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Abstract

For0 < p < oo, we let 9",’_, denote the space of those functions f that are analytic in the unit disc
A ={ze C:lzl < 1) and satisfy [, (1 — |z))""!|f'(2)|” dxdy < co. The spaces @,’,’_, are closely
related to Hardy spaces. We have, 9,",’_1 C HP,if0 < p <2,and H? C 9,’,’_1, if2 < p < 0. In this
paper we obtain a number of results about the Taylor coefficients of @,’,’_, -functions and sharp estimates
on the growth of the integral means and the radial growth of these functions as well as information on
their zero sets.
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1. Introduction and main results

We denote by A the unit disc {z € C : |z] < 1}. If f is a function which is analytic in
Aand 0 <r < 1, we set

7 I/p
My(r, ) = (i/ If(re“)l”dt) , 0<p<oo,
21 J
1,(r, f) = M{f(r, f), O0<p<oo,
Mo (r, f) = sup | f(2)I.

lzj=r

For 0 < p < oc, the Hardy space H? consists of all analytic functions f in the disc
for which || f || y» = SUPy.,., M,(r, f) < 0o. We refer the reader to [10] and [13] for
the theory of Hardy spaces.

© 2006 Australian Mathematical Society 1446-7887/06 $A2.00 + 0.00
397

https://doi.org/10.1017/51446788700014105 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014105

398 Daniel Girela and José Angel Peldez (2]

If0 < p <ooanda > ~1, we let A? denote the (standard) weighted Bergman
space, that is, the set of analytic functions f in A such that

/(1 — zZD*If @)IP dA(2) < 0.
A

Here, dA(z) = (1/m)dxdy denotes the normalized Lebesgue area measure in A.
The standard unweighted Bergman space A} is simply denoted by A”?. We mention
[11] and [17] as general references for the theory of Bergman spaces.

The space 27 (p > 0, @ > —1) consists of all functions f which are analytic in A
such that f' € AP. The space 2 is the classical Dirichlet space 2. For other values
of p and « the spaces 27 have been extensively studied in a number papers such as
(27, 28, 30, 33] for p = 2 and [4, 8, 34, 36] for other values of p. If p < @ + 1, it is
well known that 27 = Al_, with equivalence of norms (see [12, Theorem 6}). For
o = p — 2, the space 27 is the Besov space B? (compare to [3]).

The space 27 is said to be a Dirichlet space if p > « + 1. In this paper we shall
be primarily interested in the ‘limit case’ p = & + 1, that is, in the spaces 2, _|,
0 < p < oo, which are closely related to Hardy spaces. Indeed, a classical result of
Littlewood and Paley [19] (see also [20]) asserts that

(1) H C 9", 2<p<oo,
On the other hand, we have
2 9,‘,’_1CH”, 0<p<x?

(see [34, Lemma 1.4]). Notice that, in particular, we have 9} = H?. However, we
remark that if p # 2 then

3) HP # 9.

This can be seen using the characterization of power series with Hadamard gaps which
belong to the spaces 2, _,.

PROPOSITION A. If f is an analytic function in A which is given by a power series
with Hadamard gaps, f(z) = Z:il ayz™ (z € Ay withnyy, > Ang forall k (A > 1),

then, for every p € (0,00), f € 97_, ifand only if 3,2, |a|” < o0.

Since for Hadamard gap series as above we have, for 0 < p < oo, f € H? if and
only of 337 |ax|*> < oo, we immediately deduce that @7_, # H’ if p # 2. We
remark that Proposition A follows from [7, Proposition 2.1]. In Section 2 we shall
see that Proposition A can also be deduced from the following theorem which gives a

condition on the Taylor coefficients of a function f, analytic in A, which implies that
fez,,.
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THEOREM 1.1. Let f be ananalytic functionin A, f(z) = Y oo, a.2" (z € A).
i) If0<p<ooand

0 p
) Z( > |ak|) < 00,
n=0 kel(n)
then f € 97 _,.
(i) If0O<p<2and

o0 p/2
(5) Z( > laklz) < 00,

n=1 kel(n)
p
then f € 9,_,.

