciθ

i
0d, (2.10)

where the corresponding subindexes are i1 = (d+i−1)!
d!(i−1)! + 1, i2 = i1 + (d+i−1)!

(d−1)!i! −
(d+i−2)!
(d−2)!i! , i3 = i2 + (d+i−2)!

(d−2)!i! − (d+i−3)!
(d−3)!i! , . . ., id = (d+i)!

d!i! . The relationship in (2.10)
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suggests that

ci = sgn(β0,i1)

⎛⎝ d∑
j=1

(
β2

0,ij

)1/i

⎞⎠i/2

, (2.11)

since θ01 > 0 by identification.
By (2.10) and (2.11), we can estimate ci by

ĉi = sgn(β̂i1)

⎛⎝ d∑
j=1

(β̂2
ij
)1/i

⎞⎠i/2

,

and estimate θ01 by

θ̂01 = (β̂i1/ĉi)
1/i,

provided that ĉi �= 0. In conjunction with (2.9), we can estimate θ0 by

θ̂ = 1

ĉiθ̂
i−1
01

DiQiβ̂, (2.12)

provided that ĉiθ̂01 �= 0.

Finally, let Ĵ = {j : θ̂0j �= 0} be the estimator for the true index set J = {j :
θ0j �= 0}, and Î = {i : ĉi �= 0,0 ≤ i ≤ k − 1} be that for I = {i : ci �= 0,0 ≤ i ≤
k − 1}. After obtaining ĉi,i = 0, . . . ,k − 1, one can estimate the link function by
the plug-in estimator ĝ(z) := ∑

i∈̂I ĉihi(z). However, its asymptotic properties are
quite involved due to the nonlinear relationship between ĉi and β̂.

We circumvent the above challenge via a refit of the nonparametric function in
the following after obtaining the estimate of the index vector. Note that the estimate
β̂ suggests that the unknown function g(z) should have the form

∑
i∈̂I cihi(z),

indicating that the sparsity of the link function can be achieved. Given θ̂ and Î,
we then estimate ĉI = (ci,i ∈ Î) from the model

yt =
∑
i∈̂I

cihi(̂θ
′
xt)+γk (̂θ

′
xt)+ et, t = 1, . . . ,n. (2.13)

The weighted least squares estimator is defined as

c̃ Î = argmin
c

n∑
t=1

⎛⎝yt −
∑
i∈̂I

cihi(̂θ
′
xt)

⎞⎠2

w(̂θ
′
x̄t), (2.14)

with the explicit form c̃̂I = (Û′ŴÛ)−1Û′ŴY, where Û = (
(̂I)(̂θ
′
x1), . . . ,


(̂I)(̂θ
′
xn))

′ an n×|̂I| matrix, Ŵ = diag(w(̂θ
′
x̄1), . . . ,w(̂θ

′
x̄n)), w(z) = exp(−z2/2),


(̂I)(z) is the subvector of 
(z) with the subscript contained in Î, and x̄t is the
d-vector that replaces the elements of xt with bounded support (i.e., the
complement of x̃t) by zeros. Note that the weight constructed above only involves
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the potentially unbounded subvector. Then, we may define g̃(z) = 
(̂I)(z)
′̃ĉI for

any z ∈R. Note that the above explicit expression for c̃̂I facilitates the derivation of
the asymptotic normality of g̃(z). This complements the literature such as Belloni
et al. (2014) where only the approximation order is obtained.

3. ASYMPTOTIC THEORY

3.1. Assumptions

Before presenting the technical assumptions, we introduce some notations. Let
S0 = supp(β0) = {j : 1 ≤ j ≤ K,|β0j| > 0} be the index set for the true model, and
let s0 = |S0| be the cardinality of S0.

Assumption 3.1. (a) {εt,xt} is an independent and identically distributed
sequence drawn from (ε,x), and E(ε|x) = 0 almost surely (a.s.), E(ε2|x) = σ 2

e
a.s. and E(ε4|x) = μ4 < ∞ a.s.; (b) there exist b1,b2 > 0, such that for any u > 0,
we have P(|ε| > u) ≤ exp(−(u/b1)

b2).

Assumption 3.2. θ0 ∈ � ⊂ Rd, where � is a convex and compact set and
θ0 is an interior point of �. For each θ ∈ �, θ ′xt has density fθ (v) such that
supθ∈� fθ (v) ≤ C exp(−v2/2) for all large |v| and some constant C > 0.

Assumption 3.3. The link function g(z) ∈ L2(R,e−z2/2) is differentiable up to
ν-th order on R and g(ν)(z) ∈ L2(R,e−z2/2).

The above conditions are often used in the linear parametric and semiparametric
context. Assumption 3.1 requires that the regressor and the error be uncorre-
lated and the error sequence be conditionally homoscedastic. The conditional
homoscedasticity may be restrictive for some applications, but serves to provide
reasonable approximation when the data are properly transformed (e.g., by log
transformation). The exponential tail condition imposed in the assumption is
satisfied by normal random variables and other variables that have compact
support. See Assumption 4.3 of Fan and Liao (2014) and A4 of Radchenko (2015,
p. 277). This assumption is used to confine the score function in the asymptotic
development.

Assumption 3.2 is commonly used for the parametric space and the single-
index model context (e.g., Dong et al., 2015). Here, θ ′xt is stipulated to have a tail
not fatter than a normal distribution that covers a variety of variables, especially
normal variables and those that have compact support. There are many research
papers that exclude normal variables by imposing the compactness of its support.
As noted in the Introduction, the recent literature starts to relax the restriction
by adopting expanding intervals to approximate the whole real line. By contrast,
taking advantage of the density in the function space, we are able to tackle the
unbounded support in a quite natural and easy way.

Assumption 3.3 imposes a smoothness order for the link function that expedites
the convergence of the orthogonal series expansion. See Lemma A.2 in the
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Appendix. The concrete requirement on the order ν of differentiability is implied
by Lemma A.2 and Assumption 3.5 implicitly. Note that smoothness order ν in
Assumption 3.3 affects the quantity s0, and roughly speaking, s0 = O(kd1) for finite
ν, while s0 = O(kd1

0 ) for some fixed k0 when ν = ∞, implied from Lemma A.2.
Because d1 � d, it is clear that s0 � K where K = O(kd).

Suppose that β0 = (β ′
1,β

′
2)

′ where β2 = 0. Define the score function Fn(β) =
− 2

n Z′W(Y − Zβ) that is the partial derivative of Ln(β) with respect to β. Then,
Fn(β0) = − 2

n Z′W(γ +e). Further, let the Hessian matrix be Hn(β) = 2
n Z′WZ which

is independent of β. Normally, when K > n, the smallest eigenvalue of the Hessian
matrix would be zero that violates the identifiability.

For any S ⊂ {1, . . . ,K} with s = |S|, denote by Z(S) the matrix eliminating all
jth column, j �∈ S, of Z, so that its dimension is n × s; β(S) the short vector of
βS removing all zeros at j �∈ S, so its dimension is s. Remember that βS ∈ RK

whereas β(S) ∈ Rs. Hence, Z(S)β(S) = ZβS for any β and S. Now, for any given S,
define Fn(S)(β(S)) = − 2

n Z′
(S)W(Y−Z(S)β(S)) as the derivative vector of Ln(βS) with

respect to all βj, for j ∈ S. Similarly, define Hn(S)(β(S)) = 2
n Z′

(S)WZ(S), the second
derivative matrix of Ln(βS) with respect to all βj, for j ∈ S, the dimension of which
is s× s.

Suppose that Pn(·) belongs to the class of folded concave penalty functions in
Fan and Li (2001). For any v = (v1, . . . ,vs0)

′ ∈ Rs0 with vj �= 0, ∀j, define

φ(v) = limsup
ε→0+

max
j≤s0

sup
(u1,u2)⊂O(|vj|,ε)

−P′
n(u2)−P′

n(u1)

u2 −u1
,

where O(·,·) is the neighborhood with specified center and radius, respectively.
This implies that φ(v) = maxj≤s0 −P′′

n(|vj|) if P′′
n is continuous. Also, for the true

parameter β0, let

ζn = 1

2
min{|β0j| : β0j �= 0,j = 1, . . . ,K},

represent the strength of the signal.
The following assumptions related to the penalty function and the signal strength

are needed for the main results.

Assumption 3.4. The penalty function Pn(u) satisfies (i) Pn(0) = 0; (ii) Pn(u) is
concave, nondecreasing on [0,∞), and has a continuous derivative P′

n(u) for u > 0;
(iii)

√
s0P′

n(ζn) = o(ζn); (iv) There exists c > 0 such that supv∈O(β1,cζn) φ(v) = o(1).

This assumption is mostly encountered in the literature, and is satisfied by many
penalty functions with proper choice of tuning parameters, such as the Lq penalty
with q ≤ 1, hard-thresholding (Antoniadis, 1996), SCAD (Fan and Li, 2001), and
MCP (Zhang, 2010). We shall discuss the conditions on ζn after the following
assumption.
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Assumption 3.5. Suppose that:

(i) sup‖βS0
−β0‖≤ζn/4 φ(β(S0)) = o((s0 log(K))−1/2), P′

n(ζn) = o(1/
√

s0n),√
s0 log(K)/n = o(ζn);

(ii)
√

s0P′
n(ζn)+√

s0 log(K)/n+√
s0‖γk(z)‖ = o(P′

n(0
+));

(iii) ‖γk(z)‖ = o(1/
√

s0n);
(iv) Hn(S0)(β(S0)) has eigenvalues bounded below from zero and above from infinity

uniformly in n.

Assumption 3.5(i) imposes further requirements on the penalty function, the
strength of the minimal signal and the support of the true parameter. For the
SCAD or MCP penalty function with tuning parameter λn = o(ζn), we have
P′

n(ζn) = 0, sup‖βS0
−β0‖≤ζn/4 φ(β(S0)) = 0 and P′

n(0
+) = λn. The three conditions in

Assumption 3.5(i), together with Assumption 3.4(iii), are therefore fulfilled. The
condition 3.5(ii) implies that K can be as large as exp(nε) for some 0 < ε < 1.
Noting that K = O(kd), one possibility for the choice of k and d is k = exp(na) and
d = nb with a,b > 0,a + b = ε. The rate k = exp(na) is comparable with that in
Belloni et al. (2014) where the sparsity of function is studied in a nonparametric
setting.

Another possibility to fulfill Assumption 3.5(i) is ζn = aλn − ζ̃n where
√

s0ζ̃n =
o(ζn). Along with the SCAD penalty, this implies

√
s0P′

n(ζn) = √
s0ζ̃n/(a − 1) =

o(ζn), so Assumption 3.4(iii) is satisfied. Moreover, all conditions in
Assumption 3.5 related to ζn are satisfied. Specifically, Assumption 3.5(i) that
requires P′

n(ζn) = o(1/
√

s0n) and
√

s0(logK)/n = o(ζn) is fulfilled as long as
ζ̃n = o(1/

√
s0n) and

√
s0(logK)/n = o(λn), since P′

n(ζn) ∼ ζ̃n and ζn ∼ λn. In
addition, Assumption 3.5(ii) that requires

√
s0P′

n(ζn) = o(λn) is readily valid
because of Assumption 3.5(i)

√
s0P′

n(ζn) = o(ζn) and ζn ∼ λn. To summarize,
the condition on ζn allows it to converge to zero either at the same rate or slower
than λn. See Assumptions 4.1, 4.5, and 4.6 in Fan and Liao (2014) for more detailed
discussion on similar assumptions in the linear regression model.

