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Abstract. We show that the Hausdorff dimension of any slice of the graph of the Takagi
function is bounded above by the Assouad dimension of the graph minus one, and that
the bound is sharp. The result is deduced from a statement on more general self-affine
sets, which is of independent interest. We also prove that Marstrand’s slicing theorem on
the graph of the Takagi function extends to all slices if and only if the upper pointwise
dimension of every projection of the length measure on the x-axis lifted to the graph is at
least one.
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1. Introduction
The Takagi function T) : [0, 1] — R for the parameter % < A < 1 is defined by setting

Ty (x) = Z Atdist(2"x, Z) (1.1)
n=0

for all x € [0, 1]. In mathematical writing it is customary to distinguish a function from
its graph. Nevertheless, we stick to the definition of a function as a total and univalent
binary relation which in our case is convenient notationwise as then 7, denotes both the
function and its graph. The Takagi function, being continuous yet having at no point a
finite derivative, is one of the famous examples of ‘pathological functions’. For the basic
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properties of the Takagi function and a summary of recent research the reader is referred
to the surveys of Allaart and Kawamura [6] and Lagarias [27].

Level sets of the Takagi function, that is, the sets of points x € R at which 7} (x) equals
a given value, have been studied extensively; see [2-5, 14, 15, 28, 29, 31]. Such level sets
appear as horizontal slices of T, meaning that they are intersections 7) N (Vp + x), where
Vp is the x-axis and x € R2. When A = %, it has been proven that the Hausdorff dimension
of slices with integer slope is at most %, and the bound is attained by some slice; see
[16, 33]. In this paper, we obtain a sharp bound for the Hausdorff dimensions of all slices
of T, when % < A < 1, in terms of the Assouad dimension of 7.

The study of the dimensions of slices has a rich history. The classical Marstrand slicing
theorem [35] shows that almost every fibre of a projection does not store more dimension
than what is the surplus. We denote the Hausdorff dimension by dimy and the collection
of all lines in R? passing through the origin by RP!. The slicing theorem states that, given
aBorelset X C RZand V € R]P’l, we have

dimg(X N (V + x)) < max{0, dimy(X) — 1} (1.2)

for Lebesgue almost all x € V. Often when the set X has some additional arithmetic or
geometric structure, stronger statements can be made about dimensions of all slices. For
example, if X = A x B, where A and B are invariant under the maps x +— 2x mod 1 and
Xx > 3x mod 1, then the bound in (1.2) holds for all slices, except those in the directions
of the coordinate axes. This celebrated result was first conjectured by Furstenberg [21] and
recently proved independently and simultaneously by Shmerkin [39] and Wu [41].

The Takagi function is an example of a self-affine set. For many sets in this class,
the Hausdorff dimensions of slices are closely connected to the Assouad dimensions
of the sets; see §2 for the relevant definitions. This was first observed by Mackay
[32], who expressed the Assouad dimensions of a special class of self-affine sets called
Bedford-McMullen carpets in terms of the dimensions of their projections on the x-axis
and the dimensions of their slices in the direction of the y-axis. Algom [1] showed that
the Minkowski dimension of any slice, which is not in the direction of the coordinate axes,
of certain Bedford—-McMullen carpets X is bounded above by max{0, dima (X) — 1}. Here
dima (X) denotes the Assouad dimension of X and is always bounded from below by the
Hausdorff dimension. Recently, Bardny, Kdenmiki, and Yu [10, Theorem 1.3] showed that
a similar phenomenon is also present for certain totally disconnected self-affine sets. In
fact, in the class of self-affine sets they consider, the upper bound max{0, dima (X) — 1}
is achieved and there are examples of self-affine sets in this class for which dimg(X) <
dima (X). However, since the Takagi function is connected, the results in [10] do not apply.

Utilizing the self-affinity of the Takagi function, Bardny, Hochman, and Rapaport
[7, Corollary 7.6] proved that

log A
<
log 1/2

dimy(T3) = 2 — (1.3)

see also Ledrappier [30]. The Assouad dimension of the Takagi function was studied by

Yu [42] in some special cases. He showed that, if 2 in the definition of the Takagi function
(1.1) is replaced by an integer greater than 3, there exist parameters for which the Assouad
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dimension is strictly larger than the Hausdorff dimension. In the online version of the
paper, he also conjectured that dima (73 ) = 2 for all % < A < 1. The following theorem is
the first main result of this paper.

THEOREM 1.1. If T, is the Takagi function, then

max dimg(7, N (V +x)) =dima(Ty) — 1 < 1.

x€Ty,
VeRP!

This theorem is based on a result for a more general class of self-affine sets, Theorem
4.1, which generalizes the results in [9, §5] and [10, §5].

We investigate when the bound (1.2) of Marstrand’s slicing theorem can be extended to
all slices of the Takagi function. By Theorem 1.1, this happens precisely when dima (73) =
dimy (7). For a given ¢t € R, let proj, : R?2 - R, proj, (x1, x2) = (x1, x2) - (¢, 1). The
pushforward of a measure u is denoted by f,u whenever f is a measurable mapping.
We let v = (Id, T;L)*E1 be the Lebesgue measure £! lifted to the Takagi function T) and
dim; . (1, x) be the lower pointwise dimension of a measure u at x. It follows from (1.2)
and (1.3) that

di—mloc(projt*v’ proj,(x)) > 1

for v-almost all x € T, and Lebesgue almost all # € R. The following theorem is the second
main result of this paper. We show that if the above lower bound holds for all x and ¢, then
Marstrand’s slicing theorem (1.2) is extended to all slices.

THEOREM 1.2. If Ty, is the Takagi function and v = (Id, T5)+ L is the Lebesgue measure
L lifted to the Takagi function T;, then

. log A
max dimg(7,, N(V+x)=1-— T
xeTy, log 3
VeRP!

if and only if
dimyec (projz* v, Pij; x) =1

for all x € T, and t € R, where dimjo. denotes either the lower or the upper pointwise
dimension.

We remark that
dimy, (projy v, proj, (x)) > 1
holds for all x € 7;, and ¢ € R if and only if the L9-dimension of the measure proj,,v
equals one for all ¥ € R and g > 0, that is,

PO . log(proj,,v(B(proj,(x), r))
inf lim inf min =
teR rl0 xeTy log r

1.

We refer to the definition and basic properties of the L9-dimension for [40, §1.3], and leave
the proof of the above fact as an exercise for the interested reader.

The rest of the paper is organized as follows. In §2 we recall some basic results in
dimension theory and establish the general setting of self-affine sets we will be working
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with. The results in the general setting are presented in §§3 and 4. We will then specialize
to the Takagi function and prove Theorem 1.1 in §5 and Theorem 1.2 in §6.

2. Notation and preliminaries
2.1. Dimensions and weak tangents. Let us briefly recall definitions of some of the basic
notions of dimension used in fractal geometry. The Hausdorff dimension of aset X C R? s

dimyg(X) = inf {s > 0: for every ¢ > 0 there is {U; };cn such
that X C U U; and Z diam(U;)* < 8}.
ieN ieN
The lower and upper pointwise dimensions of a Borel measure u at x € R? are

1 B(x,
dim 11, x) = lim inf log p(B(x. 7))
r

log r
_ 1 B(x,
dimlOC(l'L7 _x) = lim Sup M
rl0 lOg r

respectively. We assume familiarity with the basic properties of the Hausdorff dimension
and pointwise dimensions, and how they are connected; see, for example, [17, 36]. If X is
bounded, then the r-covering number of X,

k
N,y (X) = min {k eN: X C U B(x;, r) for some x1, ..., x; € Rz},

i=1
is the smallest number of closed balls of radius » > 0 needed to cover X. The lower and
upper Minkowski dimensions of a bounded set X C R? are

log N, (X

dimy (X) = lim inf 22X
710 —logr

log N, (X)

dimpv(X) = lim sup
ri0 —logr

respectively. If the limit exists, it is denoted by dimp(X) and called the Minkowski
dimension of X. The Assouad dimension of X C R? is

dima (X) = inf {s > 0: there exists C > 0 such that
foreveryx € X and 0 < r < R,
R )
the inequality N,(X N B(x, R)) < C(—) holds}.
r

The Assouad dimension is designed to capture the extremal scaling behaviour of the set by
quantifying the size of the least doubling parts of the set in question. The basic inequality
we will use repeatedly is

dimg (X) < dimy (X) < dimp(X) < dima (X)

https://doi.org/10.1017/etds.2023.117 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.117

Slices of the Takagi function 2365

for all bounded sets X C R2. For the proof of this and other basic properties of the Assouad
dimension, we refer to [18].

The concept of weak tangents has proven to be very useful in the study of the Assouad
dimension. Let X be a compact subset of R?. For x € X and r > 0 we denote by
M, ,: R?> — R? the linear map

Mx,r = u
-
Note that M . (B(x, r)) = B(0, 1). A set T which intersects the interior of B(0, 1) is called
a weak tangent of X if there are a sequence (x,),en of points in X and a sequence (7,),eN
of positive real numbers converging to O such that

Mxnsrn (X) N B(O7 1) — T

in Hausdorff distance. The collection of all weak tangents of X is denoted by Tan(X).
It is easy to see that a dimension of a weak tangent is a lower bound for the Assouad
dimension of X C R2, that s, dima (X) > dima(7T) for all T € Tan(X); see, for example,
[19, Theorem 5.1.2]. Kdenmiki, Ojala, and Rossi [26, Proposition 5.7] proved the following
stronger result, which shows that the Assouad dimension of a compact set is realized by
the maximal Hausdorff dimension of its weak tangents.

LEMMA 2.1. If X C R? js compact, then dimp (X) = max{dimy(7'): T € Tan(X)}.

The result introduces a way to obtain an upper bound for the Assouad dimension by
bounding the Hausdorff dimension of every weak tangent.

2.2. Real projective line and matrices. Define an equivalence relation ~ on R? \ {0}
by setting v ~ w if and only if v = cw for some ¢ € R. Denote the equivalence class
of v € R%\ {0} under this relation by (v). An elementary observation is that for any
0 # ¢ € Rand v € R?\ {0} we have (cv) = (v). Geometrically, (v) = {w € R%: w = cv
and ¢ € R} C R? is a line in R? in the direction of v passing through the origin. The real
projective line is RP! = {(v): v € R? \ {0}}. An element of RP! is called a line. If the
representative of an element of RP! is left implicit, we use capital letters such as V or W
to refer to the element. We let <: RP' — R denote the metric on RP! given by

B <|v-w|>_ . (nmwn)
<((v), (w)) = arccos =arcsin | ——— |,
ollllwll lollflwll

where v - w and v A w denote the inner product and exterior product of the vectors v and
w, respectively. In other words, the distance between two lines is given by the smaller of
the angles between them. A ball in this metric is called a projective interval. With the
topology induced by the metric, the map v > (v) from R? \ {0} to RP! is continuous.