Here and throughout the paper, forn = 0, 1, ..., I(n) is the set of the integers k
such that 2" < k < 27+1,

If 0 < p < 2, then (4) implies (5). Hence, for p € (0, 2], (ii) is stronger than (i).
We remark also that if 0 < p < 2, then the condition Z:io la,|? < oo implies (5).
Consequently, (ii) improves [34, Lemma 1.5].

In Theorem 1.2 we give a condition on the Taylor coefficients of an analytic function
f which is necessary for its membership in 9,;_, if 2 < p < oo.

THEOREM 1.2. Let f be an analytic function in A, f(z) = Y oo a.2" (z € A). If
2<p<ooand f € D}_,, then

oc p/2
(6) Z (Z Iak|2> < 0.

n=1 kel (n)

If 0 < p < 2 then (3) can be seen in some other ways. Rudin proved in [29]
that there exists a Blaschke product B which does not belong to 2, (see also [24]).
Vinogradov [34] extended this result showing that for every p € (0, 2) there exist
Blaschke products B which do not belong to 27_,. This clearly gives that 2;_, # H*
if 0 < p < 2, a fact which can be also deduced from the results of [9] and [14].
In contrast with what happens for 0 < p < 2, it is not easy to give examples of
functions f € 9",’_1 \ H? for a certain p € (2, co) that are not given by power series
by Hadamard gaps. Since H? C @,’,’_1 if p > 2, any Blaschke product belongs
0 My<peoo 2;_,. Also, for a number of classes # of analytic functions in A we have
FNG, , =FNH" (0 < p < 00). For example, it is very easy to prove the
following lemma.

LEMMA 1.3. (i) Ifa>00<p<ooand f(z) =1/(1 —2)% (z € A), then
feH?ifandonlyif f € 9], ifand only ifap < 1.
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G) Ifa,p >0, pe(0,00),and

1
(1 —2)*(log(2/(1 = 2))*’

f@)= (z € A),

then f € H? ifand only if f € @,’,’_, ifandonlyifap < land B > Qorap =1 and
Bp > 1.

A much deeper result is stated in [6, Theorem 1] which asserts that, if % denotes
the class of all univalent (holomorphic and one-to-one) functions in A, then Z NH? =
U NP} _, forall p > 0 (see also [25] for the case p = 1).

In spite of these facts we shall prove that, for every p € (2, 00), there are a lot
of differences between the space H? and the space 95_1. In Section 3, we shall be
mainly concerned in obtaining sharp estimates on the growth of the integral means of
Qﬁ_l-functions. If0<p<2and f € 9;:_,, then f € H” and hence, the integral
means M, (r, f) are bounded. This is no longer true for p > 2. Our main results in
Section 3 are stated in the following two theorems.

THEOREM 1.4. If 2 < p <ooand f € 9,’,’_,, then

(i)
@) M,,(r,f):O((loglir)), asr — 1.
(it)
1 1/2-1/p
8) M;(r, f)=0<(10g1—r) ), asr — 1.

THEOREM 1.5. If 2 < p < 0c0and0 < B < 1/2—1/p, then there exists a function
f € 97_, such that

n B
0 oo (s [ratreenar) wo( (). wror-

Since

1 (" :
exp (5?/ loglf(re")ldt) < My(r, f).

Theorem 1.5 shows that part (ii) of Theorem 1.4 is sharp in a very strong sense.
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REMARK. Using Theorem 1.4 we can obtain an upper bound on the integral means
M,(r, f), 2 < q < p, of a function f € Z,_|. Indeed, if ¢ € (2, p), then
q = pA+2( — A1), where A = (g —2)/(p—2) € (0,1). Consequently, using
Theorem 1.4 and Holder’s inequality with exponents 1/A and 1/(1 — A) we see that,
if fe P and2 <q < p,then

"
! ) ), asr — 1,
—r

M,(r, f) = ((logl

where n = n(p,q) = pA/g+ (p—2)(1 —X)/pgand A = (¢ — 2)/(p — 2).