Assumption 3.5(iii) is an undersmoothing condition often used in sieve esti-
mation to eliminate effect of the truncated residue, though it seems strong at
appearance. To meet this requirement, the regression function usually has to be
very smooth because k cannot diverge fast. However, this condition is easily
satisfied, with a suitable smoothness order and fast divergence of k, in the current
context where c = (c0, . . . ,ck−1)

′ is allowed to possess sparsity (Belloni et al.,
2014).

Assumption 3.5(iv) is commonly imposed for the Hessian matrix in the litera-
ture, and is equivalent to the sparse Riesz condition in Zhang and Huang (2008,
p. 1572). For a similar requirement, see Condition A.2 in Belloni et al. (2015,
p. 347), Assumption 4 in Chen and Christensen (2015, p. 450), Assumption 3 in
Donald, Imbens, and Newey (2009, p. 31), Assumption 3.2 in Ai and Chen (2007,
p. 14), Assumption 3.2 in Ai and Chen (2003, p. 1803), Assumption 2 in Newey
(1997, p. 149). While the structure of the Hessian matrix in our study is different
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from those in the aforementioned papers, this condition is easily fulfilled if one is
willing to assume that, for example, d1 is fixed and g(·) is sparse, implying that
s0 = |S0| is fixed.

3.2. Asymptotic Properties

Recall that θ0 = (θ ′
1,θ

′
2)

′ with θ2 = 0, and the dimensions of θ1 and θ2 are d1 and
d2, respectively, with d = d1 + d2. To formulate θ1 in terms of S0, the support
of β0, we need to introduce selection matrices that withdraw subvectors from
β1. Define the matrix Ri = (0,I|J|,0)|J|×s0 , where |J| = d1,|S0| = s0 and the first
zero matrix has (d1 + i − 1)/d1!(i − 1)! columns, and the second zero matrix has
conformable columns. Then, Riβ1 is the vector consisting of the first |J| elements
of β1 associated with ci, and has elements of the form either ciθ

i
01 or

√
iciθ

i−1
01 θ0j

for some j ∈ {2, . . . ,d}. Hence, it is easy to see that θ1 = 1
ciθ

i−1
01

AiRiβ1, provided

ci �= 0, with the |J|-dimensional diagonal matrix Ai = diag(1,1/
√

i, . . . ,1/
√

i). We

thus consider θ̂
(i)
1 = 1

ĉi θ̂
i−1
01

AiRiβ̂1 as the estimate of θ1 derived from the subvector

Sub(β̂;i), provided that ĉi �= 0, with S0 and J replaced by their estimates Ŝ and Ĵ,
respectively.

Let � and � be the probability limits of Z′
(S0)WZ(S0)/n and Z′

(S0)W
2Z(S0)/n,

respectively, the convergence of which are given in Lemma A.3. In addition, we
assume that all eigenvalues of � and � are bounded below from zero and above
from infinity.

Theorem 3.1. Let Assumptions 3.1–3.5 hold.

1. We have P(̂J = J) → 1 as n → ∞.
2. Let ci �= 0, 1 ≤ i ≤ k −1. For any α ∈ R|d1| with ‖α‖ = 1, as n → ∞,

√
nσ−1

ni

β̂i1

θ̂01
α′(̂θ (i)

1 − θ1)
d→ N (0,1),

where σ 2
ni =α′Bni�

−1��−1B′
niασ 2

e , Bni :=
[
Id1 + 1

θ01
θ1�

′
1

]−1 [
AiRi + 1

θ01
θ1�

′
i1

]
,

i1 = (d + i − 1)!/d!(i − 1)!, �i1 is an s0-vector whose i1th element is 1 and
elsewhere zero, while �1 is a d1-vector whose first element is 1 and elsewhere
zero.

Theorem 3.1 establishes the consistency of the index set estimator Ĵ, and the

consistency and the asymptotic normality of the estimator θ̂
(i)
1 . Nevertheless, the

variance formula σ 2
ni is a bit complicated. This is due to the entanglement of θ0 and

ci in Sub(β0;i), that is, β0j → ci

√( i
p

)
θ

p
0, and we derive the estimates of ci and θ0

from that of Sub(β0;i). Given fixed i, the convergence rate becomes root-n, which
is comparable with existing results, such as those in Theorem 2 of Chang, Chen,
and Chen (2015, p. 288). Note that in Bni the matrix Id1 + 1

θ01
θ1�

′
1 is invertible, since
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it is lower triangular with (2,1, . . . ,1) being the diagonal elements. The inverse can
be obtained easily because on the lower triangular part only the first column may
be nonzero.

As noted above, we might have more than one estimator of θ1, θ̂
(i)
1 , derived from

the ith block Sub(β0;i) where ci �= 0, for i ≤ k − 1. We recommend, in terms of
the efficiency, the one derived from the subvector Sub(β0;i), where ci �= 0 and i
is the smallest number among all possible blocks.2 The reason is as follows. The

variance of
√

nα′(̂θ (i)
1 − θ1) is approximately σ 2

niθ
2
01/β

2
0i1

= σ 2
ni/c2

i θ
2(i−1)
01 . Noting

first that in the factor matrix AiRi + 1
θ01

θ1�
′
i1

(in σ 2
ni), when i is sufficiently large,

Ai = diag(1,1/
√

i, . . . ,1/
√

i) is close to the matrix where only the left-top element
is one and elsewhere is zero. On the other hand, noting the facts that 0 < θ01 ≤ 1 due
to the identification condition, and ci → 0 when i → ∞ by the Parseval equality
in Hilbert space, in general, the smaller the i is, the smaller the variance. This
observation also backs up the choice made in Dong et al. (2015), where d has been
assumed to be fixed.

To present the asymptotic distribution for g̃(z), define U = (
(̂I)(θ
′
0x1), . . . ,


(̂I)(θ
′
0xn))

′ and W0 = diag(w(θ ′
0x̄1), . . . ,w(θ ′

0x̄n)), where x̄t is the d-vector
that replaces the elements of xt with bounded support by zeros. Further-
more, let � be the probability limit of 1

n U′W0U, whose (i,j) element is
E[hi(θ

′
0xt)hj(θ

′
0xt)w(θ ′

0x̄t)], and � be that of 1
n U′W2

0 U, whose (i,j) element is
E[hi(θ

′
0xt)hj(θ

′
0xt)w2(θ ′

0x̄t)] for i,j ∈ Î.

Theorem 3.2. In addition to Assumptions 3.1–3.5, suppose that d3/2
1 ‖̂θ −θ0‖ =

oP(1), and that all eigenvalues of � and � are uniformly bounded away from zero
and above from infinity.

1. We have P(̂I = I) → 1 as n → ∞.
2. For any z ∈ R, if

√
n/d1|γk(z)| = o(1),

σ−1
n

√
n

‖
(̂I)(z)‖
[̃g(z)−g(z)]

d→ N (0,1), (3.1)

as n → ∞, where σ 2
n = 
(̂I)(z)

′�−1��−1
̂I(z)σ
2
e with 
(̂I)(z) = 
(̂I)(z)/

‖
(̂I)(z)‖.

The conditions on the eigenvalues are typically required in the derivation of
asymptotic normality. Meanwhile, the undersmoothing condition on the residue
γk(·) is also mostly encountered in the literature, to eliminate the effect of trunca-
tion error (see Comment 4.3 in Belloni et al., 2015, p. 352). This can be fulfilled if
the function g is sparse and smooth with certain order, as explained earlier below

2Alternatively, it is also possible to derive an estimator of θ1 from a set of blocks Sub(β0;i), where ci �= 0, i ≤ k−1.
It could be potentially more efficient as more information could be employed. However, such an estimator is more
complicated for implementation and its theoretical property is also quite involved to explore. We shall report findings
along this line elsewhere.
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Assumption 3.5. On the other hand, the condition d3/2
1 ‖̂θ − θ0‖ = oP(1) puts a bit

more restriction on the dimension d1, which however is not difficult to satisfy. In

addition, the convergence rate of g̃(z) is
√

n/|̂I| in view of |̂I| being the number
of basis functions used in the refitted model. This is fairly standard in the sieve
literature, such as Newey (1997) and Ai and Chen (2003), among others.

4. SCREENING IN ULTRA-HIGH DIMENSION

Turning to the scenario when the number of regressors is much larger than the
sample size, the variable selection methods via the penalization approaches in (2.8)
are known to suffer from drawbacks of computational inexpediency and algorithm
instability, as pointed out by Fan et al. (2009), among others. Since the pioneer
work of Fan and Lv (2008), it is well-known that screening can effectively reduce
the dimensionality by removing irrelevant regressors. This section proposes to
use the forward screening approach, adapted from Wang (2009) and Cheng et al.
(2016), to select variables in the single index setting.

The idea of screening works as follows. We start with B1 that is either an empty
set or a set that contains some “must-have” regressors, for example, those implied
from related economic theory. Then we need consider sequentially whether we
should add some � ∈ Bc

1 = {1, . . . ,d} \ B1 into B1 to form B2 = B1 ∪{�} and go to
the next step, or we should stop searching for any additional covariate if certain
stopping criterion is met.

To state the screening procedure for the single index model in a general way,
suppose that we have already selected a set B of important indices, followed by
considering whether we should add some � ∈ Bc into B to obtain a new augmented
set of important indices. Let xt,B be the subvector of xt that consists of all elements
xt,i of xt, where i ∈ B. Consider similarly a single index model

yt = gB(x′
t,BθB)+ εt,B, t = 1, . . . ,n, (4.1)

where the link function gB(z) and θB together minimize E[yt − g(x′
t,Bθ)]2 over

g ∈ L2(R,e−z2/2) and ‖θ‖ = 1. Thus, similar to (2.4) and (2.5), we have

yt =
k−1∑
i=0

ci,Bhi(x′
t,BθB)+γk,B(x′

t,BθB)+ εt,B, t = 1, . . . ,n, (4.2)

ci,Bhi(x′
t,BθB) =

∑
|p|=i

aip(θB)Hp(xt,B), 0 ≤ i ≤ k −1, (4.3)

where p’s are multiple indices with dimension |B|, and

aip(θB) =
√(

i

p

)
ci,Bθ

p
B, θ

p
B =

|B|∏
j=1

θ
pj
B,j, Hp(xt,B) =

|B|∏
j=1

hpj(xt,B,j). (4.4)
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Note that all summands in ci,Bhi(x′
t,BθB) in equation (4.3) form a set {aip(θB)

Hp(xt,B), |p| = i} that has cardinality
(i+|B|−1

|B|−1

)
, where Hp(xt,B) contains known

(basis) functions evaluated at the observations xt,B. With the above notations,
model (4.1) is written as

yt = Zk(xt,B)′βB +γk,B(x′
t,BθB)+ εt,B, t = 1, . . . ,n, (4.5)

where Zk(xt,B) is a column vector of dimension KB = ∑k−1
i=0

(i+|B|−1
|B|−1

) = (k+|B|−1
|B|

)
consisting of all terms Hp(xt,B) for all p : |p| = i and i = 0,1, . . . ,k − 1 in some
order of i and p, βB = (βB,1, . . . ,βB,KB)′ stands for the vector stacking all unknown
coefficients aip(θB) in the same order as the elements in Zk(·). In matrix form, the
equation (4.5) can be written as

Y = ZBβB +γ B + eB, (4.6)

where Y = (y1, . . . ,yn)
′, ZB = (Zk(x1,B), . . . ,Zk(xn,B))′ is an n × KB matrix, eB =

(ε1,B, . . . ,εn,B)′, and γ B = (γk(x′
1,BθB), . . . ,γk(x′

n,BθB))′.
We estimate βB by the ordinary least squares, that is,

β̂B = argmin
β∈RKB

‖Y−ZBβ‖2, (4.7)

which gives β̂B = (Z′
BZB)−1Z′

BY. Then, we have êB = Y − ZBβ̂B, the estimated
residues for model (4.1).