The group of invertible 2 x 2 matrices is denoted by GL7(R). A matrix A € GL,(R)
induces an action on RP! by

A(v) = (Av).
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For any V € RP', we denote by projy : R? — V the orthogonal projection onto the
subspace V, that is, projy is the unique linear map satisfying projy |y = Id|y and
ker(projy) = VL Ttis easy to see (consult, for example, [25, Lemma 2.1]) that a rank-one
2 x 2 matrix A is bi-Lipschitz equivalent to projye, ). -

The singular values o1 (A) and a2 (A) of a matrix A € GL2(R) are the square roots of
the non-negative eigenvalues of the positive definite matrix A" A, ordered so that o1 (A) >
a2(A). Note that a1 (A) and a2 (A) are the lengths of the semiaxes of the ellipse A(B(0, 1)).
If A e GLy(R) is such that a1(A) > ax(A), then we let n;(A) be one of the two unit
eigenvectors of AT A corresponding to the eigenvalue a1 (A)2. If a1(A) = az(A), then
we write 71(A) = S' = {x € R%: |x| = 1}. Observe that a1 (A) = |A| = || A|(n1 (A,
ax(A) = |A7H7h = AT (1 (ATD) 7! and @ (A)az(A) = [det(A)].

2.3. Self-affine set and shift space. An iterated function system (IFS) is a finite tuple
of contractive maps ® = (¢1, . . . , ¢x) acting on R2. By a classical result of Hutchinson
[22], ® admits a unique non-empty compact set, denoted by X, satisfying

N
X =Jwi0).

i=1
We call X the limit set of ®. We say that ® is an affine IFS if the maps ¢; are affine, that
is, i (x) = Ajx + b;, where A; € GL>(R) and b; € R2. In this case, the corresponding
limit set is called a self-affine set. We use the convention that whenever we speak about a
self-affine set X, it is automatically accompanied by a tuple of affine maps which defines
it. A self-affine set is said to satisfy the strong separation condition (SSC) if ¢; (X) N
@j(X) =@ foralli # j, and the strong open set condition (SOSC) if there exists an open
set U such that X NU # @, ¢;(U) C U foralli e {1,...,N},and ¢;(U)Ng;(U) =0
wheneveri # j.

Given an IFS, we consider the symbolic representation of the limit set X as follows. Let
¥ ={1,..., N}N denote the collection of all infinite words obtained by concatenating
digits in {1, ..., N}. Similarly, X, = {1,..., N}" is the set of finite words of length
n € Nyand Z, = UnGN %, is the set of finite words of any length. Given 1 = iiy - - - €
¥, we define i|, =i - - - iy to be the restriction of i to its (ﬁrst n indices, and given
i=i1---ip ey leti” =il,-1=i1---ip—1 € Zy—1and 1 =i, - - - i] be the word
obtained from i by reversing the order of its digits. The concatenation of two words
i€ X and j € X, U X is denoted by 1j. Given 1 € X, the infinite word obtained by
concatenating i with itself infinitely many times is denoted by i, thatis, 1 = ii - - -.
For two finite or infinite words i and j, their longest common prefix is denoted by
i A j, and the length of a word i is denoted by |i|. We define o: ¥ — X by setting
oi=o0(1) =i3--- forall i =ijip --- € X, and call it the left shift. Given n € N and
i€ X¥,, we define the cylinder set by [1] ={j € X: j|, = 1}. The shift space X is a
compact topological space in the topology whose base is the collection of all cylinder sets.
Alternatively, a metric o on X defined by

o(i, 3) =271
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with the interpretation that 27°° = 0, induces the same topology as the open balls in this
metric are precisely the cylinder sets. It is also worth pointing out that the cylinder sets are
open and closed in this topology and generate the Borel o-algebra. A map f: ¥ — M,
where (M, d) is a metric space, is Holder continuous if there are constants C, o > 0
such that

d(f(1), £(3)) < CalM1,

for all 1, j € X. Finally, for a given IFS (¢, . . ., ¢n) and its limit set X, we define the
canonical projection w: ¥ — X by setting

7i=m(i) = lim ¢ o---o0¢; (0)
n—oo
foralli =ijip--- € X, where 0 = (0, 0). It is evident that v is Holder continuous.

2.4. Semigroup and domination. Understanding the semigroup generated by A =

(A1,...,ANn) € GLy(R)N is crucial in the study of self-affine sets. In this context, it
is rather standard practise to use X, to index the elements in the semigroup. Indeed, we
write

Ai = Ay -+ A

n

foralli =iy ---i, € ¥, and n € N. Our standing assumption is that A is dominated, that
is, there exist constants C > 0 and 0 < t < 1 such that

ax(A;) < Cttlag(Ay) @2.1)

for all 1 € ¥,. Domination ensures that when iteratively applying the matrices in A to the
unit ball, the resulting ellipses get thinner and thinner at an exponential rate. We say that
a self-affine set X is dominated if the tuple consisting of the linear parts of the maps in
the associated affine IFS is. A proper subset C C RP!' is called a multicone if it is a finite
union of closed projective intervals. A multicone C C RP! is strongly invariant for A if
A;C c Cforalli € {l,..., N}, where C° denotes the interior of C. By [12, Theorem B],
A admits a strongly invariant multicone if and only if A is dominated. It is a simple fact that

if C is a strongly invariant multicone for A, then RP! \ C is a strongly invariant multicone
for A=l = (A71, ..., ARY). Write

AL=(ADT =A] AL
-1 —1 —1 -1
A(l_ =(A(l_) =Ai] ...Ain ’
and let
1(1) = (Aim(Ay)),
92(1) = (AL m(A)),

forall 1 € ¥, and n € N. The geometric interpretation is that ¢ (1) and ¥, (i) correspond
to the orientation of the principal semiaxis of the ellipses A; (B(0, 1)) and AZ_] (B(0, 1)),
1
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respectively. We also define
Pr(1) = lim 0% (iln)
n—0oo

for all 1 € ¥ and k € {1, 2} whenever the limit exists. The following lemma guarantees
that under domination, the limit exists at every point, and therefore we have defined a map
Dr: T — RPL

LEMMA 2.2. IfA=(A1,...,AN) € GLy(R)N is dominated and C C RP! isa strongly

invariant multicone for A, then, for k € {1, 2}:

(1)  the limit 9;(1) = lim,— o O (i|n) exists for all 1 € ¥ and the convergence is
uniform;

(2) the map D T > RP! is Holder continuous;

(3) the set 9k (%) is compact and contains the accumulation points of {9r(1): 1 € X},

@) Ai91(3) =01(19) and A?%(j) =02(1j) foralli € Ty andj € X;

(5) D1(2) C C°and V() C RP'\ C.

Proof. For k = 1, claims (1), (3), and (4) are proved in [38, Lemma 2.1] and (5) follows
from the definition of the strongly invariant multicone. One can repeat the proofs for
the dominated tuple A~! = (AT, Ay 1Y to obtain the claims for k = 2. Similarly,
it suffices to prove (2) for k = 1.

To thatend, let 1 € X, m € N, and

O = <(@1(Llm), F1(LIm41))-

In the proof of [24, Lemma 2.1], it was shown that there is ¢ > 1 not depending on m
such that

o2(Ai),)

ar(Ai),)

Since 91 (i|m) — P1(i) as m — oo there exists ng € N such that for every m > ng we
have 6,, < 2 sin(6,,) and, by recalling the definition of domination from (2.1),

_ e A; 2¢C
<G, T1(E) < Z@ Z szA :’”) 2cC Z "=

for all n > ng. Forevery i, j € X withn = |1 A j| = ng, we thus have

sin(0,,) < ¢

(). D1(4 (4 ; Y. T (A 4cC jing)
L 1(1), 91(3) < 2D 1(1), D1(1]n)) + <(@1(iln), P1(3)) < T—°
and the map ¥ : ¥ — RP! is Holder continuous. O

For a dominated matrix tuple A = (Aq, ..., Ay) € GLy(R)Y, the sets

Yr ={im(A) € RP': A e {cAi: ceRand i € X,} has rank one},

Xr ={im(A) € RP': A e {cAZ_l: c € Rand i € X,} has rank one}
1

are the collections of forward and backward Furstenberg directions, respectively. The
following lemma gives useful characterizations for the sets X r and Y.
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LEMMA 2.3. IfA= (Ay, ..., Ay) € GLy(R)V is dominated and C C RP' isa strongly
invariant multicone for A, then
o0 o
Yr=01(%) = ﬂ U AiCc and Xp=7y3) = ﬂ U A?i_l]R]P’l \ C.
n=11ieX, n=11iek,

Proof. We prove the claims for Yr and note that the claims for X follow similarly by
considering the dominated tuple Al = (A_l, e, A;,l). Let us first show that Yr C
¥1(2). To that end, let V € Yr and choose a sequence (i,),en of finite words and a
sequence (c,)neN of real numbers such that ¢, A;, — A and im(A) = V. By passing to a
subsequence if necessary, we may assume that

m(Ai,) = n

for some 1 € S!. Since the maps Aj, are linear and sup,, . llc, A4, || < oo, it follows from
the Banach—Steinhaus theorem that ¢, A;,71(A;,) — An, and therefore

[Anll = lim c,l|As,m(As )l = lim cyllAs, || = Al
n— o0 n—odo

In particular, ||An|| > 0, so An is a non-zero vector in im(A). Thus, by the continuity of
the map v > (v),

V =im(4) = (An) = lim (¢, A1,1(As,)) = lim 91(in),

and V € 91(X) by Lemma 2.2(3).
Let us then show that 91 (X) C (;2; Usey, AiC. Fix V € 91(2) and let i € X be
such that 91 (1) = V. Observe that, by Lemma 2.2(4),
B1(1) = Az}, 01(0"1)

for all n € N. Since, by Lemma 2.2(5), #;(¢”1) € C for all n € N, we have

o0

ve() U Asc
n=11ieX%,

as required.