In Section 4 we study properties of the sequences of zeros of non trivial 97_,-
functions. If 0 < p < 2 then 9] | C H” and hence, the sequence of zeros of a
non-identically zero 95_,-function satisfies the Blaschke condition. This does not
remain true for p > 2. Our main results about the sequences of zeros of functions f
in the space 9,‘,’_1, 2 < p < 00, are stated in Theorem 1.6 and Theorem 1.7

THEOREM 1.6. Suppose that 2 < p < oo and let f be a function which belongs to
the space @” y with f(0) # 0. Let {z,}32, be the sequence zeros of f ordered so that
lzel < |Zk+1|f0r all k. Then

N
1
(10) l—llz— = o ((log N)'*"?), as N - oo.
k=1

From now on, if f is a non-identically zero analytic function of zeros and {z;}32 | is
the sequence zeros of f ordered so that |z;| < |zi41] for all k, we shall say that {z,}72,
is the sequence of ordered zeros of f. Theorem 1.7 asserts that Theorem 1.6 is best
possible.

THEOREM 1.7. If 2 < p < coand 0 < B < 1/2—1/p, then there exists a function
f € D7, with f(0) # O such that if {z,}, is the sequence of ordered zeros of f,
then

— #o0((logN)!), asN — oo.
Pl kl

:]z

1n)

As a consequence of Theorem 1.6 and Theorem 1.7, we obtain the following result.
COROLLARY 1.8. If2 < p < q < 00 then there exists a sequence {7} C A that

is the sequence of zeros of a 9,_,-function but is not the sequence of zeros of any
9;_\-function. :
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Hence the situation in this setting is similar to that in the setting of Bergman spaces
(see [18, Theorem 1}).

Next we shall get into the proofs of these and some other results. We shall be using
the convention that C,,  denotes a positive constant which depends only upon the
displayed parameters p, «, . .. but is not necessarily the same at different occurrences.

2. Taylor coefficients of 2”_, functions.

We start by recalling the following useful result due to Mateljevic and Pavlovic
[21] (see also [S, Lemma 3] and [22]) which will be basic in the proofs of Theorem 1.1
and Theorem 1.2.

LEMMA B. Leta > Oand p > 0. There exists a constant K that depends only on p
and a such that, if {a,)2, is a sequence of non-negative numbers, t, = 3 4 ;. @n

n=|

(n>0),and f(x) =Y oo, a,x""" (x € (0, 1)), then
00 1 00
K'Y 2mmp < f (1 —x)"' fx)Pdx <Ky 27"1).
n=0 Y n=0
PROOF OF THEOREM 1.1. Take p € (0, 00) and let f be analytic in A,

12) f(z)=Za,,z", z€A.
=0

Suppose that (4) holds. Using Lemma B and (4) we see that

1 o0 14
[ir@ra-epraa <c, [(a-nr (annv"'l) dr
a 0

n=1

. 14
<G 2 (Z k|ak|>
n=0

kel(n)

00 r
<c, Z 9=np(n+)p ( Z |ak|>
n=0

kel(n)

< C,,i(z Iakl)p < 00.

n=0 \kel(n)

Hence, f € 2, and the proof of (i) is finished.
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Suppose now that 0 < p < 2, f is as in (12) and satisfies (5). Using the fact that
My(r, f') < My(r, f') for all r € (0, 1), making the change of variable r* = s and
using Lemma B, we obtain

1
f L @171 = |z~ dA(z) = 2/ r(1=r®P" "M, (r, f)?dr
A Q

1
< 2/ r(1 =" My(r, £)7 dr
0
1 foe) p/2
= 2/ r(l —r?r-! n?la,|*r™=? dr
1 00 p/2
< C/ (1 —s)P! <Zn2|an|2s"_'> ds
0

n=1

00 p/2
<032 (¥ dia)
n=0

kel(n)
00 p/2
SCPZ(Z Iakiz) < 00,
n=0 \kel(n)
Hence, f € @,‘,’_l. This finishes the proof of (ii). O

Next we see that Proposition A can be deduced from Theorem 1.1 as announced.

PROOF OF PROPOSITION A. Let f be an analytic function in A given by a power
series with Hadamard gaps

(13) f@=Yaz" with P2 >x>1 forall j,
n.
j=1 /

and suppose that ch:l la;}? < oo. Using the gap condition, we see that there are at
most C;, = log, 2+ 1 of the n’js in the set I (n). Then there exists a constant Cy, , > 0

such that - , -
> ( > |a,|) <Cip_lal? < oo,

n=0 \jel(n) j=1

and consequently, using Theorem 1.1, we deduce that f € 9, .