Now we consider whether there is an index from Bc that we should add to B to
obtain a new set of important variables, or stop screening. Denote B(�) = B ∪{�}
for � ∈ Bc. Let xt,B(�) be the subvector of xt defined similarly as xt,B. Consider the
extended single index model for B(�), � ∈ Bc,

yt = gB(�)(x′
t,B(�)θB(�))+ εt,B(�), t = 1, . . . ,n, (4.8)

where ‖θB(�)‖ = 1.
Following the same procedure as (4.1)–(4.7), we can have the estimate of residue

êB(�) = Y−ZB(�)β̂B(�) for model (4.8). Indeed, we can write for t = 1, . . . ,n,

yt = Zk(xt,B(�))βB(�) +γ k,B(�)(x
′
t,B(�)θB(�))+ et,B(�), (4.9)

where the KB(�)-dimensional vector Zk(xt,B(�)) contains elements Hp(xt,B(�)). Here,
the multiple indices p = (p1, . . . ,p|B|+1) satisfy |p| = i for i = 0, . . . ,k−1. Further,
if p|B|+1 = 0, the term Hp(xt,B(�)) is free of the newly added covariate xt,S(�),|B|+1,
since h0 ≡ 1. Thus, we can separate the vector Zk(xt,B(�)) into two subvectors. The
first is exactly Zk(xt,B) in (4.5), while the second, denoted by Z̃k(xt,B(�)), consists
of all Hp(xt,B(�)) where p|B|+1 �= 0. Thus, equation (4.9) can be written in matrix
form as

Y = ZBβB + Z̃B(�)β� +γ B(�) + eB(�). (4.10)
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Define HB = In −ZB(Z′
BZB)−1ZB and

σ̂ 2
B =1

n
‖̂eB‖2, and σ̂ 2

B(�) = 1

n
‖̂eB(�))‖2. (4.11)

We then have

nσ̂ 2
B −nσ̂ 2

B(�) =‖̂eB‖2 −‖̂eB(�)‖2 = β̂
′
�(Z̃

′
B(�)HBZ̃B(�))β̂� = n E‖Z̆B(�)β�‖2(1+oP(1)),

where Z̆B(�) is the residue of projecting Z̃B(�) onto the space spanned by ZB. If � ∈ J
the set of indices of all important variables (i.e., β� �= 0), the quantity above would
be sufficiently larger than that corresponding to � ∈ Jc. Therefore, we choose �∗
such that σ̂ 2

B(�∗) = min�∈Bc σ̂ 2
B(�) as the candidate index, in which we have high

confidence that �∗ ∈ J \B provided it is not empty.
To determine whether or not to add the index �∗ to the set B of selected indices,

we apply the extended Bayesian information criterion (EBIC), adapted from Wang
(2009) and Cheng et al. (2016),

EBIC(B) = n log(̂σ 2
B)+KB(log(n)+2η log(d)), (4.12)

where the constant η ≥ 0, and when η = 0 the EBIC reduces to BIC. We should
include �∗ into B, if EBIC(B(�∗))< EBIC(B); if the EBIC increases we should stop
the search. The screening procedure is summarized as below.

The Screening Procedure:

Initial step Start with B1 that is either an empty set or a set that contains some

“must-have” regressors, e.g., those implied from related economic

theory. Compute EBIC(B1).

Sequential step In the (m+1)th step, compute σ̂ 2
Bm(�) for all � ∈ Bc

m, and find

�∗
m+1 = argmin

�∈Bc
m

σ̂ 2
Bm(�).

Then, let Bm+1 = Bm ∪{�∗
m+1} and compute EBIC(Bm+1).

Stopping rule Stop and declare Bm to be the set of selected covariate indexes if

EBIC(Bm+1) > EBIC(Bm); otherwise, change m to m+1 in the

sequential step and continue searching for the next candidate regressor.

As noted in Cheng et al. (2016), the forward screening scheme combined with
the EBIC or BIC stopping rule may stop a little too early due to rounding errors, in
which case not all relevant variables are selected. This could happen, for example,
when the stopping criterion value drops for one step, then increases in the next, and
drops again. To enhance its practical performance, the forward selection process
can continue until the stopping criterion value continuously increases for several
(e.g., three) consecutive steps before stopping.

We next turn to establish the sure independence property of the above forward
regression screening procedure. The following condition further specifies Assump-
tion 3.1(b).
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Assumption 4.1. There is a positive constant Cε such that for any given u ∈ R,

E(exp(uε)|x) ≤ exp(Cεu2/2).

This sub-Gaussian assumption has been widely used in the literature for variable
selection and sure screening, such as Wang (2009) and Cheng et al. (2016). It
allows for normal random variables or variables that have bounded support.

Assumption 4.2. For any M ≥ d1, there exist positive constants c(M) and C(M)

(possibly dependent on M), and μ > 0, such that

c(M)k−μ ≤ λmin(E[Z̃k(x1,B)Z̃k(x1,B)′]) ≤ λmax(E[Z̃k(x1,B)Z̃k(x1,B)′]) ≤ C(M)kμ

uniformly in B with |B| < M, where Z̃k(x1,B) is defined by (4.10).

This condition describes the eigenvalues of regression matrix. Here, we allow
the minimum eigenvalue decaying to zero and the maximum eigenvalue diverging
to infinity at certain rates, although in some ideal situation these eigenvalues are
bounded from both below and above. See, for example, Proposition 2.1 of Belloni
et al. (2015).

Assumption 4.3. Suppose that as n → ∞,

(a)
kν−3μ

d2
1

→ ∞; (b)
n(log(n))−τ

d2
1kM+3μ

→ ∞; (c) M log(d) = O(KB(log(n))τ ),

for some 0 < τ < 1 and all |B| ≤ M, where ν and μ are specified by Assumptions
3.3 and 4.2, respectively.

Note that Assumption 3.3 underlies the above assumption to ensure a quick con-
vergence of the orthogonal expansion for the link function. Combining Assump-
tion 4.1 and Lemma C.1 of Dong et al. (2016), this yields ‖γk(·)‖L2 = o(k−ν).
As a result, the truncation error does not affect the procedure of the screening
asymptotically. The conditions in Assumption 4.3 specify technical requirements
on the divergence rates of eigenvalues of the signal matrices and the truncation
parameter, and the divergence rates for the number of candidate covariates. Indeed,
if we stipulate log(d) = nε and k = [nκ ] for some ε,κ > 0, Assumption 4.3(c)
will be fulfilled when M nε = O(nMκ(log(n))τ ) or Mn−(Mκ−ε) = O((log(n))τ ), as a
consequence of taking M = O((log(n))τ ).

The following theorem determines the lower bound of the reduction in the sum
of squared residuals when J �⊂ B.

Theorem 4.1. Suppose that Assumptions 3.1–3.3 and 4.1–4.3 hold. For all
subsets B ⊂ {1, . . . ,d} with |B ∪ J| ≤ M and J �⊂ B, where J is the index set of
θ1, we have
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max
�∈Bc

[nσ̂ 2
B −nσ̂ 2

B(�)] ≥ nc4
0 c2(M)

d2
1 ‖g‖2 C(M)k3μ

,

with probability tending to one as n → ∞, provided that c0 �= 0.

Note that c0 = ∫
g(x)e−x2

dx and it is assumed that c0 �= 0 in the above theorem.
In case that c0 = 0, the above result continues to hold if we replace c0 by the first
ci such that ci =

∫
g(x)hi(x)e−x2

dx �= 0 for i ≤ k−1, as can be seen from the proof.

For notational simplicity, denote DM ≡ c4
0 c2(M)

d2
1 ‖g‖2 C(M)k3μ

. Let TM be the small-

est integer greater than or equal to Var(y)/DM . Following from Theorem 4.1,
Corollary 4.1 gives a sufficient condition for screening consistency of the forward
selection procedure.

Corollary 4.1. In addition to the conditions in Theorem 4.1, if TM ≤ M − d1

and kM(log(n)+η log(d)) = o(nDM), then we have J ⊂ Bm for some m ≤ TM with
probability tending to one.

Corollary 4.2. In addition to the conditions in Theorem 4.1, if J �⊂ Bm−1, but
J ⊂ Bm and m ≤ M, then the forward screening procedure stops at the mth step
with probability tending to one.

With the aid of Theorem 4.1, the above corollaries further show that, under
certain regularity conditions, the screening procedure is consistent, and is expected
to stop at the mth step with J ⊂ Bm. These results are relevant in both theory and
applications. Post the screening procedure, one could then use the methodology
of penalized estimation stated in Section 2 to find exactly the true set of relevant
regressors J, and then estimate the index vector and the unknown link function. The
associated asymptotic properties as demonstrated earlier in Section 3 continue to
hold, the detailed discussions of which are omitted due to space consideration.

5. NUMERICAL RESULTS

5.1. Simulations

In this section, we investigate the finite sample performance of the proposed
variable selection procedure in semiparametric single index models. We consider
the following four data generating processes (DGPs):

DGP 1 : yt = exp(x′
tθ0)

1+ exp(x′
tθ0)

+ et;
DGP 2 : yt =
(x′

tθ0)+ et;
DGP 3 : yt =x′

tθ0 + (x′
tθ0)

2 + et;
DGP 4 : yt =exp(x′

tθ0)+ et,
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where xt is d × 1 normal random vector with zero mean and identity covariance
matrix, θ0 = (1′

d1
,0′

d2
)′/

√
d1 with 1d1 denoting the d1 × 1 vector of ones and 0d2

the d2 × 1 vector of zeros, the positive integers d1,d2 satisfy d1 + d2 = d, et is
standard normal and generated independently from xt and 
(·) is the standard
normal cumulative distribution function. The regression functions in DGP 1 and
DGP 2 are bounded, while those in DGP 3 and DGP 4 are not.

5.1.1. Variable Screening. We first evaluate the proposed variable screening
methods via the information criteria. Specifically, we compare the finite sample
performance of the Akaike information criterion (AIC), Bayesian information
criterion (BIC), and EBIC. At the initial step of the forward selection, we let B1 =
{1}. To prevent the forward procedures from stopping too early and missing some
true variables, we terminated the sequential selection only if the stopping criterion
value increases for three consecutive steps, as noted in Section 4. The value of
the parameter η in the definition of EBIC is taken as η = 1 − log(n)/(3log(d)),
following Chen and Chen (2008), and Cheng et al. (2016). Note that BIC can be
regarded as a special version of EBIC when η = 0, while AIC can be obtained from
BIC via replacing log(n) with 2. This shows that the penalty terms of AIC, BIC,
and EBIC are getting larger in turns and hence the model selected by AIC is the
largest, followed by the one selected by BIC, while the one selected by EBIC is
the smallest.

To do so, we consider the aforementioned DGP 1–4 and generate the data
accordingly for n = 100,200,400 and d = 100,400,800. The true number of
covariates is set to be d1 = 2, with the index vector to be (1/

√
2,1/

√
2)′. The

residual standard deviation is set as σ = 0.2. To save space, we only report the
results for the truncation parameter k = 3. As we find that the AIC method tends
to select too many variables than necessary, we stop the screening procedure if the
number of regressors selected reaches 10. We find that such a stopping rule does
not affect the performance of BIC and EBIC. In Table 1, we report the average
numbers of true positive (TP) and false positive (FP) selections, and their standard
deviations in parentheses for the three methods. It is recognized that the larger the
TP values and the smaller the FP values are, the better the associated approach
performs.