Finally, let us show that (1,2, Uiez,, A;C C YF. To that end, suppose that V €
Mn=i Uscsx, AiC. Then for any n € N, we may choose i, € ¥, and V, € C, such that
V = A;,V,. Let v, be a unit vector such that V,, = (v,,). Note that the set

S={A e GLxR): [|[A]l = 1}

is a compact subset of G L, (R). By passing to a subsequence if necessary, we may assume
that v, — v for some v € S! and

in

As, I
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for some A € S. Now, by recalling the definition of domination from (2.1), there exist
C > 0and 0 < t < 1 such that
ai(Ag)on(As,) _ aa(Ay,) <Cth,

A, ai(Ai,)
Consequently, det(A) = 0, which together with ||A|| = 1, implies that rank(A) = 1. Recall
that, by [13, Lemma 2.3], there is a positive constant « such that

|det(]| Az, || A1) =

Az, vnll 2 kA, [Hvall = k| As, |

forall n € N. Since the maps A;, are linear, it follows from the Banach—Steinhaus theorem
that [|A;, || _lAin v, — Av, and therefore

A
lAv| = lim [ 1,,Un||

=
n—oo || A, |l

and Av is a non-zero vector in im(A). Thus, by the continuity of the map v — (v),

V= lim A;,V, = lim (A, v,) = (Av) = im(A) € Yp.

n—oQ n— 00

Therefore, V € YF and the proof is finished. O

2.5. Bounded neighbourhood condition. To finish this section, we introduce a geometric
separation condition for self-affine sets, which we call the bounded neighbourhood
condition. We remark that a similar condition has already been introduced in [23]. We
also define a weaker variant which allows exact overlaps in the construction. Let X be a
self-affine set and

P(x,r) ={pi: a2(Ay) <7 < az(A;-) and 3 (X) N B(x, r) # ¥}

forall x € X andr > 0. We say that X satisfies the weak bounded neighbourhood condition
(WBNO) if
sup #®(x, r) < oo.

xeX
r>0

Furthermore, X satisfies the bounded neighbourhood condition (BNC) if it satisfies the
WBNC and ¢; # ¢4 whenever i, j € X, such that i # j. It turns out that if the SSC
is not satisfied, then the WBNC is the right separation condition for studying the tangent
structure of X. Let us comment on how the BNC and the WBNC are related to other
separation conditions. It is not difficult to see that the SSC implies the BNC, but we will
give an example of a self-affine set satisfying the SOSC but not the BNC later in Example
3.3. This also shows that it is not possible to replace the WBNC with the SOSC in the
assumptions of the main result of §3.

3. Tangent decompositions and slices

We begin to study the structure of weak tangent sets of dominated self-affine sets satisfying
the bounded neighbourhood condition. In the presence of the WBNC, we show the
existence of tangent decompositions and demonstrate how they can be used to study
slices of the set. Our main observation in this section is the following proposition which
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generalizes Barany, Kdenmiki, and Rossi [9, Theorem 5.2]. By A 4+ x we mean the set
{a+x:aeA)forall A C R? and x € R2.

PROPOSITION 3.1. IfX is a self-affine set satisfying the WBNC, then for every T € Tan(X)
there exist x € X and V € X such that

dimy(7) < max{dimyg(X), 1 + dimg(X N (V 4+ x))}.
In particular,

dimp (X) < max {dimH(X), 14+ sup dimg(X N(V +x))t.
xeX
VeXp

If X is dominated, then dimy(X) can be removed from both maxima above.

In Example 3.3 we show that the proposition can fail if the WBNC is not satisfied, and
in fact this is even possible under the SOSC. In particular, the previous proposition is not
true if one replaces the WBNC by the SOSC.

The proof of Proposition 3.1 relies on finding suitable decompositions of the tangents
of self-affine sets into finitely many components, where each component can be affinely
mapped to a slice of the original set. This is made formal by the following lemma.

LEMMA 3.2. If X is a self-affine set satisfying the WBNC and T € Tan(X), then there
exists a finite index set I such that for every i € I there are a set T; C T, a point y; € X,
and a linear map G; for which:

D) T=Ue Tis

(2) rank(G;) > 1;

3 Gi(TH)+y CX.

Furthermore, if X is dominated, then rank(G;) = 1 and im(G;) € Xr foralli € I.

Proof. Let T € Tan(X). By definition, we may choose a sequence (i,),en of infinite
words and a sequence (), <N of positive real numbers converging to 0 such that

Mnin’rn (X) N B(O, 1) — T
in Hausdorff distance. Since X satisfies the WBNC, there exists M > 0 such that
#O(ri,, ry) <M,

for all n € N. Hence, there is K € {1, ..., M} such that #®(wi,, r,) = K for infinitely
many n. In other words, there exists a sequence (ny)gen Of natural numbers such that
#®(w iy, ry,) = K forall k € N. Write

O (T dng. ) = {05 Jicy
for all k € N. By passing to a subsequence if necessary, we see that for every i
{1, ..., K}, there exists a set 7; such that

(Mxs,, 1, © 5 s Masy ogojrsz)(XK) NBO, DX =Ty x - x Tk

1,
s
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in Hausdorff distance. Noting that

K
Mz, 1, (X N BO 1) = Mrs,, 1, 0051 (X)NBO, 1)
i=1

for all k € N, we see that (1) holds.
Since XX is compact, we may assume that

(@5 Tin), .o @l (Tin)) = O1,- o yk) € X5,
Mk "k

and therefore for each i € {1, ..., K} there exists a linear map G; such that

-1 -1 -1 -1
((pj)llk o Mﬂi)lk’rnk’ R} (p]yll(}\ o MJTi"k’r'lk) g (Gl +y19 L] GK +yK)

in the uniform convergence in XX . Clearly,

g5 oMy . (Mas,, ., 05 (X)NBO,1)CX,

g T dnjeoTng

so by taking the limit, we see that G;(7;) + y; C X which proves (2).
Finally, to prove (3), denote by A the linear part of ¢5; . Then, by the definition of
Nk Nk
(7 ip,, ry,), we have that
-1 -1
rmAGH = rman(Ag )7 > 1.

Since A +— ||A|| is continuous, we have ||G;| = limy_, o ||r,,kAj,-1 I >1>0 and, in
)lk
particular, rank(G;) > 1 foralli € {1,..., K}.
Let us next assume that X is dominated. Fix i € I and, for simplicity, denote j flk by J«.
First observe that the sequence (]jx|)xen is unbounded, since if it were bounded by some
number L € N, we would have

L
> (A5 > (_min oadp)” >0

for all k € N, contradicting the fact that limy_, r,, = 0. By domination, there exist
C > 0and 0 < t < 1 such that

et AT = —B__ ___Tn
Mk det(A5,)  a1(Aj)0n(A5,)
a2(A5,) p ¢ 13kl

1
e
linear map G;, which is a rank-one map, im(G;) € XF. O]

Since |j«| is unbounded, we see that rank(G;) = 1. Finally, since r,, Aj_. converges to the

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let T € Tan(X) and {T;};c; be a tangent decomposition
of T given by Lemma 3.2. Notice that, since T = Uie ; Ti, we have dimy(T) =
max;e; dimy(7;). Let i € I be the index which achieves this maximum. By Lemma 3.2,
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we have G;(T;) + y; C X N (im(G;) + y;), and hence
dimy(G;(T3) + yi) < dimg(X N (m(G;) + yi)).
If rank(G;) = 2 then dimyg(G; (T;) + y;) < dimy(X). On the other hand, if rank(G;) = 1
then x — G;x + y; is bi-Lipschitz equivalent to projye,(g,)., thus we have
dimy(7;) < dimg(R X projyerg, )+ (73))
= 1 + dimp (projyer(g,)L (7)) = 1 + dimu(G; (T;) + x).
Therefore,
dimpg(7) = dimpg(7;) < 1 4+ dimg(X N Am(G;) + yi))

and we have shown the first claim. By Lemma 2.1, the second claim follows immediately
from the first claim.

If X is dominated, then rank(G;) = 1 above by the last assertion of Lemma 3.2 and the
last claim follows. O

Example 3.3. In this example, we exhibit an affine IFS (g1, ¢2, ¢3), where ¢; (x) = A;x +
b; for all x € R?, with self-affine set X satisfying the SOSC but not the WBNC such that
(A, A, A3) is dominated and

1+ sup dimg(X N (V + x)) < dima(X) = 2. 3.1
VERS

In particular, this shows that the upper bound of Proposition 3.1 can fail if the WBNC is

replaced by the SOSC. Let
0
, A= ) As=
3

1
A=1°
~(;

7 1
b1 =0,0, by=(0,0, bz={(—,—]).
1=1(0,0) 2 =1(0,0) 3 <12 4>

A= Q=
1= 5=
\—/

FNTEN-
Bl— A=

and

For an illustration of the associated self-affine set X, see Figure 1. Since 0= 0,0)is a
fixed point for both ¢; and ¢,, we have 0e ¢1(X) N@2(X) and X does not satisfy the
SSC. However, X clearly satisfies the SOSC with the open set U = (0, 1). Furthermore,
it is not difficult to see that for any M € N there exists 7 > 0 such that

#D(0,r) > M,

so X does not satisfy the WBNC.

For each ¢ > 0 let C; C RP! be the cone having the lines ((1, —¢)) and ((—e¢, 1)) as
boundaries, and containing the line ((1, 1)). It is easy to see that C, is strongly invariant
with respect to (A, As, A3) for every sufficiently small ¢ > 0, and hence (A, Az, A3)
is dominated. We also have A;Cy C Cp for all i € {1,2, 3}. Let Dy C RP' be the cone
having the lines ((3, —1)) and ((1, —3)) as boundaries, and containing the line ((1, —1)).
It is easy to see that AFIDO C Dy and that (3, —1) and (1, —3) are eigenvectors of A
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FIGURE 1. The self-affine set of Example 3.3. The first-level cylinders are illustrated by dashed lines.

and A,, respectively. Therefore, X r is not a singleton, and furthermore, by Lemma 2.3,
XFr C Dy. Simple algebraic manipulations show that

1 1y =1 1[5

—,  max ||A; < —,/—= <032 3.2
3 g 1A; vl (3.2)

Aill <0.62,  min [|A;]y] >
A ]l < 31;(‘;}) lA;1v Il TV

foralli € {1, 2, 3}.