To prove the other implication suppose that f is as in (13) and f € 91’,’_1 for a
certain p > 0. It is well known (see [38, Chapter V, Vol. I]) that there exist constants
A(X, p) and B(A, p) such that

A, pYM](r, f) S MJ(r, f) < B, p)MS(r, f), O<r <l
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This and Lemma B give
1
00 > / If'@rra —lzlz)”"dA(z)=/ r(1=r)*= MG, f)dr
A 0

1
> A(A,p)/ r(1—=r)P "M (r, f))dr
0

1 00 p/2
= AG-p )/ = (Z nﬁlaflzfz"j_z) dr
0

j=1
1 0 p/2
zA(k,p)/ t(1 —)r~! (Zn,21a,|2ﬂ“> dt
0 =1
© p/2
> AR )Y 27 [ S nal?
n=0 n;el(n)
o0 P o
> C, A p) Y 27727 | Y gl | = G, AL )Y gl
n=0 n;el(n) Jj=0

The last inequality is obvious if p > 1 and, in the case 0 < p < 1, follows again
using the fact that there are at most C, = log, 2 + 1 of the n;s in the set I (n). Thus,
we have 3_  |a;|? < oo. This finishes the proof. O

PROOF OF THEOREM 1.2. Suppose that2 < p < coand f € 2)_,,

[e o]

f@=) a7, zeA,

n=0

Using Lemma B, bearing in mind that k =< 2" if k € I(n), making a change of variable,
and using that since p > 2, My(r, f') < M, (r, f’), we obtain

n=1 \kel(n) kel(n)

1 o0 p/2
<C f(1—t)"—' n®la, 2" dt
0] Z |a,|

t o p/2
<C / (1 - rz)”“ n? a, 2,212 dt
g ¥

n=1

1
< Cp/ (1= r)P"'M,(r, f1) < o0. 0
0
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3. Growth properties of @",’_l-functions

In this section we are mainly interested in obtaining sharp estimates on the growth
of functions f in the spaces Z,_, (2 < p < 00).

3.1. Integral means estimates Let us start with estimates on the growth of the
maximum modulus M (r, f). We can prove the following result.

THEOREM 3.1. Let f be an analytic functionin A. If f € @5_1, 0 < p < o0, then
1 _
(14) Moc(r, f) =0 —(I—T)l/p R asr — 1.

PROCF. Let f € @,’,’_, and z € A. Let D(z) denote the open disc

1-|z}
C:lz - .
{we lz —w| < > }

Clearly, D(z) C A. Since the function z — | f'(z)|? is subharmonic in A, we have

15 1f' @ =

C
’ PdA - , pdA .
|D(Z)l Do) lf (C())l ((l)) < (1 — |Z|2)2 ,/[;(Z) lf (CU)I ((1))

It is clear that (1 — |z|?) =< (1 — |®|?), w € D(z), z € A. Using this and (15) we obtain

c 1— w77
a6 s g [1_—',‘;'} F @I dA@)
Cp

— -1 ’
= Tt Jy, (71D @A)

On the other hand, since f € 2?_,, it follows that

7 p—13

(A = |w)? ! ()P dA(w) = o(1), as|z] > 17,

D(z)
which, with (16), implies
1 -
(17) M (r, f/)=0<————>, asr — 17,

(1 —r)l+ip

and (14) follows by integration. O
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REMARK. We observe that for any p € (0, 00), the exponent 1/p in (14) is the best
possible. Moreover, if we take

2 \P
fp.ﬂ(z)=(1—z)_l/p(10g1_2> , ZE€A,

with 8 > i— then, as we noticed in Lemma 1.3, f, 5 € @,’,’_l and it is easy to see that

=B
) , O<r<l.

So condition (14) in Theorem 3.1 cannot be substituted by the condition

Muo(r, f) ~ (1 —r)~? (Iog 1 :

—-r

1 _
Molr. f) =0 ((1 —r)/r(log(l/(1 — r))l/p+e) ’ asr — 17,

forany £ > 0.

Now we turn to the proofs of Theorem 1.4 and Theorem 1.5.