Several findings are in order from Table 1. First, the forward screening using
the AIC always selects the maximal number of covariates allowed and is able to
select the true important covariates. This shows that the penalization used in AIC
is not large enough to lead to desired sparsity. Second, both the BIC and EBIC are
seen to select fewer covariates and are able to detect all the important covariates.
Generally, their performance tends to improve as the sample size increases, but
becomes worse as the total dimension of covariates d increases. Third, the EBIC
tends to select fewer covariates than BIC does. Although the TP for EBIC is slightly
smaller than that for BIC, especially when the sample size is small, that of the
former quickly catches up to that of the latter as sample size increases to 200.
Noticeably, the FP of the former is much smaller than that of the latter, indicating
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Table 1. Average numbers of true positive (TP) and false positive (FP) over 1,000
repetitions and their robust standard deviations (in parentheses) for the AIC, BIC,
and EBIC methods under DGPs 1–4.

n = 100 n = 200 n = 400

DGP d Method TP FP TP FP TP FP

1 400 AIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 2.00(0.00) 3.88(2.87) 2.00(0.00) 1.29(0.48) 2.00(0.00) 1.11(0.31)

EBIC 2.00(0.07) 0.74(0.44) 2.00(0.00) 1.00(0.00) 2.00(0.00) 1.00(0.00)

800 AIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 2.00(0.00) 6.38(2.66) 2.00(0.00) 1.57(0.61) 2.00(0.00) 1.18(0.39)

EBIC 1.98(0.14) 0.51(0.50) 2.00(0.00) 1.00(0.00) 2.00(0.00) 1.00(0.00)

2 400 AIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 2.00(0.00) 3.67(2.87) 2.00(0.00) 1.25(0.46) 2.00(0.00) 1.07(0.26)

EBIC 1.98(0.13) 0.59(0.49) 2.00(0.00) 1.00(0.00) 2.00(0.00) 1.00(0.00)

800 AIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 2.00(0.00) 6.18(2.79) 2.00(0.00) 1.46(0.59) 2.00(0.00) 1.15(0.37)

EBIC 1.92(0.27) 0.32(0.47) 2.00(0.00) 1.00(0.00) 2.00(0.00) 1.00(0.00)

3 400 AIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 2.00(0.00) 7.87(0.81) 2.00(0.00) 4.18(1.50) 2.00(0.00) 3.72(1.24)

EBIC 1.98(0.13) 0.29(0.47) 2.00(0.00) 0.51(0.59) 2.00(0.00) 0.62(0.65)

800 AIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 2.00(0.00) 8.00(0.00) 2.00(0.00) 5.14(1.75) 2.00(0.00) 4.61(1.50)

EBIC 1.94(0.23) 0.31(0.47) 2.00(0.00) 0.50(0.56) 2.00(0.00) 0.69(0.64)

4 400 AIC 1.99(0.15) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 1.99(0.15) 7.96(0.54) 2.00(0.00) 5.78(1.97) 2.00(0.00) 5.92(1.92)

EBIC 1.91(0.35) 0.64(0.69) 2.00(0.04) 1.05(0.85) 2.00(0.00) 1.52(1.14)

800 AIC 1.99(0.15) 8.00(0.00) 2.00(0.00) 8.00(0.00) 2.00(0.00) 8.00(0.00)

BIC 1.99(0.15) 8.00(0.00) 2.00(0.00) 6.50(1.78) 2.00(0.00) 6.76(1.68)

EBIC 1.86(0.41) 0.57(0.66) 2.00(0.05) 1.02(0.85) 2.00(0.00) 1.63(1.08)

that EBIC is more efficient in reducing the dimensionality than BIC. Overall, all
three methods are able to detect the important variables, which demonstrates that
the sure screening property is possessed even in finite samples.

5.1.2. Variable Selection. To evaluate the performance of the variable selec-
tion procedure, we introduce several popular measures that are adopted in, for
example, Ma et al. (2014). Let S be any candidate model and S0 be the true model.
We say that the model S is overfitted, correctly fitted, and underfitted if S0 ⊂ S (but
S0 �= S), S0 = S, and S0 � S, respectively. We calculate the percentage of models
overfitted (OF), correctly fitted (CF), and underfitted (UF) in 1,000 replications
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Table 2. Variable selection results for DGP 1 and DGP 2, d = 5.

Unweighted Weighted

n k C IC OF CF UF C IC OF CF UF

DGP 1

200 3 96.6 11.5 27.9 65.3 6.8 97.5 24.9 51.3 43.8 4.9

5 95.5 9.5 23.1 67.9 9.0 96.3 23.2 48.0 44.6 7.4

7 94.3 9.2 20.5 68.0 11.5 94.4 21.5 45.0 43.8 11.2

800 3 100.0 0.6 1.7 98.3 0.0 100.0 3.6 10.6 89.4 0.0

5 100.0 0.3 0.9 99.1 0.0 100.0 3.7 11.0 89.0 0.0

7 100.0 0.3 0.8 99.2 0.0 100.0 4.0 10.9 89.1 0.0

DGP 2

200 3 97.5 13.0 31.7 63.2 5.0 97.7 25.6 54.3 41.1 4.6

5 95.7 10.4 25.0 66.4 8.6 97.2 21.6 46.2 48.1 5.7

7 95.0 10.8 24.9 64.7 10.1 95.3 20.5 42.9 47.7 9.2

800 3 100.0 0.5 1.5 98.5 0.0 100.0 4.0 11.7 88.3 0.0

5 100.0 0.2 0.5 99.5 0.0 99.9 3.5 9.5 90.3 0.2

7 100.0 0.3 0.9 99.1 0.0 100.0 3.9 11.3 88.7 0.0

for each DGP with n = 100,200,400,800. We also compute the average number of
nonzero elements in θ0 that are correctly (C) estimated to be nonzero (normalized
by d1), the average number of zero elements that are incorrectly (IC) estimated to
be nonzero (normalized by d2). Due to space limit, only some selected results are
reported in Tables 2–5 for d = 5,10 and d1 = 2. The results are calculated with the
sieve order k = 3,5,7, respectively, and the weight in the objective function is set
as w(xt) = exp{−‖xt‖2/2} for the weighted penalized estimator and w(xt) = 1 for
the unweighted one.

We note that information criteria, such as the AIC or the BIC, or the cross vali-
dation could be adopted to select the sieve order k. However, the results are found
similar to fixed k cases and therefore are not reported for space consideration. The
results are reported for the SCAD penalty of Fan and Li (2001), with the constant
parameter a = 3.7 and λ selected by the generalized cross-validation.

It is observed from Tables 2 and 3 (d = 5) that the variable selection procedure
works reasonably well, even for sample size as small as n = 200. When n = 800, the
selection procedure works close to perfectly. Both the percentage of correct fitting
and that of correct nonzeros are almost 100%. Overall, the average numbers of truly
nonzero coefficients that are incorrectly estimated to be zero decrease as the sample
size increases. Furthermore, the proportions of models correctly fitted increase
with the sample size. For DGP 1 and DGP 2 with bounded regression functions,
the weighted and unweighted procedures do not seem to differ. However, for DGP
3 and DGP 4, whose regression functions are unbounded, the weighted procedure
apparently outperforms the unweighted procedure. For example, in DGP 3, the
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Table 3. Variable selection results for DGP 3 and DGP 4, d = 5.

Unweighted Weighted

n k C IC OF CF UF C IC OF CF UF

DGP 3

200 3 79.5 2.0 0.0 56.9 41.1 99.6 0.0 0.1 99.1 0.8

5 66.5 6.7 0.0 26.2 67.1 98.4 0.0 0.0 96.7 3.3

7 61.8 10.7 0.0 12.9 76.4 95.2 0.0 0.0 90.3 9.7

800 3 90.5 0.0 0.0 80.9 19.1 100.0 0.0 0.0 100.0 0.0

5 72.5 0.0 0.0 45.1 54.9 100.0 0.0 0.0 100.0 0.0

7 66.6 0.0 0.0 33.2 66.8 100.0 0.0 0.0 100.0 0.0

DGP 4

200 3 81.6 2.7 0.0 60.5 36.8 96.8 0.9 2.5 91.1 6.4

5 70.1 3.3 0.0 36.9 59.8 94.3 0.8 2.3 86.4 11.3

7 67.0 5.4 0.0 28.5 66.1 90.3 0.8 1.6 78.8 19.5

800 3 89.8 0.2 0.0 79.5 20.3 100.0 0.0 0.0 100.0 0.0

5 79.1 0.1 0.0 58.1 41.8 100.0 0.0 0.0 99.9 0.1

7 72.9 0.0 0.0 45.7 54.3 100.0 0.0 0.0 99.9 0.1

percentage of correct fitting is 100% for the weighted procedure, while it is only
33.2% for the unweighted one, when n = 800,k = 7. This signifies the importance
of the weighting when the underlying regression function is potentially unbounded.
We further note that the number of sieve terms k does not seem to have much effect
on the selection procedure.

We also observe from Tables 4 and 5 that the increase in the dimension
of regressors, d, deteriorates the performance of the selection procedure. For
example, the percentage of correct fitting for the unweighted selection procedure
decreases from 99.2% to 97.0%, when d increases from 5 to 10, for DGP 1
with n = 800,k = 7. This is due to the nonparametric nature of our estimation
procedure, where the unknown regression function g is approximated using
sieve bases. That is to say that this variable selection procedure also suffers
from the “curse-of-dimensionality” problem. Therefore, a larger sample size is
often required to achieve the same level of accuracy when the dimension of
the problem gets larger. This finding highlights the difference between variable
selection procedures in semiparametric models and those in parametric models,
even though the implementation here resembles a variable selection in parametric
models.

We next evaluate the nonparametric estimator of the function g. We plot in
Figure 1 the sieve estimates ĝ(u) (dashed line) together with the true function g(u)

(solid line), for sample size n = 200, p = 3, and k = 5. It is observed that all four
estimated curves are very close to the true curves. This suggests that the sieve
estimation of g after variable selection performs satisfactorily for samples with a
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Table 4. Variable selection results for DGP 1 and DGP 2, d = 10.

Unweighted Weighted

n k C IC OF CF UF C IC OF CF UF

DGP 1

200 3 96.2 11.5 53.4 38.9 7.7 87.4 29.1 68.5 7.5 24.0

5 92.3 8.9 38.7 45.6 15.3 81.3 22.8 53.2 10.5 35.8

7 87.2 8.0 30.5 43.1 25.3 70.5 18.1 29.7 14.0 53.7

800 3 100.0 0.5 4.0 96.0 0.0 99.8 11.9 58.8 40.8 0.4

5 100.0 0.4 3.1 96.9 0.0 99.7 10.8 54.2 45.2 0.6

7 100.0 0.4 2.9 97.0 0.1 99.6 9.6 50.7 48.4 0.9

DGP 2

200 3 96.2 11.2 52.3 40.1 7.6 87.8 28.1 68.3 7.8 23.8

5 91.4 8.2 38.0 44.8 17.1 81.8 21.7 52.1 13.0 34.6

7 86.1 7.5 30.8 41.6 27.3 72.9 17.3 31.8 15.8 50.2

800 3 100.0 0.6 4.7 95.3 0.0 99.8 12.2 59.6 39.9 0.5

5 100.0 0.4 2.7 97.3 0.0 99.8 10.4 52.6 47.0 0.4

7 100.0 0.2 1.4 98.6 0.0 99.8 9.6 49.6 49.9 0.5

Table 5. Variable selection results for DGP 3 and DGP 4, d = 10.