Let us now show that dima(X) = 2. As X C R2, it is enough to prove dima (X) > 2,
and for this, by recalling Lemma 2.1, we construct a suitable weak tangent. Let us define
T, : R? — R? by setting

Ty (x) = Mg 3-n(x) = 3"x

forall x € RZand n € N, and let T be the Hausdorff limit of the sequence T,,(X) N B(0, 1).
If we can show that 7 = Qy, where Q; = B(0, 1) N[0, 1]? is the closed first quadrant
of the unit ball, then dimp (X) > dimyg(7) > 2 as required. To that end, consider the
set B3 =iy ipe Xp:ixe{l,2) forallk € {l,...,n}}. Lete; = (1,0) and e; =
(0, 1). Note that, since ||Aier|| = 37" forboth k € {I1,2} and i € 2,11’2 by (3.2), we have

Tu(ps(U) N Tu(p3(U)) =0 and | ] Tu(es(@))NBO, 1) = 01,

ieZ,ﬁ’z

foralli, j € 23’2 with i # j. Then for any i € E,%’z, the central angle «; of the sector
T.(p1(U)) N B(O, 1) is

o = <<((Aier), (Aier)) = arcsin (M) < arcsin ((E)n) (3.3)
PR e lAserllAsell ) a) )
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where in the last inequality we used (3.2). Let y € Q1 and notice that for every n € N there
exists 1 € E,&’z such that y € T}, (¢; (U)). Since X contains a continuous path between the
points (0, 0) and (1, 1), there is a point x € dB(0, 1) N T;, (¢4 (U)) such that T, (¢4 (X)) N
B(0, 1) contains a continuous path between the points (0, 0) and x. In particular, together
with (3.3), this implies that there exists a point z,, € T, (@1 (X)) N B(0, 1) such that

|y — za| < arcsin ((3)").

Therefore, 7,,(X) N B(0, 1) — Q1, finishing the proof of dima (X) > 2.

It suffices to show that there exists ¢ < 1 such that dimg(X N (V + x)) < ¢ for all
x € XandV € Xr.Fixx € X and V € XF, and notice that, by (3.2), we have

diam(ps (@) N (V +x)) = | Az 1y [diam(T N (A7'V + 97 (0))
<Al 1y IV2 = 1A v IT V2 < (032)"V2

forallm e Nand i € 2,1,’2. Hence, for each s > —(log 3/log 0.32), we see that

H(XN(V4x)) < lim 272 Y A7 v < lim 29/23"(0.32)™ =0,
n— 00 n—od

iex,

and so dimg(X N (V +x)) < —(log 3/log 0.32) < 1.

Remark 3.4. For the purpose of this remark, let us briefly recall some definitions. For each
A € GLy(R) and s > 0, the singular value function is

aj(A)* if0<s
@ (A) = Ja1(ADaz(A)~ ! ifl <
(@1 (A)az(A)? ifs > 2.

The value ¢®(A) represents a measurement of the s-dimensional volume of the ellipse
A(B(0, 1)). Foreach A € GL>(R)N and s > 0, the pressure is

P(A,s) = lim 1 log Z @*(As).
neen ies,
As the singular value function is submultiplicative, the limit above exists by Fekete’s
lemma. It is also easy to see that the pressure P (A, s) is continuous and strictly decreasing
as a function of s with P(A, 0) > 0 and lims_, o, P(A, s) = —oco. We may thus define the
affinity dimension by setting dim,gr(A) to be the minimum of 2 and the unique s > 0 for
which P (A, s) = 0. If X is a self-affine set, then dim,er(X) denotes the affinity dimension
of the associated tuple of matrices. Also recall that a self-affine set is strongly irreducible
if no finite collection of lines in RP' is preserved by all of the matrices in the tuple.

In [10, Example 3.3], the authors answer a question posed by Fraser in [19], by con-
structing an example of a self-affine set X satisfying dimp,(X) < dimpg(X) = dimgg(X) <
dima (X), where dimy, denotes the lower dimension; see [19, §3.1] for the definition. The
construction is strongly based on the properties of an underlying self-affine carpet, so
it is an interesting question whether this behaviour is possible when X has no reducible
subsystems. Let X be the self-affine set defined in Example 3.3. By an argument similar to
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the calculation of the Assouad dimension in Example 3.3, it is easy to see that X has a line
segment as a weak tangent at the point (1, 1), and therefore dimp,(X) < 1 by [20, Theorem
1.1]. Moreover, since the matrices (A1, Az, A3) have pairwise distinct eigenvectors, the
strong irreducibility follows and by [7, Theorem 1.1] and a simple calculation using (3.2),
we have 1 < dimyg(X) = dimysr(X) < 2. Thus, Example 3.3 shows that, in the absence
of strong separation, the strict inequalities dimp,(X) < dimy(X) = dimgg(X) < dima (X)
are possible for self-affine systems with no reducible subsystems.

4. Self-affine sets with large projections

In this section we show that if all the projections of the self-affine set have maximal
dimension, then we have equality in Proposition 3.1. We also show that the supremum
in the statement can be replaced by a maximum. The following theorem is the main result
of this section, and Proposition 4.5 below ensures that it generalizes Barany, Kédenmiki,
and Yu [10, Theorem 3.2] by relaxing the SSC to a separation condition which allows
slight overlapping.

THEOREM 4.1. Let X be a dominated self-affine set satisfying the WBNC such that
dimy (projy 1 (X)) =1 forall V € Xf. Then

dimp(X) =1+ meg(x dimg(X N (V 4+ x))
VA:XF
=1+ mz}(x dimpa (X N (V + x)).

veRP\yp

The proof of the theorem uses ideas introduced in [10, §5], but the absence of strong
separation induces some complications. We essentially split [10, Lemma 5.2], which
assumes the SSC, into Lemmas 4.3 and 4.4 and make two key observations to work around
the lack of SSC. First of all, the intuition behind [10, Lemma 5.2] is that the weak tangent
sets of the self-affine set X have a comb-like structure, where the slices of the tangent
set along the direction of the teeth of the comb have full dimension, and the dimensions
of the slices in directions perpendicular to the teeth have dimension comparable to some
slice of the self-affine set in a Furstenberg direction. By Lemma 3.2, we know that under
the bounded neighbourhood condition, the situation is similar in the sense that the weak
tangents are finite unions of these comb-like sets. Secondly, in [10, §5], to show that the
teeth of the combs point in the same direction, the authors use the fact that any slice of the
self-affine set has dimension strictly smaller than one, which does not have to be true in
our setting. We work around this using domination in the following lemma.

LEMMA 4.2. Let X be a dominated self-affine set and (ip)ren be a sequence of
infinite words in . If (ng)neN is an increasing sequence of integers such that the limit
limy o0 01 (1kln,) exists, then limy_, oo U'1(1k) exists and

lim 91(ik) = lim O (ikln,)-
k— 00 k—00

Proof. Let (nx)ren be a strictly increasing sequence of integers such that the limit
W = limy_ o0 1 (ikln,) € RP! exists and let & > 0. By Lemma 2.2(1), ¥ (i) is well
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defined for every k € N and, by the uniform convergence, we may choose ko € N large
enough such that

A1kl F1(E0) < 5
for all k£ > ko. By the assumption, by making k¢ larger if needed, we also have
<1kl W) < 5,
for all k > k. Thus, by the triangle inequality, we have
<@ 1), W) < <@ 1(11), 91(Hklny) + <1 Gkl W) < &
and therefore, limy_, oo 01 (ig) = W. O

We abuse notation by denoting the intersection of 7 € Tan(X) with the open unit ball by
T°. Similarly, if {T;};c; is a tangent decomposition of T, then we let T° = T; \ 9 B(0, 1).
This should not cause any confusion, since we will not be referring to the actual interior of
T at any point. Furthermore, by the rank, image, and kernel of an affine map, we mean the
rank, image, and kernel of its linear part.

LEMMA 4.3. Let X be a dominated self-affine set satisfying the WBNC such that
dimy(X) > 1, and dimyg(projy (X)) =1 for all V € Xp. Let T € Tan(X) and {T;}icr
be a tangent decomposition of T given by Lemma 3.2. Then for every i € I there exists
W; € Y such that

dimg(T N(W; +y)) =1
forally € T?.

Proof. Let (ir)ren be a sequence of infinite words in ¥ and (rx)ren be a sequence of
positive real numbers converging to zero such that

Myi, (X)NB@O,1) > T.

Recall from the proof of Lemma 3.2 that there exist a sequence (ny)ren of integers and,
for each i € I, finite words j/, € %, and sets T; such that

Mz, iy 003, (X) N BO, 1) = T,

for all i € I in Hausdorff distance. Fix y € T° and choose i € I such that y € T;°. Since
y € 0B(0, 1), there is § > 0 depending only on y such that B(y, 2§) C B(0, 1). Therefore,
there are infinite words j; € [ i,k] such that M, i, (T(GE)) =y and

Mz, r,, (X O B(w ik, 8rpy)) C My oy, (X)NBQO, 1) 4.1

ink g
for all large enough k € N. Let m; > nj be the unique integer which satisfies

al(Ajklmk) <Oy, < Ol](Ajk|mk_]). 4.2)
By again passing to a subsequence if necessary, there exists an affine map P, such that

Mﬂink!rnk o(pjk‘mk g Py
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in the uniform convergence in X. By compactness and (4.1), we have y € P, (X) C T; and,
by domination, we have

a2(Aj,)

< Ct'M,
a1(Ayy,,)

so in particular det(”;fk]Ajk\mk) — 0 as k — oo. Also, by (4.2) and [8, Corollary 2.4],

there exists a constant C > 0 such that ||r,,k1 Ay Kl || = Cé for all k € N. Therefore, we see
that rank(Py) = 1. Let Wy, = im(Py) and note that by Lemma 2.3, Wy, € Y. Recall that
Py (X) and projye,(p, )L (X) are bi-Lipschitz equivalent, so by the assumption,

dimy (T N (W) +y)) = dimy(Py (X) N (W) +y))

=
> dimH(projker(Py)L (X)). 4.3)

Let us show that ker(Py) € Xr. Observe that the linear part of the map M1, , © @54,
is rn_kl Ajy,, and notice that this sequence converges to the linear part of Py in the uniform
convergence in X. Denote by Ay, the linear part of Py and let v be a unit vector in the kernel
of Ay. Since the eigenspaces of ("Jkl Ajk\mk)T(”Jk] Ay, ) converge to the eigenspaces of
A)T,A y and since ker(A,) = ker(AyTA y) is the eigenspace corresponding to the singular
value 0, we see that there is a sequence of unit vectors vy — v, such that

T 2
Al Ak, Uk = @2(As,, )7V
for all k € N. Let us define wy = aZ(Ajk|mk)_1Ajk|mk vi. By the foregoing, we have

-1 -1 1/2
lwill = @2 (A5, A5 vkl = @2(A5,0,, )7 (Asp vk - Asg o0

= az(Ajk'*ﬂk)_l<A§k\mkAjk|mk vk | Uk)l/z = O‘Z(Ajklmk)_l(OlZ(Ajklmk)_lvk ’ Uk)l/z
= - v =l =1,

where - is the standard inner product on R?. Therefore, by possibly passing to a
subsequence, we may assume that wy converges to some unit vector w and that

(Ajm) 7"
Jkl k 1 N By,
(A5, 7"

for some 2 x 2 matrix By. Since Al = (Afl, e, A;,l) is dominated, we see as before
that det(||(Ajk|Mk)’1 ||’1(Ajk|mk)*1) — 0, so By has rank at most one. Since

(Agl) ! Akl Vk
(A3, )7 e2(Asyy,,,)

by taking limits, we have that By(w) = v, so v is a unit vector in the image of B,.
Therefore, By is a rank-one matrix and ker(A,) = (v) = im(By) € Xr. By the assumption
and (4.3), we have that dimg(T N (Wy + y)) > 1. The upper bound is trivial, since
T N (Wy + y) is contained in a line.