PROOF OF THEOREM 1.4. Suppose that2 < p < oo and f € 2, . Then

1
(18) lim f (1—5)""'M*(s, f)ds = 0.

r—1-

Since M, (s, f') is an increasing function of s

1 1
/ (1 —s)”"M",’(s, fds = M3 (r, f’)f (1-s5)"'ds > C,MI(r, fH(1 =1)P,
which, together with (18), yields
(19) Myr, f)=0(1-r)"), asr—17,
which, using Minkowski’s integral inequality, implies (7).

Using (19) and the fact that for any fixed r with 0 < r < 1 the integral means
M, (r, f') increase with p, we deduce that

Lir,fY=o0((1=r)7?), asr—1".

and then using the well-known inequality (see [26, pages 125-126]})

d2
d—rz(lz(rs ) <4aL(r, f). O0<r<l,
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we obtain ,

d
d—r—z(lz(r, N)y=o(t-nN7?) asr—17,

which, integrating twice, gives

My(r, f) = o ((log1/(1 = )"), asr—1.

This is worse than (8). To obtain this we use Theorem 1.2.
Say that f(z) = Y oo a,z", (z € A). Suppose, without loss of generality that

a, = 0. Using Holder’s inequality with the exponents p/2 and p/(p — 2) and
Theorem 1.2, we obtain

oc o0 o0
Mz(r, f)2 — Z |an|2r2n — Z Z |ak|2r2k < ZrszH (Z |ak}2)
n=1 n=0 kel(n) n=0 kel(n)
. P2 P - 1-2/p
| 2(x w) [z/]
n=0 \kel(n) n=0
1 1-2/p
< Cy,p <log 1 ) . O
—-r
Since
1 i .
exp (2—/ 1og|f(re"’)|d9) <My(r, f), O<r<l,
T Jox

we trivially have the following result.

COROLLARY 3.2. If2 < p < o0 and f € 9, _,, then

1 T ‘ 1 12-1/p
exP(é‘y‘r‘/ ]0g|f(r€'0)|d9)=0 <log1_r> , asr— 1.

Theorem 1.5 shows that Corollary 3.2 and the estimate (8) are sharp in a very strong
sense. The following lemma, whose proof is simple and is omitted, will be used in
the proof of Theorem 1.5.

LEMMA 3.3. Let f(z) = Y .-, a.2" be an analytic function in A. If 0 < B <1
and ZLO lay|? =~ (log N)?, as N — 00, then L(r, f) =~ (log(1 —r)™")f asr — 1-.

We make use of the technique introduced by Ullrich in [32]}. Let us start introducing
some notation.

Letw = [0, 1]N and w), w, . .. be ‘the coordinate functions’ w; : 2 — [0, 1]. Let
dw denote the product measure Q2 derived from the Lebesgue measure on [0, 1]. Now

https://doi.org/10.1017/51446788700014105 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014105

408 Daniel Girela and José Angel Peldez [12]

), W, . .. are the Steinhaus variables (independent, identically distributed random
variables uniformly distributed on [0, 1]). Note that {¢Z"/*) }?°=, is an orthonormal set
in LX), hence, if 37 la;1> < 0o, then 3", a;e”™*s is a well defined element of
L*(Q) with L2-norm ( }_}- la;|?)'". The following theorem is (32, Theorem 1].

THEOREM C. There exists C > 0 such that for any sequence of complex numbers

{a;}52, with 3_7 | la;|* < 00, we have
o 12
dw] >C (Z |a,-|2) .

oo
exp / log E a;e’ i
2 j=1 j=1

PROOF OF THEOREM 1.5. Suppose that2 < p < ocand0 < 8 < 1/2 - 1/p. Set
e =1/2—1/p — B, hence, ¢ > 0. We define the sequence {b,}$2, as b, = j~V/7~,

j=1,2,.... Now, for every w € $2 we define
(20) fo@) =Y b =) a1t zeA.
j=1 k=1

Since Z;’?__, |b;{? < oo, using Proposition A we deduce that f, € 9;_, for every
w € Q.
We will see that for a.e. w €

1 ol .
(21)  exp (:2-;/ loglfw(re”)ldt> # o((log(l/(l —r)))ﬂ), asr —> 1°.