Unweighted Weighted

n k C IC OF CF UF C IC OF CF UF

DGP 3

200 3 71.9 3.5 0.0 40.2 56.3 94.2 0.1 0.8 87.5 11.7

5 63.8 17.3 0.0 10.4 72.3 86.6 0.0 0.2 73.0 26.8

7 70.2 38.0 0.0 2.3 59.7 74.9 2.4 0.1 47.3 50.2

800 3 87.5 0.0 0.0 75.0 25.0 100.0 0.0 0.0 100.0 0.0

5 67.2 0.0 0.0 34.4 65.6 99.9 0.0 0.0 99.8 0.2

7 59.0 0.0 0.0 18.0 82.0 99.8 0.0 0.0 99.6 0.4

DGP 4

200 3 76.5 2.8 0.0 50.2 47.0 86.6 4.0 19.9 53.3 26.8

5 65.5 8.4 0.0 22.5 69.1 81.0 3.0 13.7 48.3 37.9

7 64.3 18.3 0.0 10.4 71.3 73.2 5.1 6.1 36.5 53.6

800 3 88.9 0.1 0.0 77.7 22.2 99.2 0.1 0.7 97.6 1.7

5 74.5 0.0 0.0 49.0 51.0 98.5 0.0 0.3 96.7 3.0

7 68.6 0.0 0.0 37.2 62.8 98.2 0.0 0.3 96.1 3.6
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Figure 1. The plots of ĝ(u) (dashed line) and the true function g(u) (solid line), for sample size
n = 200, p = 3, and k = 5.

typical size. In sum, our proposed approach performs very well in estimating both
the parametric and nonparametric components in single index models.

To further evaluate the penalized estimation for the g function whose sieve
expansion is sparse, we entertain the following design:

DGP 5 : yt =g(x′
tθ0)+ et,

where g(z) = h6(z) = H6(z)/
√

6! and H6(·) is defined in equation (2.2). Hence, in
the orthogonal series expansion of g(z), all coefficients cj = 0 except c6 = 1, that is,
the sieve expansion of g presents sparsity. We define the measures C, IC, OF, CF,
and UF based on the estimates of (c0, . . . ,c6)

�, similar to those defined for θ0 in
the above evaluation. The (weighted) estimation results for θ0 and g are presented
in Table 6, for d = 5 and d1 = 2, and k = 7. The value of θ0 is set the same as the
preceding designs. Results for other parameter specifications are quite similar and
therefore are not presented for space consideration. It is observed from Table 6 that
our estimation for both g and θ0 achieves sparsity with quite good accuracy in the
measures calculated. In particular, for sparse function g, with modest sample size
we achieve much higher estimation accuracy than that for the parameter θ0 in an
even larger sample size. This finding confirms our theoretical implication that the
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Table 6. Estimation results for DGP 5, k = 7.

θ g

n C IC OF CF UF C IC OF CF UF

100 96.0 4.1 11.1 84.6 4.3 96.4 0.1 0.7 95.7 3.6

200 98.6 1.6 4.6 93.8 1.6 98.7 0.0 0.2 98.5 1.3

400 99.9 0.3 0.7 99.2 0.1 99.9 0.0 0.0 99.9 0.1

truncation parameter k (sparsity of g) and the dimensionality d of the parameter θ0

may have different features in our penalized estimation.

5.2. An Empirical Example

This subsection provides a semiparametric analysis of the salaries of major league
baseball (MLB) players for the 1987 baseball season. The data set is available
in the R package Rfit. There are n = 176 observations in total, with the response
variable being the log of the base salary in dollars. There are seven explanatory
variables (denoted as X), including log of the number of years experience (logY),
average wins per year (aveW), average losses per year (aveL), earned run average
(era), average games pitched in per year (aveG), average number of innings pitched
per year (aveI), average number of saves per year (aveS). To allow for possible
nonlinear effects in the determination of the salary, we consider the semiparametric
single index model with 119 predictors in total, which include the original seven
explanatory variables, their quadratic terms and cubic terms, as well as their
interaction terms. All the data are standardized before the analysis.

The proposed screening procedure is first applied to the whole data to detect
important variables in the single index model considered in this paper. The sieve
order is set as k = �n1/4� = 3. The BIC criterion selects four variables (denoted
as X1), which are logY ∗aveW ∗aveG, logY2, era2 ∗aveG, logY ∗aveL∗aveG, as
regressors. The estimate of the associated index vector is (0.927,0.328, − 0.181,
− 0.030)′. The penalized estimate of the index parameter through the SCAD
penalty is (0.939,0.344,0,0)′, which shows that the last two nonlinear predictors
are irrelevant. When the EBIC criterion is adopted for variable screening, it leaves
us with the first three predictors of X1 selected by BIC, for that we denote
by X2. The associated penalized estimated index parameter is (0.9390,0.3439,0)′.
Therefore, both the BIC and EBIC selection, married with the SCAD penalization,
result in the same single index model for the MLB player salary modeling.
Only the first two variables (denoted as X3) survived from the screening, that is,
logY ∗aveW ∗aveG and logY2, are relevant in predicting the salary. The estimated
link function is plotted in Figure 2.

To evaluate the fitting performance of the proposed model to the data, we
consider randomly splitting the whole sample into two subsamples, that is, one
subsample with n1 observations to fit the model and another subsample with
n − n1 observations to evaluate the prediction performance. For the purpose of
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Figure 2. The plot of the estimated link function for baseball player salary data with k = 3.

Table 7. Fitting performance of models M1–M5 to baseball player salary data.

n1 M1 M2 M3 M4 M5

120 0.3389 0.5819 0.1548 0.1915 0.7073

PR2 140 0.3571 0.6748 0.2552 0.3029 0.7261

160 0.3520 0.6957 0.3338 0.3519 0.7271

120 0.4719 0.8734 0.8422 0.8321 0.8007

R2 140 0.4581 0.8654 0.8334 0.8242 0.7924

160 0.4630 0.8658 0.8349 0.8261 0.7963

comparison, five models are evaluated. Model M1 is a linear regression of log
salary on seven original regressors X. Models M2–M4 are all single index models.
Precisely, M2 is constructed with the original seven regressors X, M3 is based
on the four selected regressors X1 after the screening with the BIC, M4 is based
on the three selected regressors X2 after the screening with the EBIC, and M5 is
based on the two selected regressors X3 after the penalized screening. We compute
both the in-sample R2 and the out-of-sample pseudo R2 (PR2, defined as 1 minus
the ratio of out-of-sample mean squared prediction errors over the variance of
the log salary), for n1 = 120,140,160. The above sample split has been randomly
replicated for 500 times and the averaged results over the replications are collected
in Table 7. It is observed that the linear model M1 is clearly outperformed by the
single index models in both in-sample fits and out-of-sample predictions, revealing
the nonlinear feature in the salary determination. Among the single index models,
it is observed that the model M2 enjoys the best in-sample fit, followed by M3, M4,
and M5. This is consistent with the common knowledge that the more complex the
model, the better the in-sample fit. However, when it comes to the out-of-sample
prediction, the simplest model M5, that is, the penalized model after the variable
screening, has the best prediction accuracy and clearly stands out. This indicates
that the penalized estimation after the screening in single index modeling of the
baseball player salary data can significantly improve the salary predictions.
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6. CONCLUSION

This paper considers variable selection and estimation in semiparametric single
index models using Hermite polynomial expansion of the unknown link function.
The support of the regressor is allowed to be unbounded. The series develop-
ment offers an approximating linear regression model, based on which shrinkage
estimation can be easily implemented with a class of folded concave penalty
functions such as the SCAD. The consistency of the proposed selection procedure
is established, and asymptotic normality of the index estimator and the link
function estimator is proved. The screening procedure is also shown to enjoy the
sure screening property. Numerical studies confirm that the proposed procedure
enjoys nice finite sample performance.

The current study can be extended in several directions. First, the i.i.d. assump-
tion could be relaxed to allow for stationary time series. Second, the regressors
are assumed to be exogenous, which can be extended to allow for endogenous
regressors. The generalized method of moments, used in Fan and Liao (2014),
for example, could be formulated with instrumental variables. Third, the single
index structure may be extended to a model with multiple indices. These extensions
involve new challenges, and are left for future investigation.

APPENDIX

This appendix contains three parts. Part A collects three auxiliary lemmas, while part B
presents the asymptotic results for the coefficients in the linear expansion of the single index
model. Part C contains the proof of the main results. Supplementary Material provides the
proof for the lemmas and some additional simulation results.

A. Auxiliary Lemmas

Three technical lemmas are shown in this part and their proofs are relegated to the
Supplementary Material.

Lemma A.1. Suppose that u = (u1, . . . ,ud)′,v = (v1, . . . ,vd)′ ∈ Rd and ‖v‖ = 1. Then

Hm(u′v) =
∑

|p|=m

(
m

p

) d∏
j=1

Hpj(uj)

d∏
j=1

v
pj
j ,

where p = (p1, . . . ,pd), pj for j = 1, . . . ,d are all nonnegative integers, |p| = p1 +·· ·+pd

and
(m

p
) = m!∏d

j=1 pj!
.

Lemma A.2. (1) Under Assumption 3.3, for each z ∈ R, gk(z) → g(z); meanwhile, for
γk(z) = g(z)− gk(z), supz |γk(z)|2 exp(−z2/2) = o(k−ν+5/6) and ‖γk(z)‖2

L2 = o(k−ν) as

k → ∞. (2) Under Assumptions 3.1–3.3, supθ∈� γ 2
k (θ ′x1) = oP(k−ν).
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Lemma A.3. Suppose that for any S with |S| = s and s2 = o(n) as n → ∞. Under
Assumptions 3.1–3.3, we have:

(1) As n → ∞,
∥∥∥ 1

n Z′
(S)

WZ(S) −�

∥∥∥2 = OP(s2/n), where � is a square matrix of

dimension s having elements E[Hp(x1)Hq(x1)w(̃x1)], where p and q are multiple indices
of dimension d varying with |p|,|q| = 0, . . . ,k −1, whose corresponding j in Definition 2.1
are such that j ∈ S.

(2) As n → ∞,
∥∥∥ 1

n Z′
(S)

W2Z(S) −�

∥∥∥2 = OP(s2/n), where � is a square matrix of

dimension s having elements E[Hp(x1)Hq(x1)w2(̃x1)], where p and q are the same as
that in the above assertion.

(3) As n → ∞,
∥∥∥ 1

n Z′
(S)

W(Y−Z(S)β0)

∥∥∥2 = OP(s/n+ sk−ν).

(4) Let Qa×s be a selection matrix for any a ≤ s, that is, each row of Q has one in a
place and zeros elsewhere, and all ones are in different columns. Special cases are Qa×s =
(Ia,0) and the s-vector �j, where the jth element is 1 and all other elements are zero. Then,∥∥∥ 1

n QZ′
(S)

W(Y−Z(S)β0)

∥∥∥2 = OP(a/n+ak−ν) for large n. Hence, ‖β̂ −β0‖2∞ = OP(1/n+
k−ν +P′

n(ζn)).

B. Asymptotic Inference for the Linear Coefficients

For any β ∈ RK , recall the notation βS0
given in the first section. Thereby, β = βS0

+βSc
0
.

In the literature, the subspace V = {βS0
,β ∈ RK} is called “oracle space” of RK . Certainly,

β0 ∈ V .

Theorem B.1. Let Assumptions 3.1–3.5 hold. Then, there exists a local minimizer β̂ =
(β̂

′
1,β̂

′
2)′ in optimization (2.8), for which:

(i) We have

lim
n→∞P(β̂2 = 0) = 1.

(ii) Let Ŝ = {j : 1 ≤ j ≤ K,β̂j �= 0}. Then,

lim
n→∞P(̂S = S0) = 1.

(iii) Suppose that s2
0 = o(n) and that the s0 × s0 matrices � and � defined in Lemma

A.3 have bounded eigenvalues below from zero and above from infinity uniformly.
For any α ∈Rs0 with ‖α‖ = 1, we have, as n → ∞, with probability tending to one,

√
n(α′�−1��−1ασ 2

e )−1/2α′(β̂1 −β1)
d→ N (0,1).