Finally, let us show that W, is constant in 7}°. By passing to a subsequence if necessary,
we may assume that limy_, o ﬁl(jflk) = W; for some W; € Yg. Notice that W; does not

= Uk?
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depend on the choice of y € T;°. By Lemma 2.3 (or rather its proof), it is easy to see that
Wy =im(Py) = lim 91 (Gklmy).
k— 00
Therefore, by Lemma 4.2, we have im(Py) = limg_, o0 ¥1(3%). Noting that jﬁlk = Jklj5i |
Nk
and, applying Lemma 4.2 again, we see that
Wy = lim 91(3p) = lim 91(3;,) = Wi
k— 00 k—o00
finishing the proof. O

LEMMA 4.4. Let X C R? be compact. Then for every x € X and V € RP! there exist
T € Tan(X) such that

dimy(T N V) = dima(X N (V + x)) = dimg(X N (V + x)).

Proof. Let V € RP! and x € X and, by recalling Lemma 2.1, let Tpax € Tan(X N (V +
x)) be a weak tangent, which satisfies dimy (7Tmax) = dima (X N (V + x)). Let (xx)ren be
a sequence of points in X N (V + x) and (7x)xen be a sequence of positive real numbers
converging to zero such that

My (XN (V+x))N B0, 1) > Thax

in Hausdorff distance. Since x; € V + x for all k € N, and each M, ,, is a similarity, we
have My, ,, (V 4+ x) — V. Let T be an accumulation point of the sequence My, ,, (X) N
B(0, 1). Then T € Tan(X) and, by compactness, Tax C T N V. Therefore, we have

dimpg(X N (V +x)) < dima(X N (V 4+ x)) = dimy(Tnax) < dimg(7’ NV)
as required. O
We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1. By Lemma 2.1, we have

dima(X) = max dimyg(7T), “4.4)
T eTan(X)

so we may choose Tmax € Tan(X) such that dima(X) = dimy(7Tmax). Recalling
Proposition 3.1, thereare x € X and V € Xf C RP! \ YF such that
dima (X) = dimyg (Tmax) < 1 +dimp(X N (V 4 x)). 4.5)
By Lemma 4.4, there exists a tangent set 7 such that
dimg(T NV) > dima(X N (V 4+ x)) = dimg(X N (V + x)).

If dimg(7 N V) = 0, then trivially dimg(7) > 1 + dimg(X N (V + x)) = 1, by Lemma
4.3. Therefore, we may assume that dimyg(7 N V) > 0. Notice that T NV NaB(0, 1)
consists of at most two points, so dimyg(7° N V) = dimg(7T N V). Let0 < s < dimy(7 N
V) and let u be a Frostman measure on 7° N V; see [36, Theorem 8.8]. Let {7;};c; be a
tangent decomposition of T’ given by Lemma 3.2. Since T = ( J;; 7;, at least one of the
sets . N V has positive u-measure. Let 7;° be such a set and let W; € YF be the line given
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by Lemma 4.3. Since V ¢ YF, we have V # W; and so, by Marstrand’s slicing theorem
[11, Theorem 3.3.1],

1 =dimg(T N (W; + y)) < dimg(T) — s

for p-almost every y € T° N V. In particular, since u (7> N'V) > 0, such a point y exists.
By letting s 1 dimy(7 N'V), we get

dima(X) > dimy(7) > 1 + dimg(T N'V)

14+ dimpa(X NV 4+x)) > 1 +dimg(X N (V 4 x)).

VoWV

Combining this with (4.5), we get
dima(X) =1 +dima(X N (V +x)) =1+ dimg(X N (V + x))

as claimed.

It remains to show that dima (X N (W + y)) < dimg(X N (V +x)) for all y € X and
W € RP! \ Yr. By repeating the above proof for such y and W, we find a tangent set T
such that

I +dima(X N (W 4+ y)) < dimg(7T) < dimg(Tmax) < 1+ dimg(X N (V 4 x)),
where we used (4.4) in the middle inequality. This finishes the proof. O

To finish this section, let us verify that Theorem 4.1 generalizes Barany, Kdenmiki,
and Yu [10, Theorem 3.2]. The proof is based on Barany, Hochman, and Rapaport [7,
Proposition 6.6].

PROPOSITION 4.5. If X is a dominated self-affine set satisfying the WBNC and the SOSC
such that dimy(X) > 1 and X is not a singleton, then

dima(X) =1+ max dimg (X N (V 4+ x)).

veRP\Yp
Proof. Since X satisfies the SOSC, [10, Theorem 2.18] shows that
dimy (projy 1 (X)) =1

for all V € RP! \Z, where Z = {W € RP!: W = A;W foralli € {1,..., N}} contains
at most one element. If Z = {J, then the claim follows from Theorem 4.1. Barany, Kdenméki
and Yu [10, Lemma 2.11] show that if XF is not a singleton, then Z is non-empty if and
only if the matrices A; are of the form

a; bl’
A = ,
=5 )
possibly after a change of basis, where 0 < |d;| < |a;| < 1, and the matrices are not

simultaneously diagonalizable, and clearly in this case, Z = Yr. Since Xy C RP! \ Yr,
Theorem 4.1 gives the claim. O
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5. Assouad dimension of the Takagi function

As an application of Theorem 4.1, which connects the Hausdorff dimension of the slices to
the Assouad dimension of the set, we are now able to study slices of the Takagi function.
The following result, which is the first part of Theorem 1.1, follows immediately from
Theorem 4.1 after verifying the assumptions of the theorem.

THEOREM 5.1. If T, is the Takagi function, then

dimpa (7)) =1+ ma}x dimyg(7, N (V + x))
Vexy
= 14 max dimp (7% N (V + x)).

xeTy,
VeRP!

The second result of this section, which implies the second part of Theorem 1.1, gives
an explicit upper bound for the Assouad dimension of the Takagi function. In particular, it
follows that the Assouad dimension is always strictly smaller than 2.

THEOREM 5.2. If T, is the Takagi function, then

. log(2™ — 1)
max dimpg(7HaN(V +x) < ——— < 1,
x€eTy, log 2"
VeRp!
where

b — log 2(K; + M,) S5
L= —logk = 4y

K=Y ien 275278 = @0 — )71, and M, = maxyejo,1) Ta(x) = (1 — 1)~ L
The prerequisite in the proof of the above theorems is to express the Takagi function as

a self-affine set. Let 7). : [0, 1] — R be the Takagi function for the parameter % <A<l
as defined in (1.1). Let A = (Ay, A2) € GL>(R)?, where

1 1

= 0 > 0
Al = (% ) and A, = < 21 ),

7 A -5 A

and observe that, as % < A, both matrices have two real eigenvalues with different absolute
values. Furthermore, the contraction by A is realized precisely on the y-axis which is
invariant under both matrices. We define affine maps ¢1, ¢>: R*> — R? by setting

e1(x) = A1(x) and  @2(x) = A2(x) + (3, 3),

for all x € R2. A straightforward calculation shows that

() =24t and T+ i) =L X ianm
—)== X —+-)==z—-= X).
2] 72 - 272) 7272 -

It follows that ¢i(x, Th(x)) = (x/2,T,(x/2)) and ¢(x, T)(x)) = (x/2 + %,
Th(x/2+ %)), so T C R? is the self-affine set associated to the affine IFS (o1, ¢2);
see Figure 2. Observe that, by induction, we have
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FIGURE 2. The graph of the Takagi function for A = %
2~ 1l 0
Ai = Ljil(_1)i|i\—k+l+12_k)\"i|_k Al
214l 0
Al = s . . 5.1
T (Z};] (—Dyik2liiky A'l') oD
for all i € X,. We begin verifying the assumptions of Theorem 4.1 by showing that 7}, is
dominated.

LEMMA 5.3. There exists C > 1 such that
A <o) <ol and 7127 < ap(Ay) < 271
forall i € X,. In particular, T, is dominated.

Proof. Let 1 € X, and recall that «1(A;) = ||A1|. The lower bound for o (A1) follows
from the fact that Al is an eigenvalue of A;. Similarly, since az(A;) = ||Ai_l 7L, the
upper bound for ay(A;) is trivial as 2/*! is an eigenvalue of Ai_l. We prove the upper
bound for o1 (A;) and only remark that the proof of the lower bound for oz (A;) follows

similarly. Let s (1) = Y, | (= D)1#-++127%331=% and notice that
[i] 0
s(D)] < Y27 TR Y a7k =
k=1 k=1

forall i =iy - - i3 € Zy. Writing y = (y1, y2) € S!, we see that
1AsylI? = 127 Ry)? + (s(2)yr 4+ 2 yn)?
= 127282 4 5(1)2y7 + 25(2)AHyyyy + 2212
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Q72 1 s P)yi + 2s (@A yryal + 2%Ey3
AR K232 4 o, 2210 4 204
= (K} +2K; +2)221,

<
<

so the claim holds with C = /(K + 1)2 4+ 1 > 1. Finally, since
1\ I4l
w4 < (37) @A,

we see that 75, is dominated. O]

Let us next determine the Furstenberg directions of the Takagi function. For a given
t€R, let V; = ((1,1)) € RP! be the line with slope ¢ passing through the origin, and let
Voo = ((0, 1)) € RP! be the y-axis. Recall also the definition of K, from the formulation
of Theorem 5.2.