This will finish the proof.
Suppose that (21) is false. Then there exists a measurable set E C 2 with positive
measure and such that forall w € E

(22) exp (EI;[ loglfw(re")ldt> =o((log(1/(1 =)'}, asr—1-

This is equivalent to saying that

23) lim —}—f log | fulreD) 5| dt =—00, weeE.
=2 S (log(1/(1 — 1))

On the other hand,

N 172 N | 1/2
2
(Z 16,1 ) = <Z ‘2/p+2£)
j=1 j=t J

N 1 1/2
~ ———dx ~ N2=Vpr=¢ " as N — 00
. x2/p+2e ’ '
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Thus, there exist C > 0 and N, > O such that

N 172
(24) (Z |ak.w|2> < C(logN)"*™"" N > No.
k=1

Using (24) and Lemma 3.3, we deduce that

1/2-1/p—¢
My(r, f,) = L{(r, fa,)msC[log1 ] , O<r<l1, weg,
—r

which implies that for0 < r < l and w € €,

1 ” . 1 1/2=1/p—¢
(25) exp ——/ log|f.(re')|dt ) < C |log :I .
27 J_, 1

—r

From this we deduce as in (23), that there exists C > 0 such that

(26) /nlog[ fulre ) ﬂ:ldth, O<r<l, we®.
- (log(1/(1 —r)))

Bearing in mind that E has positive measure, (26) and (23) imply

T it
(27) lim / U i) ﬂdtJ dw = —oco.
~Jo{Jn T (log(l/(1—r)))
ForN =1,2,...,let 2y = [0, 1]¥ and my be the Lebesgue measure on 2. Observe

now that, for any N, we have
[ 1081 rety1 dmut)
Q

da)]da)z s da)N

N o]
¥ il2mw;+2/1) 2 i2me; 201
bjree + birie
Jj=1

N
! 1
0 0 j= J=N+1
1 t N % )
= / f log Zb,-rzjez”i‘”f + Z bjrzfeilznw,+2/:]
0 0 =1

j=N+1
Letting N tend to 0o, we deduce that fn log | f.(re'")| dw is independent of z. Then
using (27) and Fubini’s Theorem we obtain

. | £ (P
(28) llmflog dw = —00
~1=Ja  (log(1/(1 =)’

da),da)z ce da)N, a.s.
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However, if wesetry =1 —1/2¥ N =1,2,..., by Theorem C and the inequality

-1 2N 2 .
e <ry Z<ry, 1<j=N,

exp [f log { fu.(rn)l dw]
Q
j=1 j=1

= exp [f log

Q o1

1 1 [/2~1/p—¢ 1 B
ZC——__N'/P”—‘/ZEC(lOgI——rN) =C(log1_rN> ;

we deduce that
Z bjeZHiw,r}v/
00 1/2 N 172 N : 172
= C (Z lb,-lz(rf«')2> >C (Z'W) =C (Z JNT)
j=1
which implies

f log [ fulra)l sdw > logC, forall N,
o  (log(1—ry)™")

which contradicts (28). Consequently, (21) is true and the proof is finished. O

3.2. Radial growth of 27_,-functions In this section we obtain some estimates on
the radial growth of 27 |-functions. If 0 < p < 2and f € 95_1, then f € H? and
so f has nontangential limit a.e. T. Therefore, we have: If 0 < p <2and f € 95-1»
then | f(re'®)| = O(1),asr — 1~ forae. e’ € dA.

Zygmund proved in [37] that if f is an analytic function in A, then

- 12
(29) / | f(pe")dp =0 [(log 1 ! r) jl , asr— 17,
0 _

for almost every point ¢ in the Fatou set of f, F,, which consists of those ¢ € T
such that f has finite nontangential limit at ¢''. Obviously, (29) implies

1 1/2
(30) If(rE”)|=0[(10g 1—r> :] asr — 17,

If2 < p < oo, there are functions f € 9] _, such that F; has Lebesgue measure
equal to zero. Indeed, an analytic function f given by a power series with Hadamard
gaps whose sequence of Taylor coefficients {a;} belongs to [7 \ [?,is a @[‘,’_,-function
by Proposition A and F has null Lebesgue measure (see [38, Chapter V]). In spite of
this, we can prove the following result for &;_,-functions.
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THEOREM 3.4. If 2 < p < o0 and f € D] _,, then

1 —r

1-1/p
(3l) |fGreH=o l:(log ) } , asr — 1" fora. e &' € 3A.