This theorem shows that we can obtain a local minimizer from the minimization (2.8) and
the minimizer has consistent support and asymptotic normality for the nonzero coefficients.
The requirement s2

0 = o(n) restricts the divergence of the number of nonzero coefficients in
the index vector and the orthogonal series expansion.

The uniformly boundedness of eigenvalues for � and � is a usual requirement in the
literature and is often satisfied in view of their forms. See, for example, Condition A.2 of
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Belloni et al. (2015). Lemma A.3 suggests that � and � are consistently estimable via
their sample counterparts. On the other hand, the residual variance σ 2

e can be consistently
estimated by

σ̂ 2
e = 1∑n

t=1 w(̃xt)

n∑
t=1

(yt −Zk(xt)
′β̂)2w(̃xt),

the proof of which is a routine exercise under the conditions of Theorem B.1. See also
Corollary 3.1 in Dong, Linton, and Peng (2021). By virtue of these consistent estimates, the
statistical inference can be conducted from the above theorem.

Next, we shall show that under certain additional conditions, the local minimizer in
Theorem B.1 is nearly global.

Theorem B.2. In addition to Assumptions 3.1–3.5, suppose that supb:bS0 �=0
|b′

S0
HnbSc

0
|

b′
S0

HnbS0
≤

CH < 1
2 almost surely. Then, the local minimizer in Theorem B.1 satisfies that, for any δ > 0,

there exists an η > 0 such that

lim
n→∞P

(
Qn(β̂)+η < inf

β �∈�δ

Qn(β)

)
= 1, (B.1)

where �δ = {β ∈ RK : |βj − β0j| ≤ δ, j ≤ K} and Qn(β) is the objective function in the
optimization (2.8).

Recalling the definition of bS, the condition on supb:bS0 �=0
|b′

S0
HnbSc

0
|

b′
S0

HnbS0
≤ CH < 1

2 requires

that the block on the diagonal of Hn corresponding to the support S0 dominates the block
off diagonal corresponding to S0 and Sc

0, because the numerator b′
S0

HnbSc
0
= b′

(S0)
H12b(Sc

0)

while the denominator b′
S0

HnbS0 = b′
(S0)

H11b(S0), if we partition Hn = (Hij,i,j = 1,2)

conformably with the support S0. One extreme case is that H11 is positive definite and
H12 = 0, so that CH = 0. Moreover, given Hn = Z′Z, we have b′

S0
HnbS0 = ‖ZbS0‖2, but

b′
S0

HnbSc
0

= 〈ZbS0,ZbSc
0
〉 is an inner product. Then, the condition on CH is shipped to the

correlation coefficient of ZbS0 and ZbSc
0

and their norms. This condition is in the same spirit
as Condition 2 of Lv and Fan (2009).

C. Proofs of the Main Results

Before showing the main results, two lemmas are given and their conditions are illustrated
after their proofs. Recall the notation βS and β(S) for index set S with |S| = s, and similarly
βS0

and β(S0)
for index set S0 with |S0| = s0 defined in Section 3.1.

Lemma C.1. Suppose that: (1) There exists a sequence an = o(ζn) such that
‖Fn(S0)(β0(S0)

)‖ = OP(an). (2) For any ε > 0, there exists a constant C = C(ε) > 0
such that for all large n, P(λmin(Hn(S0)(β0(S0)

)) > C) > 1 − ε. Then, there exists a local

minimizer β̂ ∈ V of
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Qn(βS0
) = Ln(βS0

)+
∑
j∈S0

Pn(|βj|),

such that ‖β̂ −β0‖ = OP(an +√
s0 P′

n(ζn)). Moreover, for any arbitrary ε > 0, the local
minimizer β̂ is strict with probability at least 1− ε for all large n.

Proof of Lemma C.1. Define ρn = an +√
s0 P′

n(ζn) and then ρn = o(1) by Assumption
3.4. Denote Nτ = {β ∈ RK : ‖βS0

−β0‖ ≤ ρnτ } for τ > 0. Let ∂Nτ be the boundary of
Nτ . Also, define an event

An(τ ) =
{

Qn(β0) < min
β∈∂Nτ

Qn(βS0
)

}
.

On the event An(τ ), by the continuity of Qn(β) with respect to βj for j ∈ S0, there exists
a local minimizer of Qn(βS0

) inside Nτ . That is, there exists a local minimizer β̂ ∈ V of
Qn(βS0

) such that ‖β̂ − β0‖ < τρn. Therefore, it suffices to show that for ∀ε > 0, there
exists a τ > 0 such that P(An(τ )) ≥ 1− ε for all large n.

For any β ∈ ∂Nτ , viz. ‖βS0
−β0‖ = τρn, note that

Qn(βS0
)−Qn(β0) =(β(S0) −β0(S0))

′Fn(S0)(β0(S0))+ (β(S0) −β0(S0))
′Hn(S0)(β(S0) −β0(S0))

+
∑
j∈S0

[Pn(|βj|)−Pn(|β0j|)].

Invoking the condition ‖Fn(S0)(β0(S0)
)‖ = OP(an), for ∀ε > 0, there exists a C1 > 0

such that the event A1 given below satisfies P(A1) > 1− ε/2 for all large n, where

A1 = {(β(S0)
−β0(S0)

)′Fn(S0)(β0(S0)
) ≥ −C1an‖β(S0)

−β0(S0)
‖}.

Also, by condition (2) and for this ε, there exists a C2 such that P(A2) > 1 − ε/2 for all
large n, where

A2 = {(β(S0)
−β0(S0)

)′Hn(S0)(β(S0)
−β0(S0)

) ≤ C2‖β(S0)
−β0(S0)

‖2}.
On the other hand, it follows from Lemma B.1 in Fan and Liao (2014, p. 899) that∑

j∈S0
[Pn(|βj|) − Pn(|β0j|)] ≥ −√

s0 P′
n(ζn)‖β(S0)

− β0(S0)
‖. Hence, for any β ∈ ∂Nτ ,

on A1 ∩A2,

Qn(βS0
)−Qn(β0) ≥ρnτ

(
ρnτC2 −C1an −√

s0P′
n(ζn)

)
.

Since ρn = an + √
s0P′

n(ζn), we have C1an + √
s0P′

n(ζn) ≤ (C1 + 1)ρn. Thus, choosing
τ > (C1 +1)/C2 yields that Qn(βS0

)−Qn(β0) > 0 uniformly on β ∈ ∂Nτ . It follows that
for all large n, with τ > (C1 +1)/C2, we have P(An(τ )) > P(A1 ∩A2) ≥ 1− ε.

We next show that the local minimizer, denoted by β̂ ∈ V , is strict with a probability
arbitrarily close to one. For each h �= 0, define

ψ(h) = limsup
ε→0+

sup
(u1,u2)⊂O(|h|,ε)

−P′
n(u2)−P′

n(u1)

u2 −u1
.

By the concavity, ψ(·) ≥ 0. Let �(β) = Hn(S0)(β(S0)
)−diag(ψ(β(S0),1), . . . ,ψ(β(S0),s0 )),

for any β ∈ Nτ , where we denote β(S0)
= (β(S0),1, . . . ,β(S0),s0)

′. It suffices to show that
�(β̂) is positive definite with probability arbitrarily close to unity.
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On the event A3 = {φ(β̂(S0)
) ≤ supβ(S0)∈O(β0(S0),cζn)

φ(β(S0)
)}, where β̂(S0)

is the

counterpart of β(S0)
, and c is the same in (iv) of Assumption 3.4, we have

max
j≤s0

ψ(β̂(S0),j) ≤ φ(β̂(S0)
) ≤ sup

β(S0)∈O(β0(S0),cζn)

φ(β(S0)
).

Let A4 = {λmin(Hn(S0)(β0(S0)
)) > C2}. Then, for any u ∈Rs0 with ‖u‖ = 1, it follows from

(iv) of Assumption 3.4 that

u′�(β̂)u =u′Hn(S0)(β̂(S0)
)u−u′diag(ψ(β̂(S0),1), . . . ,ψ(β̂(S0),s0))u

≥C2 − sup
β(S0)∈O(β0(S0),cζn)

φ(β(S0)
) ≥ C2/2,

on the event A3 ∩A4 for all large n.
Finally, we are about to show that P(A3 ∩ A4) ≥ 1 − ε. Indeed, due to ρn = o(ζn),

P(A3) ≥ P(β̂(S0)
∈ O(β0(S0)

,cζn)) ≥ 1 − ε/2 for all large n. Also, P(A4) ≥ 1 − ε/2 due
to the condition (2), the assertion then follows. �

The oracle consistency in Lemma C.1 is derived based on the knowledge of S0, the
support of β0; the lemma has independent interest because the condition (2) weakens
Assumption 3.5(iv). To make the result useful, it is desirable to show that the local minimizer
of Qn restricted on V is also a minimizer of Qn on RK .

Lemma C.2. Additional to the conditions in Lemma C.1, suppose that with probability
approaching one, for β̂ ∈ V in Lemma C.1, there exists a neighborhood O1 ⊂RK of β̂ such
that for all β ∈ O1 but β �∈ V , we have

Ln(βS0
)−Ln(β) <

∑
j �∈S0

Pn(|βj|). (C.1)

Then, (i) With probability close to unity arbitrarily, the β̂ ∈ V is a local minimizer in RK of
Qn(β) = Ln(β)+∑K

j=1 Pn(|βj|). (ii) For ∀ε > 0, the local minimizer β̂ ∈ V is strict with
probability at least 1− ε for all large n.

Proof of Lemma C.2. Recall that β̂ ∈ V is a local minimizer of Qn(βS0
). Hence, there

is a small neighborhood O1 of β̂, such that for any β ∈ O1 with β �∈ V , we have Qn(β̂) ≤
Qn(βS0

). However, by the condition of (C.1),

Qn(βS0
)−Qn(β) = Ln(βS0

)−Ln(β)−
∑
j �∈S0

Pn(|βj|) < 0. (C.2)

This means Qn(β̂) < Qn(β), yielding the first assertion, while, from which and the last
statement of Lemma C.1, the second assertion is also implied. �

Proof of Theorem B.1. (i) As shown in Lemma C.1, if Qn(β) has a local minimizer
β̂ = (β̂

′
1,β̂

′
2)′, then β̂2 = 0 with probability arbitrarily close to one for large n, which implies

the assertion (i) and P(̂S ⊂ S0) → 1.
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On the other hand,

P(S0 �⊂ Ŝ) =P(∃j ∈ S0,β̂j = 0) ≤ P(∃j ∈ S0,|β0j − β̂j| ≥ |β0j|)
≤P(max

j
|β0j − β̂j| ≥ ζn) ≤ P(‖β̂ −β0‖ ≥ ζn) = o(1),

implying P(S0 ⊂ Ŝ) → 1. Accordingly, P(S0 = Ŝ) → 1 which proves (ii).
(iii) Let β̂ = (β̂

′
1,β̂

′
2)′ be the local minimizer of Qn(β) where β̂2 = 0 with probability

arbitrarily close to one. Define P′
n(|̂β1|) := (P′

n(|β̂11|), . . . ,P′
n(|β̂1s0 |))′ and sgn(β̂1) :=

(sgn(β̂11), . . . ,sgn(β̂1s0))
′.