LEMMA 5.4. If T, is the Takagi function, then
Xr={V, e RP': 1 € [-K), K,.]}
is a closed projective interval and Yr = {V} is a singleton.

Proof. Let i € X and observe that, by (5.1), we may define

1 0
. = 1 —n 71: .
=l iy (Zz‘;l(—mz—kﬂ‘ 0)‘

Since 7) is dominated by Lemma 5.3 and lim,_. 1(A._<‘_1) = (1, 0), it follows from
1in
Lemma 2.3 that the word 1 determines an element V; = im(B;) of the set X ¢ by

Vi = (Bi(1,0) = <1, Z(—l)sz—krk>_
k=1

Hence, it is clear that for any V € {V; € RP!: ¢ € [—K,, K, ]}, there exists 1 € X such
that V =V; € Xf.

For the other inclusion, let V € X . By the definition of X r, we find a sequence (c¢;;),eN
of positive real numbers, a sequence (i,),en of finite words i, =i} - - - ilnin\ € X,,and a
linear map A of rank one such that A = lim,,_, o, c,1A<i__1 and V = im(A). Passing through

a subsequence if necessary, we see that

. 1 0
lim 271 lac! = n ,
o &7 Uimyooo Y (=D#27*2—% 0

where the limit lim,, 0o Y_f_; (—1)% T127%), 7 exists. In particular, ¢,2 1% — c e R\ {0}
and A is a constant multiple of the above matrix, which finishes the proof.
For Yr, let 1 € ¥ and, using (5.1), define

0 0
. — 1 —n . _— .
B; = nlglgo A Alln - (ZZ_] (_1)1,1_k+1+12—k)\'—k 1)
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Since im(B;) = Vo, we have {V,} C Y. For the other inclusion, as before, if V € Y,
we find a sequence (c,),en Of positive real numbers, a sequence (i,),en of finite words
ig =iy --- i‘”in| € X, and a linear map A of rank one such that A = lim, . ¢, A;, and
V = im(A). Passing through a subsequence if necessary, we see that

- 0 0
1 —linl g, — n
iR A = (Zﬁzl(—l)lukﬂ“z—krk 1)’
and since im(A) = Vo, the proof is finished. O

To finish verifying the assumptions of Theorem 4.1 for the Takagi function, it suffices to
show that the Takagi function satisfies the weak bounded neighbourhood condition. This
is the purpose of the following lemma.

LEMMA 5.5. The Takagi function T satisfies the BNC.

Proof. Let C > 1 be the constant of Lemma 5.3. Fix x € 75, and 0 < r < C~!, and let
k € N be the smallest natural number satisfying

2kl > 1.

Define
@, (x,r) = {p;: 2"C7 271 < r < 2771271 H and @5 (X) N B(x, r) # %)

for all n € N. It follows from Lemma 5.3 that ®(x, r) C Uﬁ:o ®,,(x, r), so it suffices to

show that the cardinality of &, (x, r) is uniformly bounded foralln € {0, . . ., k}. For each
n € {0,...,k},let m, be the unique integer satisfying
2cl2Tm L < 2Pt (5.2)

Then clearly ®,(x,7) ={pi: 1 € ¥, and ¢;(X) N B(x,r) # #}. We observe from
the construction that each ¢; with i € ¥, maps 7) inside a unique set of the form
[k/2™n, (k + 1)/2™] x R, where k is an integer satisfying 0 < k < 2", Therefore, (5.2)
implies that B(x, r) can intersect at most

2mnr < znlnznc_lz—mn+l < C_12k+1,

of the sets ¢; (X) with i € %, . Since the upper bound is independent of x and r, the set
T, satisfies the BNC. O]

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. 1t follows from Lemmas 5.3, 5.4, and 5.5 that the Takagi function T},
is a dominated self-affine set satisfying the BNC such that X ¢ is a non-trivial projective
interval. Furthermore, since the Takagi function is continuous, 7 (0) = 0 = T (1) and,
by [37] (see also Lemma 6.7), M) = maxXy¢o,1] 70(X) = 1/3(1 —A) > 0, we see that
dimy (projy 1 (73)) = 1 forall V € RP'. Therefore, by Theorem 4.1, we have
dimp (7)) =1+ mz}x dimg (7, N (V 4+ x))
Vexy
=14+ max dima(7, N (V + x)).

x€eTy,
VeRPI\Yj
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Furthermore, by Lemma 5.4, YF is a singleton containing only the y-axis V. Since T),
is a graph of a function, we have dimp (75 N (Vo + x)) = dima ({x}) = 0 for all x € T,
which concludes the proof. O

To finish this section, we prove Theorem 5.2.

Proof of Theorem 5.2. Since T is a graph of a function, it suffices to show that

log(2" — 1
dimp (T, 0 (V + x)) < 28&7 =D (5.3)
log 2m»

forall x € Ty and V € RP' \ {V4}. We write
Ta(A) ={i € Xu: 9i(Th) N A # 0}
forall A € R? and n € N. Let us first show by induction that
#Zkm, (V +3) < 2% — DF, (5.4)

forallk e N,x € 75 and V € RP! \ {Vq}.

Firstletk = 1, x € Ty, and V € RP' \ {0}. By symmetry, we may assume that V = V/,
with ¢ > 0, and without loss of generality we may also assume that x = (0, y) for some
y € R so that

Vi+x={(s,ts+y):s € R}

Since #X,, = 2", it suffices to show that there exists at least one i € X,, such that
@1 (Ty) N (V; +x) = . Assume without loss of generality that ¢; (T3) N (V; 4+ x) # @,
where 1| = T|m. From (5.1), we may deduce that ¢;,(7}) is contained in the rectangle
[0, 27"] x [0, (K) 4+ M)A ], and since @i, (T) N (V; +x) # ¥, we have y < (K +
M)A Write x1/ = (%, %) and let i = 12. Since T,\(%) = %, we have x1,2 € Ty. In fact,

@i, (D = (3. 3)-

It is also a simple exercise to show that @i, ) > % Therefore, if %t +y< %, then
@i, (X) N (V; + x) = . On the other hand, if 1 + y > 3, then

t>1-2y>1-2(K; + M)A >0

by the choice of n,. This means that the line V; + x has a positive slope. Since
91,(T3) C[1=27",1] x [0, (Kx + M;)A"*] by symmetry, where i, = §|np and since
t(1=2")+y> % > (K 4+ M;)A™, we have ¢;,(Ty) N (V; +x) = ¥, which finishes
the proof for k = 1.

Let us then assume that (5.4) holds for k € N. Let x € Ty and V € RP! \ {0}. To finish
the proof of (5.4), we have to show that #X 41, (V +x) < 2™ — DF*1. Notice that
trivially

Xkt =117 € Bkt i 1 € Biny and J € Xy, }. (5.5)

Let i € Zgp, . If 1 & By, (V +x), then 13 & Xgq1)n, (V +x) for all j € X, so we
may assume that i € Xg,, (V 4 x). Since ¢; is a bijection, we have for any j € %,,,
that ¢i5(T;) N(V +x) # 0 if and only if ¢4(T N ¢;1(V 4+ x)) # (. Since (p;] is
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affine, there exist x; € T) and V; € RP! \ {Voo} such that w;l(V +x)=V; +xi, and
thus ¢i5(T3) N (V +x) # @ if and only if j € X, (Vi + x1). Since this is true for all
i € Xgp,, we have, by (5.5) and the fact that the claim holds for %,, (V; + x;) and
Zkn, (V + x), that

H (V)= Y #%, (Vi +x1)
1€y, (V)
<HIpn, (V +2) - 2% = 1) < 2% — DAL
This concludes the proof of (5.4).
Let us then show (5.3) by relying on (5.4). It follows from the construction that for any

k e Nand i € X,,, the image ¢; (T}) is contained in a vertical strip of width 2-km. For
any V=V, e RP! \ {Voo}, we therefore have

diam(g;i (Ty) N (V; +x)) <27/12 1. (5.6)

Thus {@i (T3) N (V; +x)}i€anA(Vr+X) is a 27%m /12 4+ 1-cover of T,. N (Vy + x) which
together with (5.4) shows that

Nyt ST 0 Vi 20) < #3, (Vi +2) < @ = D

Taking logarithms, dividing by — log(27%"*4/t2 4 1), and letting k — oo yields

. . log(2™ — 1)

dimyg(7, N (Vi +x)) < dimy (TN (Ve +x) < ——————
log 2"

as claimed. O]

6. Dimension conservation

Let u be the uniform Bernoulli measure on ¥ = {1, Z}N, that is, p is the unique Borel
probability measure with the property that u([1]) = 27 1*/ forall i € . Letw: ¥ — T,
be the canonical projection onto the Takagi function. It is evident that v = m,u is the
length measure on the x-axis lifted to the Takagi function. The following result, which by
(1.3) and Lemma 5.4 is a restatement of Theorem 1.2, is the main result of this section.

THEOREM 6.1. Suppose that T, is the Takagi function and v = mw. is the canonical
projection of the uniform Bernoulli measure. If

dimjoc((projy 1)V, projy 1 (x)) > 1
forallx € T and V € X, then

max dimyg (T, N (V + x)) = dimy(7y) — 1. 6.1)
x€Ty,
VeRP!

Conversely, if (6.1) holds, then

dimy, . ((projy 1)V, projyL(x)) > 1

forallx € Ty and V € RP'\ {Vao).
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This section is devoted to the proof of this theorem. We start with an auxiliary lemma
whose proof is standard. Recall that

Yp(A) ={ie X, oi(T)NAF£D)
forall A c RZ and n € N.

LEMMA 6.2. Foreveryx € Ty and V € X, we have

log #3,,(V
dimy (75, N (V + x)) = lim inf 272V +0)
n—00 nlog?2
and

log #5,(V
Tt (T, N (V + x)) = lim sup 2&2n(V +1)
n—00 n IOg 2

Proof. Let x € T and V € XF. By Lemma 5.4, there is r € [—K}, K;] such that V =
Vi = ((1, t)). Similarly as in (5.6), we have

diam(s (T) N (V +x)) <27"V12 + 1

for all i € X,(V + x). Therefore, the collection {¢;(Ty) N (V + x)}iex,(v4x) 1S a
27"/t 4 1-cover of Tj N (V + x), which proves the upper bounds. The lower bounds
follow by observing that if {U;} is any 27" -cover of T, N (V + x), then every U; intersects
at most two of the sets in {¢; (T3.) N (V + x)}iex, (V4x)- O]

The above lemma connects ¥, (V + x) to the Minkowski dimensions of the slices. As
we further wish to connect the pointwise dimensions on 7}, to the slices, we are interested
in estimating the number of words i not in X, (V + x) for which ¢; (T3) is still relatively
close to V + x. The r-neighbourhood of a set A C R? is denoted by [A], = {x € RZ:
|x — y| < rforsomey € A}. Forn € N and ¢ > 0, we define the set of bad words at level
n by

Badn,c = Z,([V + x]ean) \ 2 (V +x).