By the Karush–Kuhn–Tucker (KKT) condition,

Fn(S0)(β̂1) = −P′
n(|̂β1|)� sgn(β̂1),

where the operator � is the product in elementwise. Observe that

Fn(S0)(β̂1) = Fn(S0)(β1)+Hn(S0)(β1)(β̂1 −β1),

which further implies

β̂1 −β1 = Hn(S0)(β1)−1[Fn(S0)(β̂1)−Fn(S0)(β1)]

= −Hn(S0)(β1)−1[Fn(S0)(β1)+P′
n(|̂β1|)� sgn(β̂1)]

= 2

n
Hn(S0)(β1)−1Z′

(S0)
W(e+γ )−Hn(S0)(β1)−1P′

n(|̂β1|)� sgn(β̂1)

= 1

n

(
1

n
Z′
(S0)

WZ(S0)

)−1
Z′
(S0)

We+ 1

n

(
1

n
Z′
(S0)

WZ(S0)

)−1
Z′
(S0)

Wγ

−
(

1

n
Z′
(S0)

WZ(S0)

)−1
P′

n(|̂β1|)� sgn(β̂1)

= 1

n
�−1Z′

(S0)
We(1+oP(1))+ 1

n

(
1

n
Z′
(S0)

WZ(S0)

)−1
Z′
(S0)

Wγ

− 1

n

(
1

n
Z′
(S0)

WZ(S0)

)−1
P′

n(|̂β1|)� sgn(β̂1),

by the definitions of Hn(S0) and Fn(S0) and Lemma A.3. The normality shall be derived
from the first term.

Denote by Zk(S0)(xt), the vector Zk(xt) eliminating all elements whose subscripts are not
in S0, so that Zk(S0)(xt) is a s0-vector. That is, Zk(S0)(xt) are all the columns of Z′

S0
. Hence,

1

n
α′�−1Z′

S0
We = 1

n
α′�−1

n∑
t=1

Zk(S0)(xt)w(̃xt)et,

which has variance

α′�−1
(

1

n
Z′
(S0)

W2Z(S0)

)
�−1ασ 2

e = α�−1��−1ασ 2
e (1+oP(1)),

by Lemma A.3 again. Therefore, it follows from the conditional Lindeberg central limit
theorem that
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√
n(α′�−1��−1ασ 2

e )−1/2α′�−1Z′
(S0)

We
d→ N (0,1),

as n → ∞.
It remains to show that n−1/2Z′

(S0)
Wγ = oP(1) and n1/2P′

n(|̂β1|)� sgn(β̂1) = oP(1).

Note by the boundedness of the elements in Z′
(S0)

W, n−1/2‖Z′
(S0)

Wγ ‖ ≤ n−1/2‖Z′
(S0)

W‖
‖γ ‖ = OP(

√
s0n‖γk(z)‖) = oP(1) due to Assumption 3.5.

Similar to Lemma C.2 of Fan and Liao (2014), we may show that

‖P′
n(|̂β1|)� sgn(β̂1)‖ = OP

(
sup

‖βS0
−β1‖≤ζn/4

φ(βS0
)
√

s0 log(K)/n+√
s0‖γk(u)‖+√

s0P′
n(ζn)

)
.

Thus, n1/2P′
n(|̂β1|) � sgn(β̂1) = oP(1) due to Assumption 3.5 again, which finishes the

proof. �

Proof of Theorem B.2. First, using the mean value theorem,∑
j∈S0

Pn(|β̂j|) ≤
∑
j∈S0

Pn(|β0j|)+
∑
j∈S0

P′
n(|β∗

0j|)|β̂j −β0j|

≤ s0 max
j∈S0

Pn(|β0j|)+
∑
j∈S0

P′
n(ζn)|β̂j −β0j|

≤ s0 max
j∈S0

Pn(|β0j|)+√
s0P′

n(ζn)‖β̂(S0)
−β1‖.

Second,

Qn(β) = Ln(β0)+ (β −β0)′Hn(β −β0)−2(β −β0)′Fn(β0)+
K∑

j=1

Pn(|βj|),

Qn(β̂) = Ln(β0)+ (β̂ −β0)′Hn(β̂ −β0)−2(β̂ −β0)′Fn(β0)+
∑
j∈S0

Pn(|β̂j|),

which gives

Qn(β)−Qn(β̂) = (β −β0)′Hn(β −β0)− (β̂ −β0)′Hn(β̂ −β0)

−2(β −β0)′Fn(β0)+2(β̂ −β0)′Fn(β0)

+
K∑

j=1

Pn(|βj|)−
∑
j∈S0

Pn(|β̂j|).

For the first term, using the identity u = uS0 +uSc
0
,

(β −β0)′Hn(β −β0) = (β −β0)′S0
Hn(β −β0)S0 + (β −β0)′Sc

0
Hn(β −β0)Sc

0

+2(β −β0)′S0
Hn(β −β0)Sc

0

≥ (β −β0)′S0
Hn(β −β0)S0 +2(β −β0)′S0

Hn(β −β0)Sc
0
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≥ (β −β0)′S0
Hn(β −β0)S0

[
1−2

|(β −β0)′S0
Hn(β −β0)Sc

0
|

(β −β0)′S0
Hn(β −β0)S0

]

≥ (β −β0)′S0
Hn(β −β0)S0

[
1−2 sup

u �∈�δ

|u′
S0

HnuSc
0
|

u′
S0

HnuS0

]
≥ (1−2CH)(β −β0)′S0

Hn(β −β0)S0

= (1−2CH)(β −β0)′(S0)
Hn(S0)(β −β0)(S0)

≥ (1−2CH)λmin(Hn(S0))‖(β −β0)(S0)‖2

≥ (1−2CH)C1‖(β −β0)(S0)‖2,

where (β −β0)(S0) is a short version of (β −β0)S0 deleting all zeros at j �∈ S0. Therefore,

Qn(β)−Qn(β̂) ≥ (1−2CH)C1‖(β −β0)(S0)‖2 − (β̂ −β0)′Hn(β̂ −β0)

−2(β −β0)′Fn(β0)+2(β̂ −β0)′Fn(β0)−
∑
j∈S0

Pn(|β̂j|)

> (1−2CH)C1‖(β −β0)(S0)‖2 −λmax(Hn)‖β̂ −β0‖2

−2‖β −β0‖‖Fn(β0)‖−2‖β̂ −β0‖‖Fn(β0)‖
− s0 max

j∈S0
Pn(|β0j|)−√

s0P′
n(ζn)‖β̂S0

−β1‖

:= (1−2CH)C1‖(β −β0)(S0)‖2 − ξn,

where 0 ≤ ξn = oP(1) by noting that ‖β̂ − β0‖ = oP(1), ‖Fn(β0)‖ = oP(1), and by the
condition of s0 maxj∈S0 Pn(|β0j|) = o(1) which is implied from Assumption 3.5. Then, for

any δ > 0, we take η = (1−2CH)C1δ2/2 > 0, so that

P

(
inf

β �∈�δ

Qn(β)−Qn(β̂) > η

)
≥P

(
inf

β �∈�δ

λmin(Hn)‖β −β0‖2 ≥ η+ ξn

)
≥P

(
ξn ≤ (1−2CH)C1δ2/2

)
→ 1,

as n → ∞. �

Proof of Theorem 3.1. (i) This is easily obtained from Theorem B.1. (ii) Observe that,
given ci �= 0 and ĉi �= 0,

θ̂1 − θ1 = 1

ĉiθ̂
i−1
01

AiRiβ̂1 − 1

ciθ
i−1
01

AiRiβ1

= 1

ĉiθ̂
i−1
01

(
AiRiβ̂1 − ĉiθ̂

i−1
01

ciθ
i−1
01

AiRiβ1

)

= 1

ĉiθ̂
i−1
01

(
AiRi(β̂1 −β1)− ciθ

i−1
01 − ĉiθ̂

i−1
01

ciθ
i−1
01

AiRiβ1

)
,
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or equivalently,

ĉiθ̂
i−1
01 (̂θ1 − θ1) = AiRi(β̂1 −β1)− (ciθ

i−1
01 − ĉiθ̂

i−1
01 )θ1

= AiRi(β̂1 −β1)−
(

βi1
θ01

− β̂i1

θ̂01

)
θ1

= AiRi(β̂1 −β1)+ β̂i1 −βi1
θ01

θ1 − β̂i1(θ̂01 − θ01)

θ01θ̂01
θ1

=
[

AiRi + 1

θ01
θ1�′

i1

]
(β̂1 −β1)− β̂i1

θ01θ̂01
θ1�′

1(̂θ1 − θ1),

where �i1 is a s0-vector whose i1th element is 1 and elsewhere zero, while �1 is a |J|-vector
whose first element is 1 and elsewhere zero. We further write[̂

ciθ̂
i−1
01 I|J| +

β̂i1

θ01θ̂01
θ1�′

1

]
(̂θ1 − θ1) =

[
AiRi + 1

θ01
θ1�′

i1

]
(β̂1 −β1).

Here, ĉiθ̂
i−1
01 = β̂i1/θ̂01 and the matrix I|J| + θ−1

01 θ1�′
1 is lower triangular with diagonal

elements (2,1, . . . ,1), and hence it is invertible and the inverse can be easily obtained. We
then have

β̂i1

θ̂01
α′(̂θ1 − θ1) = α′

[
I|J| + 1

θ01
θ1�′

1

]−1 [
AiRi + 1

θ01
θ1�′

i1

]
(β̂1 −β1)

:= α′Bni(β̂1 −β1), (C.3)

where Bni :=
[
I|J| + 1

θ01
θ1�′

1

]−1 [
AiRi + 1

θ01
θ1�′

i1

]
.

It then follows from the proof of Theorem B.1 that

β̂i1

θ̂01
α′(̂θ1 − θ1) = α′Bni(β̂1 −β1)

= 1

n
α′Bni�

−1Z′
(S0)

We(1+oP(1))

+α′Bni
1

n

(
1

n
Z′
(S0)

WZ(S0)

)−1
Z′
(S0)

Wγ

−α′Bni

(
1

n
Z′
(S0)

WZ(S0)

)−1
P′

n(|̂β1|)� sgn(β̂1),

where � is given in Lemma A.3.

Here,
√

n
β̂i1
θ̂01

α′(̂θ1 − θ1) has leading term 1√
n
α′Bni�

−1Z′
(S0)

We, for which, similar to

the proof of Theorem B.1, we have

σ−1
ni

1√
n
α′Bni�

−1Z′
(S0)

We
d→ N (0,1)

as n → ∞, where σ 2
ni = α′Bni�

−1��−1B′
niασ 2

e and � is also given in Lemma A.3.
All the other terms are negligible due to the same reason in the proof of Theorem B.1.

The proof is then finished. �
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Proof of Theorem 3.2. (i) This is the implication of Theorem B.1. (ii) Firstly, we show

n−1‖Û′ŴÛ − U′W0U‖ = OP(d3/2
1 ‖̂θ − θ0‖) = oP(1). In fact, the matrix n−1(Û′ŴÛ −

U′W0U) has elements n−1∑n
t=1[hi(̂θ

′xt)hj(̂θ
′xt)w(̂θ

′x̄t) − hi(θ
′
0xt)hj(θ

′
0xt)w(θ ′

0x̄t)] for

i,j ∈ Î. Also, h′
i(z) = √

ihi−1(z) and supi,j,z |hi(z)hj(z)w(z)| < ∞; remember w(z) = 1 if
z has bounded support. The assertion follows immediately by the mean value theorem. In
addition, by the same approach, we have n−1‖Û′Ŵ − U′W0‖ = OP(d1‖̂θ − θ0‖) = oP(1)

as n → ∞.
Let � be the matrix with elements E[hi(θ

′
0xt)hj(θ

′
0xt)w(θ ′

0x̄t)] for i,j ∈ Î. Then, by the

Law of Large Numbers, we have ‖n−1U′W0U −�‖2 = OP(d2
1/n) = oP(1).