We say that a bad word 1 at level n is generated at level k if k € {1, ..., n}is the smallest
number such that i|; € Xx(V + x), and we denote the set of these length n words by
Bad",;’ - Since every bad word at level n is generated at exactly one level k£ < n, we have

n
#Bad, . = » #Bad}.
k=1

The following lemma is the key observation in our analysis.

LEMMA 6.3. For every x € T) and V € RP! \ {Vo} there are constants ¢, K > 0 such
that

#Bad . < K - #Z,(V +x)

foralln, k € Nwithk < n.
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The proof of the lemma is technical and takes several pages. So as not to disrupt the
flow of the presentation, we postponed it to §6.1. Lemma 6.3 allows us to connect the
pointwise dimensions of the length measure on the x-axis lifted to the Takagi function with
the Minkowski dimensions of the slices. This is the content of the following proposition.
It generalizes a similar result of Manning and Simon [34, Proposition 4] for the Sierpiniski
carpet to the self-affine regime.

PROPOSITION 6.4. If Ty, is the Takagi function and v = 1 is the canonical projection
of the uniform Bernoulli measure, then

dimyoe ((Projy 1)V, projy 1 (x)) + log 1/ZdimM(n NV +x)) = log 1/2
logh — log A
and
dimyoe ((projy ), projy (1)) + = 2 Fm (T 0 (V 4 xy) = 2812
o log A log A

forallx € Ty and V € RP'\ {Vio).
Proof. Letx € T),and V € RP! \ {Veo}, and note that
(projy 1),V (B(projy 1 (x), 1)) = v([V + x1,)
for all r > 0. Write ¢ = \/E(KA + M,). It is easy to see that for every i € ¥, we have
diam(g; (T3)) < cA”,

so for any i € ¥,(V 4+ x), the cylinder ¢; (7;) is contained in [V + x].u». Since the
v-measure of ¢; (7)) is 27", we have

VIV 4 xlan) = Y v(es(T) = 27" - #5,(V + x).
1€5,(V+x)
Therefore,
log v([V + x]can) <" log2 log#%,(V + x)
log cA™ = log can log cAn
_nlogl/2  nlogl/2log#%,(V + x)

log cAm log cAn nlog?2

and taking the limit superior or the limit inferior, Lemma 6.2 yields the respective upper
bounds.

The lower bound is more subtle and for that we apply Lemma 6.3. Let ¢, K > 0 be as
in Lemma 6.3. Since the collection {¢; (X): 1 € X,(V + x) UBad, } covers T, N[V +
X]ean, Lemma 6.3 shows that

vV +xlan) <Y v+ Y v(gi(Th)

ieX,(V+x) ieBad, ¢
=27"#X,(V+x)+27" -#Bad, .

n
=27 #5,(V+x)+27" ) #Bady
k=1
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n
<27 H#E(V +x) + 27K Y #S(V + 1)
k=1
<27"(Kn+1) - #Z,(V +x).

Taking logarithms, dividing by cA”, and taking the limits then gives the desired lower
bounds. O

We are now ready to prove Theorem 6.1.
Proof of Theorem 6.1. Let us first assume that
dimioc((projy )« v, projy 1 (x)) = 1
forall x € T; and V € X . Then Proposition 6.4 and (1.3) give us

dimyg(7;, N (V + x)) < dimy (T3 N (V + x))

logh — . .
=1- Tog 1/2d1m10c((pr0JVl)*V, projy 1 (x))

log A
<142
log 2

= dimy(7)) — 1,

for all x € T) and V € XF. Since T is a graph of a function and recalling the proof of
Theorem 4.1, this estimate extends to all V € RP!. Therefore, by Theorem 5.1,

dimyg (7)) — 1 < dima(Ty) — 1 = max dimyg (T, N (V + x)) < dimy(7;) — 1
xXel)

VeRP!
and the claim follows.
Let us then assume that
max dimyg (T, N (V + x)) = dimy(7y) — 1. (6.2)
XE A
VeRP!

If x € T) and V € RP! \ {Voo} are such that

dim; ((projyL)«v, projyL(x)) < 1,

then, by Proposition 6.4, (1.3), (6.2), and Theorem 5.1, we have

log A log A
ogA _ 14 og

log 1/2 log 2

= max dimyg(7, N (V 4+ x)) = max dima (T, N (V + x))

x€eTy, x€eT),
VeRP! VeRP!

dimp (T, N(V +x)) > 1 — = dimy(73) — 1

which is a contradiction. O]

6.1. Proof of Lemma 6.3. It remains to prove Lemma 6.3. The proof we give is quite
technical, but the tools are elementary. The following geometric lemma allows us to
simplify the problem. Write R]P’é) ={{(1,1)) € RP!: |t] < ©} for all ® > 0 and let
K; > 0be as in Theorem 5.2.
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LEMMA 6.5. For any © > K, there is a constant C = C(®) > 0 such that for every
neNi=i ---i,eX, r>0xc¢ R2, and V, e R]P’E_) there exists y € R2? such that

o7 (Vi +x1,) C Vi, + Yo

where t; = Zzzl(—l)ik 2=kA=K 4+ (21)7"t. Furthermore, we have Vi, € RIF’(INJ.

Proof. It follows from (5.1) that ¢; ! maps V; +x to a line V;; + y with slope #; =
Yo (= 1)i*27k) =% 4 (22)7"¢, and since (pi_l expands vertical distances by A ™", a simple
geometric argument shows that by taking C = ~/®2 + 1, we have

—1 _ .
07 V20 = Vi + ) g, e © Vi 5 lcaonr

If |t| < K, then V;; € X by Lemma 2.2 and therefore, |#;| < K3 < © by Lemma 5.4.
Furthermore, if 1/21 — 1 = K, < |t| < O, then

( M

—k n
It;] < Z(zx) + N = 2 —

k=1
=1 -0 ™K+ V)Tt <t < O.

+ @07t

Therefore, V;, € R]P’é). O]
Fixx e Ty and V € RP! \ {Voo}. Note that V € RIP’}H) for some ® > K. Define
Badf,’c(i) ={ijeX;:jeZirand pi5(T) N[V + x]ean # 0} (6.3)

for all i € ¥ and k < n. To prove Lemma 6.3 it suffices to show that there are constants
¢, K > 0 such that #Bad’,‘l’c(i) < K for all k£ < n, since in this case we have

#Bady . = > #Bad} (i) < K#Badf, < K -#%1(V +x).
ieBadf,

Moreover, by (6.3) and Lemma 6.5, we have
Bady (1) C {ij € Zy: J € Tt ([Viy + ¥lean-o)}:

S0 in particular, #Badk (1) <H#Z 1 ([Viy + ylcean—+), where Vi, € RIP’® Note also that
ifie Badﬁ’c, then we have T, N (Vy; 4+ y) = . Therefore, the following lemma implies
Lemma 6.3.

LEMMA 6.6. For any ©® > K, there are constants C = C(®) > 0and K = K(®) e N
such that for every V € RIP’E_) and x € R? satisfying T, N (V + x) = @, we have

#2,([V +xlcwm) < K
foralln € N.

The remainder of the paper is dedicated to the proof of Lemma 6.6. We first present six
geometric lemmas which further clarify the situation and then conclude the proof at the
end of the section. Let us recall the following result of Mishura and Schied [37].
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LEMMA 6.7. For % < A < 1, the Takagi function T, has exactly two maximizers, Xmax =
% and Ymax = %, and its maximum value is My = 1/3(1 — 1). Furthermore, imax = 12
and Jmax = 21 are the only infinite words with 7 (imax) = (Xmax, M3.) and 7w (3max) =

(ymax, MA)-

Proof. The first part of the claim is proved in [37]. The fact that each maximum in 7} has
a unique coding follows from the fact that the projection of the IFS {¢1, ¢} onto the x-axis
is the IFS which generates the dyadic intervals, and % and % have unique dyadic codings
imax = 12 and jpmax = 21, respectively. O]

In the following, we rely heavily on the mirror symmetry of 7,. By Lemma 6.7,
the Takagi function restricted to [O, %], ¢1(Ty), has a unique maximum at xmax. We
denote the point on the graph of T, corresponding to this maximum by Xmx, that is,
Fmax = T(imax) = (cmax> M;). We write 1 = land i, =2. Let X} ={i =i -- i, €
¥,:i1 = 1}and

hA) ={iex!: o (T)NA#0)

for all A C R? and n € N. For each x € R%, V € RP! \ {Voo}, v € V with [v] =1, and
8 > 0 we define

Cx,v,8) ={y e R (y —x)-v < (1+8)7 2y — x|},

H (x,V)={ye R?: vt (y —x) >0},

H (x,V)={yeR* vt (y —x) <0},
where v' is the unique vector with positive second coordinate orthogonal to v. Fur-
ther, we let H™(x, Vo) and HV(x, Vuo) denote the left open half-plane and the right

open half-plane centred at x, respectively. Finally, let C~(x, §) = C(x, (—1,0), ) and
Ct(x,8) =Cx,(1,0),9).

LEMMA 6.8. If x = (Xmax, V), where y > M, then T N C~(x, 1) = 0.

Proof. Let A =R x (—00, M, ] and note that
T, C p1(A) ={(x,y) € R%: x € Rand y < x + AM,}.

In particular, the graph of the Takagi function lies below the line satisfying the equation
y = x + AM,_. Note that the point X« is on this line, so ¢;(7}) lies below the line V| +
Xmax, and the claim follows. O]

LEMMA 6.9. Let ©® >0, x eR% V, eRPy with t >0, and A C H¥(x, Vo) N
H™(x, Voo). There exists a constant C = C(®) > 0 such that for any r > 0 satisfying
AN[Vo+x], =0 wehave AN [V, + x]cr = 0.

Proof. Let C = (vV©2% + 1)~L. Since A is contained in the shaded area in Figure 3, it
suffices to show that 4 < r. Since the triangles are similar, we have h = v/t2 + 1Cr <

VOZ+1Cr <. O
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r/t Ww+e

FIGURE 3. The geometric observation of Lemma 6.9.

Vita -

O+

Vs+x

FIGURE 4. The geometric observation of Lemma 6.10.

LEMMA 6.10. Letx € R%, 8 > 0,and A C H™ (x, Vo) be such that AN C~(x, 8) = @ and
AN[Vo+ x], =@. Then for any 0 < & < § there exists a constant C = C(¢g, §) > 0 such
that for each 0 < t < § — & we have AN [V; + x]cr = 0.

Proof. Let C = ¢/(8+/82 + 1). The claim follows from the following geometric observa-
tion. Notice from Figure 4 that, since A is contained in the shaded area, it suffices to show
d > (r/$8). Since the right-angled triangles with side lengths r and /¢, and ¢ and Cr are
similar, we have £ = C+/1 + t—2r, and therefore

1 V2 4+ 1 s —
d:i—C 14+1t72r = ——ur} —8725
t t 188241 18 8
as claimed. O]
L

In the remaining lemmas we use the following notation. For n e N we let i) =

imaxlon—21l, i® = iac]0n—221, and iRR = 1 4x]20—222. The geometric interpretation

of this is that ¢, L (T3,) corresponds to the cylinder adjacent to ¢4,,..|,, (73) on the left-hand
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side, @;r(Ty) to the cylinder on the right-hand side, and @1rr(Ty) to the cylinder adjacent
to ¢;#(T5.) on the right-hand side. In the following, for any x € R?, we write

x|y = Iprojy,, (x)I.
This is a seminorm on R? and it becomes a norm if we identify points with equal
y-coordinates. The seminorm |- |, induces a translation-invariant pseudometric in the

usual way. For x € R? and E C R? we let disty (x, E) = inf,eg |x — z|,. Forevery x € R?
and r > 0, we have

By(x» r) = [Vo + xlr,

where By (x,r) denotes the open ball with center x and radius r in the pseudometric
induced by |- |y. In the sequel, we will repeatedly use the following simple fact: if
¢: R?> > R?, ¢(x) = Ax + 1, is an affine map, then

lp(x1) — @(x2)ly = [A(x1 — x2)ly. (6.4)

for all x;, xp € R2.

LEMMA 6.11. There exists a constant C = C()) > 0 such that for any integer n > 1 and

R

. RR
wa i} we have

iefil, i
disty (Tmax. @1 (73)) > CA*".
Moreover, if i = iL, then the claim holds also withn = 1.

Proof. Let us denote p, = ¢;,..1,, (0, M) = <pi5(1, M), let A =[0, 1] x [0, M, ], and
let T be the open triangle determined by the points (1, M,), (%, M), and (1, M, — %).
Note that the affine map ¢;1 maps T to a triangle determined by the points @01, M ) =
Pns 95 (5, M), and @;.(1, My — §). By Lemma 6.8, we have T C A\ T, which
gives 7 (T C @iL (A\ T); see Figure 5 for illustration. Using (5.1), the non-zero,
non-diagonal element of the matrix A is

2n )
207+ + 1 A+1
207 4+ 2n) 2 —Dk@r)7* Az"z(—)\2"> A2 >0,
(() +Q@2) +k2:;< *(2n) e e

and therefore

disty (pn, 952 (T3)) = min{|py — 95(5, M)y, |pn — @32.(1, My — I}
Using equations (6.4) and (5.1), we have
1pn = @32 (1, My = 3)ly = lps2 (1, M) — s (1, My = 3)1y
k2n

=140, 3)ly = =5~

and, similarly,

A+l 2n

2 2 1
|pn — ‘pi,§(§’ Mk)|y = |‘Pi5(1, M;) — 3L (37 M)»)ly = |Ai5(§, 0)|y Z m
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imax|2n

FIGURE 5. Illustration of the proof of Lemma 6.11.

Therefore, we have

1 A+1
+ }ﬂ". (6.5)

diSty(pn, §01% (T3.)) = min { 3’ 6A2 + 3

On the other hand, it follows by a simple calculation that @12 (X max) = Xmax, and therefore,
by induction, we have ¢; . |,, (X¥max) = X¥max for all n € N. By (6.4) and (5.1), we have

|Pn — Fmaxly = |goim|2n (0, M3) = @i on (52 Ma)ly = A1, (5. 0)ly

)LZn _ 1— (2)\)_2" . - )LG

n~* S35
32x+1) 3L +1)

By combining this with (6.5) and applying the reverse triangle inequality, we get

dlSty(xmaX» PiL L(Ty) = dlSty(Pns @il (Ty) — |pn — )_Cmax|y
1 A+1 1
> | min { -, + — A2
37 6A2 4 34 3214 1)

) 22 1 o
= min y 5
6A + 37 612 4+ 34

for any n € N, where min{21/(6A + 3), 1/(6k2 + 3A)} > 0 for all % <A<l

It follows from the construction, that disty(Xmax, (piﬁ(TA)) < disty (X max, goi}fR(T,\))
(see Figure 5), so to finish the proof, it is enough to prove the claim for i,’f. Observe
that

diSty (Xmax» PiR (T3.)) = min{|Xyax — PiR ()_Cmax)|yv [Xmax- PiR (ymax)|y},
where

[Xmax — PiR (Emax)ly = |‘Pimax|2n,2 (Xmax) — PiR (J_Cmax)|y

= |Aimax|2n,2 (J_Cmax — @21 (Ymax))|y

2 |
= Aimaxbn—z (1 —A )M), =+ E _ g

y
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1 2n—2 1 )
= '— (—DFEVF+ A = 2HMy + — — S [a2 2
4 Pyt 12 6
1 14+ A 1 A\ . 2n2
> - - o n
( 8\ + 3 + 12 6)
and, similarly,
_ _ 1 2 |
|Xmax — (plrlf ()’max)|y = Aimax|2n—2 g’ (I =AM, + 8 - g ,
1 2n—2 1 5
= |- —DFeN TR+ (1 =AM+~ — S |a?
‘6;<)()+( M+ - = 3

1 I+4 1T A\.9,0

S\ttt ]2
< 121 * 3 * 6 3)

Simple calculations show that in both of the above inequalities, the right-hand sides for

n = 1 are uniformly positive for % < A < 1. Hence, the claim follows. O

LEMMA 6.12. Let x € R? be such that T N (Vo +x) = 0. Then there are constants
C, K > 0depending only on A such that

#2,([Vo + xlcar) < K,
foralln e N.

Proof. Tt suffices to find a constant C > 0 such that
#31 ([Vo+ xlcym) < K, (6.6)

for all n € N, since then, by symmetry, for any n € N we have #%, ([Vo + x]can) < 4K.
Let us first assume that T; C HT(x, Vp), that is, the line Vj + x lies below T3. By
induction, it is easy to see that for any C < 1/2A the set Eén([Vo + x]¢;20) contains at
most the word 1.

For the other case T, C H™ (x, Vo) we show by induction that for every n € N there
is a constant C > 0 such that the set Egn([Vo =+ x]¢;20) contains at most the word
I1max|2n.- By Lemma 6.11, we may choose a constant C > 0 such that for any » > 1 and
ie {i,l;, if, iffR}, we have disty (Xmax, @i (Th)) = CA2". Moreover, if n = 1, then we

have disty (Fmax. ¢ (T3)) > C42, and therefore [Vo + ¥max]cs2 = By (Fmax, CA%) does
not intersect the set <pilL(T 3). Since the only words in 221 are ilL and imax|2, We see that

E; ([Vo 4 Xmaxlc;2) contains at most the word imax|2. Since T;, lies below Vo 4 Xmax, this
is also true for any x € R? satisfying proj Voo (¥) > projy,_ (X¥max)-

Now assume that the set E%(n_l)([Vo + x]cj2m-1) contains at most the word
imaxl2(m—1). Since C A2 < CA2=D) the only cylinders that could intersect [Vp 4 x] ;2
are the ones corresponding to the children of imax|2(:—1), Which are precisely the cylinders
determined by imax|2n, i,I;, i,f, and ifR. By relying on Lemma 6.11, we see that
[Vo + x]cj2n = By(x, C22") does not intersect ‘Pig(TA)’ (pi,’f(TA)’ or <pi5R(Tx), which
finishes the proof. O
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Proof of Lemma 6.6. Let® > K, V, € RP,, and x € R? be such that T, N (V + x) = @.
The case t = 0 follows from Lemma 6.12, so by symmetry we may assume that ¢t > 0. We
first consider the case T, C H*(x, Vp). Without loss of generality, we may assume that
the first coordinate of x is 1 and note that then T, C H* (x, Vo) N H™ (x, Voo). By Lemma
6.12, there are constants c1, K > 0 such that #%,([Vo + x];x») < K for all n € N and
therefore, by Lemma 6.9, there is a constant ¢ > 0 such that #%,,([V; + x]¢jeun) < K
foralln € N.

For the case T, C H™ (x, Vp), we let tp =0 and for any n € N we define t, =
(20" 37—, (22) 7. Further, let §) = 0 and

th—1+t
Snz%.

Clearly §, is strictly increasing with n. Let £ > 1 be the unique integer satisfying §x—1 <
t < 8. Since t < O, there is a natural number N = N(®, A) such that k < N. By a
geometric argument similar to the proof of Lemma 6.12, it is possible to show that there is
a constant C = C(®) > 0 such that T;, N [V; + x]c = @1, (Th) N [V; + x]c. Therefore,
by Lemma 6.5, for any n > k and r < C we have

Sa(lV + 1) = {11l € Bt @3 (To) N (@5 (Vi +x1)) # 0)
C{i1ld € Bnt 3 € Backe([Vay,, + ¥leas)}- (6.7)
By Lemma 6.5 and the choice of k, we have

k
==Y 07"+ 0,

n=1

and since &x_1 <t < & we get
—3@0)F <y < @) TED,

and so we see that |t;,), | < 1 — &, where ¢ = (1 — 1/41). By symmetry, we may assume
without loss of generality that 0 < 7;,), <1 —¢ and that projy, (y) = % Letc, K >0
be as in Lemma 6.12. Then for any n > N, we have #%,_;([Vo + y].»—+) < K and, by
applying Lemmas 6.8 and 6.10, we see that there exists a constant ¢ > 0 such that

#Zn 4 (Vie,, + Yot < K.
In particular, using (6.7), we have
#E, ([V + xlean) < #Zp i ([Viy, ) + Ylgn—) < K,
for all n large enough such that cA” " < C, and the claim follows. O
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