Observe that

g̃(z)−g(z) =
(̂I)(z)
′(̃ĉI − ĉI)−γk(z)

=1

n

(̂I)(z)

′�−1U′W0(e+γ )(1+oP(1))−γk(z).

The leading term of
√

n
‖
(̂I)(z)‖ [̃g(z)− g(z)] is 1√

n

(̂I)(z)

′�−1U′W0e from which we shall

derive the normality, where we define 
(̂I)(z) = 
(̂I)(z)/‖
(̂I)(z)‖ a unit vector. Note that

its conditional variance 1
n
(̂I)(z)

′�−1U′W2
0 U�−1
(̂I)(z)σ

2
e = 
(̂I)(z)

′�−1��−1
(̂I)(z)

σ 2
e (1 + oP(1)), where we define � to be the asymptotic matrix of 1

n U′W2
0 U, which has

elements E[hi(θ
′
0xt)hj(θ

′
0xt)w2(θ ′

0x̄t)] for i,j ∈ Î. By Lemma A.3, ‖n−1U′W2
0 U −�‖2 =

OP(d2
1/n) = oP(1). Let σ 2

ni = 
(̂I)(z)
′�−1��−1
(̂I)(z)σ

2
e . Then, by Assumption 3.1 and

the standard central limit theorem, σ−1
n

1√
n

(̂I)(z)

′�−1U′W0e
d→ N (0,1).

Meanwhile, by Assumption 3.5, 1√
n

(̂I)(z)

′�−1U′W0γ = oP(1). In fact, by the uniform

boundedness of hi(z)w(z) and the eigenvalues of �, we have 1√
n
|
(̂I)(z)

′�−1U′W0γ | ≤
1√
n
‖γ ‖ = oP(

√
n‖γk(z)‖) = oP(1). The assertion holds in view of the condition on γk(z)

because ‖
(̂I)(z)‖2 = OP(|̂I|) = OP(d1). �

Proof of Theorem 4.1 (Lower Bound). Denote HB = In −ZB(Z′
BZB)−1Z′

B for any B ⊂
{1, . . . ,d} and ZB is given by (4.6). Then, from equation (4.6), nσ̂ 2

B = ‖̂eB‖2 = ‖HBY‖2.

On the other hand, premultiplying HB on equation (4.10) gives HBY = HBZ̃B(�)β� +
HBγB(�) +HBeB(�), from which the OLS scheme gives

β̂� = (Z̃′
B(�)HBZ̃B(�))

−1Z̃′
B(�)HBY.

Hence, êB(�) = HB(�)HBY where HB(�) = In −P�B with P�B = HBZ̃B(�)(Z̃
′
B(�)

HBZ̃B(�))
−1

Z̃′
B(�)

HB. Then we have

nσ̂ 2
B −nσ̂ 2

B(�) =‖̂eB‖2 −‖̂eB(�)‖2 = ‖HBY‖2 −‖HB(�)HBY‖2

=‖P�BY‖2 = β̂�
′
(Z̃′

B(�)HBZ̃B(�))β̂�.

It follows that max�∈Bc(nσ̂ 2
B −nσ̂ 2

B(�)
) = max�∈Bc ‖P�BY‖2 ≥ max�∈J\B ‖P�BY‖2, where

J is the index set of all nonzero components θ1.

https://doi.org/10.1017/S0266466624000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000021


SPARSE SINGLE INDEX MODELS IN INCREASING DIMENSION 39

In the oracle model yt = g(x′
tθ0) + εt = g(x′

t,Jθ1) + εt, where ‖θ1‖ = 1, t = 1, . . . ,n,
similar to (4.6), we may write

yt = Zk(xt,J)′βJ +γk(x
′
t,Jθ1)+ εt, (C.4)

where γk(·) is given in (2.4). Write these equations in matrix form Y = ZJβJ +γ k,J +ε. It
follows that

‖P�BY‖ =‖P�B(ZJβJ +γ k,J + ε)‖
≥‖P�BZJβJ‖−‖P�Bγ k,J‖−‖P�Bε‖.

As P�B is an orthogonal project matrix, ‖P�Bγ k,J‖ ≤ ‖γ k,J‖ = OP(
√

nk−s/2). Moreover,
by Proposition 3 of Zhang (Zhang, 2010) with x = C(logn)τ for some 0 < τ < 1, we have

P

(
ε′P�Bε

KBCε
≥ 1+ x

(1−2/(ex/2
√

1+ x−1))2+

)
≤ exp(−KBx/2)(1+ x)KB/2,

where (a)+ = max(a,0). This gives ‖P�Bε‖2 = OP(KB(logn)τ ).
Furthermore, we have with probability tending to one,

‖P�BZJβJ‖2 = β ′
JZ′

JP�BZJβJ

=β ′
JZ′

JHBZ̃B(�)(Z̃
′
B(�)HBHBZ̃B(�))

−1Z̃′
B(�)HBZJβJ

≥λmin((Z̃′
B(�)HBZ̃B(�))

−1)‖Z̃′
B(�)HBZJβJ‖2

= 1

nλmax(E[Z̃k(x1,B(�))HBZ̃k(x1,B(�))
′])

‖Z̃′
B(�)HBZJβJ‖2.

We are about to find out a lower bound for max�∈J\B ‖Z̃′
B(�)

HBZJβJ‖2. Note that equation
(4.10) holds for any B and any � ∈ Bc, which allows us to write Y = ZJβJ + γ k,J + ε

into another way. Indeed, since J = (J ∩ B) ∪ (J ∩ Bc), we can write the vector Zk(xt,J)

as Zk(xt,J) ≡ (Zk(xt,J∩B)′,Zk(xt,J∩Bc)′)′, where Zk(xt,J∩B) contains all Hp(xt,J∩B) for
d1-dimensional (|J| = d1) multiple index p with |p| = 0,1, . . . ,k − 1 but whose elements
corresponding to J ∩ Bc are all zero, whereas Zk(xt,J∩Bc) is its complement. As a result,
the matrix ZJ can be split into a block matrix ZJ ≡ [ZJ∩B,ZJ∩Bc ], and when we split βJ
conformably as βJ ≡ (β ′

J∩B,β ′
J∩Bc)

′ we have Y = ZJ∩BβJ∩B + ZJ∩BcβJ∩Bc + γ k,J + ε.
Now, consider

‖HBZJβJ‖2 =β ′
JZ′

JHBZJβJ = (β ′
J∩BZ′

J∩B +β ′
J∩Bc Z′

J∩Bc)HBZJβJ

=β ′
J∩Bc Z′

J∩Bc HBZJβJ =
∑

�∈J\B

β�Z̃′
B(�)HBZJβJ

≤
∑

�∈J\B

‖β�‖‖Z̃′
B(�)HBZJβJ‖

≤|J \B| max
�∈J\B

‖β�‖ max
�∈J\B

‖Z̃′
B(�)HBZJβJ‖

≤d1‖βJ‖ max
�∈J\B

‖Z̃′
B(�)HBZJβJ‖,
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since β� is a subvector of βJ . Further, by (4.3)–(4.5), we obtain that, when k is large,

‖βJ‖2 =
k−1∑
i=0

∑
|p|=i

|aip(θ1)|2 =
k−1∑
i=0

c2
i

∑
|p|=i

(
i

p

)
(θ1)2p

=
k−1∑
i=0

c2
i ‖θ1‖2 =

k−1∑
i=0

c2
i = ‖g‖2(1+o(1)),

by the identification condition and the binomial formula that the power (θ1)2p is the product
of each element of θ1 with corresponding power in 2p. Hence,

max
�∈J\B

‖Z̃′
B(�)HBZJβJ‖2 ≥ (d1‖βJ‖)−2‖HBZJβJ‖4.

Moreover,

‖HBZJβJ‖2 =β ′
JZ′

JHBZJβJ = β ′
J∩Bc Z′

J∩Bc HBZJ∩BcβJ∩Bc

≥‖βJ∩Bc‖2λmin(Z′
J∩Bc HBZJ∩Bc)

=n‖βJ∩Bc‖2λmin(E[Z̃k(x1,B(�))HBZ̃k(x1,B(�))
′]),

with high probability. We finally have

‖P�BZJβJ‖2 ≥ 1

nλmax(Z̃′
B(�)

HBZ̃B(�))
‖Z̃′

B(�)HBZJβJ‖2

≥ n‖βJ∩Bc‖4λ2
min(E[Z̃k(x1,B(�))HBZ̃k(x1,B(�))

′]
(d1‖βJ‖)2λmax(E[Z̃k(x1,B(�))HBZ̃k(x1,B(�))

′])

≥ nc4
0 c2(M)

d2
1 ‖g‖2 C(M)k3μ

,

with high probability when k is large, where c0 = ∫
g(x)e−x2

dx and we suppose c0 �= 0.

Otherwise, it can be replaced by any ci = ∫
g(x)hi(x)e

−x2
dx �= 0 for some i ≤ k −1.

It follows from Assumption 3.9 that

max
�∈Bc

(nσ̂ 2
B −nσ̂ 2

B(�)) ≥ nc4
0 c2(M)

d2
1 ‖g‖2 C(M)k3μ

,

uniformly in B with |B| ≤ M with probability tending to one. �

Proof of Corollary 4.1. Note that

EBIC(B)−EBIC(B(�))

=n log
nσ̂ 2

B

nσ̂ 2
B(�)

+ [KB −KB(�)](log(n)+2η log(d))

=n log

[
1+

nσ̂ 2
B −nσ̂ 2

B(�)

nσ̂ 2
B(�)

]
− [KB(�) −KB](log(n)+2η log(d))
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≥n log

[
1+

nσ̂ 2
B −nσ̂ 2

B(�)∑n
i=1(yi − ȳ)2

]
− k|B|+1(log(n)+2η log(d))

≥
nσ̂ 2

B −nσ̂ 2
B(�)

n−1∑n
i=1(yi − ȳ)2

− kM(log(n)+2η log(d))

since log(1+ x) ≥ min(log2,0.5x) for any x > 0, where ȳ is the average of yi,i = 1, . . . ,n.
The conditions of both Corollary 4.1 and Theorem 3.1 ensure that the screening

mechanism does not stop when J �⊂ B and |J ∪ B| ≤ M with high probability. Indeed, if
J �⊂ B1, . . . , J �⊂ Bm and |J ∪ Bm| ≤ M, we have n−1∑n

i=1(yi − ȳ)2 ≥ σ̂ 2
B1

− σ̂ 2
Bm

with
probability tending to one. Hence, with high probability we have Var(y) > (m−1)DM .

If J �⊂ Bm and m−1 > TM , then TM <Var(y)/DM which contradicts with the definition of
TM . Hence, at most TM steps of forward screening we will have J contained in the resultant
set. �

Proof of Corollary 4.2. Note that

EBIC(Bm(�))−EBIC(Bm)

=n log
nσ̂ 2

Bm(�)

nσ̂ 2
Bm

+ [KBm(�) −KBm ](log(n)+2η log(d))

=n log

[
1−

nσ̂ 2
Bm

−nσ̂ 2
Bm(�)

nσ̂ 2
Bm

]
+ [KBm(�) −KBm ](log(n)+2η log(d)).

Since J ⊂ Bm, similar to the proof of Theorem 4.1 we can apply the proposition of Zhang
(Zhang, 2010) to obtain σ̂ 2

Bm
= E[ε2] + oP(1). Meanwhile, from a similar derivation to

Theorem 4.1, we have

nσ̂ 2
Bm

−nσ̂ 2
Bm(�) = ‖P�BY‖2 = OP(nk−s)+OP(K|Bm|(log(n))τ ).

Thus, EBIC(Bm(�)) − EBIC(Bm) = KBm(�)(log(n) + 2η log(d))(1 + oP(1)) and then the
scheme of screening stops with probability tending to one. �
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