This is better that the a.e. estimate which can be deduced from (17).

PROOF OF THEOREM 3.4. Let p and f be as in the statement of the theorem. Then

T 1
f (/ (1- r)phllf'(re"’)l”dt) dr < o0,
- 0

and it follows that the set A of points ¢ € 3A for which

I
f (1 —=r)P Y f'(re")|Pdt < o0,
0

has Lebesgue measure equal to 2.
Take and fix e’ € A. Take also € > 0. Then there exists r, € (0, 1) such that

1
(32) / (1 = )P fi(se")|P ds < e.
Using (32) and Holder’s inequality with exponents p and p/(p — 1), we obtain for
re<r<l,
(33) / |/ (se") ds = / Fenlds + [ 1fenlds
0 0 re
r (1 _ s)l—l/p ) ;
<Cret i mlf(se'ﬂds

r _ 1/p T ds 1-1/p
< Cre+ [/ (1- S)”_'If’(se”)l”ds:l [ e S)J

1 1-1/p
§Cf.5+e(log1 ) .
—-r

Consequently, we have proved that

1\t pr .
lim sup (log 7 ) / [f'(se")|ds < s.
0

r—1 —-r

Since € > 0 and ¢ € A are arbitrary, we have
y

r ‘ 1 \'-Vp
/ | f(seds =0 (log 7 ) , asr— 17,
0 —r

for all e € A. This implies that (31) holds for all ¢ € A, which has Lebesgue
measure equal to 2;r. This finishes the proof. O
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We do not know whether or not the exponent 1 — 1/p in Theorem 3.4 is sharp
but we know that it cannot be substitutes by any exponent smaller than 1/2 — 1/p.
Indeed, we can prove the following result.

THEOREM 3.5. If 2 < p < 00, then there exists a function f € 9:_1 such that
G4 lim Ltrel) — =00, forae €' €A,
"~ (log l+r) (log log ﬁ)
PROOF. Take p > 2. Define
1 —
akzm, k=1,2,..., and f(L)Z;akZ y ZEA

Since Y-, lax|? < 0o, by Proposition A, we have that f € 2/_,.
On the other hand,

N 1/2 N 1 172
2 — —_——
(Z |ak| ) - (Z kz/p 10g2 2k)

k=1 k=1

N 1 172 N2-1/p
~ ————dx ~ , asN — oc,
1 x¥Plog” 2x log N

and then it is easy to see that

(og 7)™

(35) My(r, f) = L(r, f)'?* ~ i
loglog =

, asr— 17,

Now, by the law of the iterated logarithm for lacunary series (see [35]) we have that

it
(36) lim |f(reD)] =1, forae ¢ € dA.

r=1 [Iz(r, f) logloglog I(r, f)]l/2

Now we observe that (36) and (35) imply (34). This finishes the proof. O

4. Zeros of @,‘,’_, functions

4.1. Products of the zeros of 9:_, functions We start by recalling the the following
result due to Horowitz, (see [18, page 65]).
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LEMMA D. Let f be an analytic function in A with f(0) # 0 and let {z;} be the
sequence of ordered zeros of f. If 0 < p < 00,0 <r < 1, and N is a positive
integer, then

N op
(37) 0P [] = < M. £
ki |z

This lemma and the estimates for the integral means of @,‘,’_l-functions obtained in
Section 3.1 are the basic ingredients in the proofs of Theorem 1.6 and Theorem 1.7.
This method was used by Horowitz in [18] for the Bergman spaces and later by the
first author of this paper, Nowak, and Waniurski in [15] for the Bloch space % and
some other related spaces.

PROOF OF THEOREM 1.6. Let p, f, and {z;};2, be as in the statement of Theorem 1.6.
Using Theorem 1.4, we see that f satisfies (8) and using Lemma D with p = 2, we
deduce that

1/2-1/p
(38) 1_[ — < CMy(r, f) <C (log r) , if r is close enough to 1.

lzel —

1 -

Now, taking r = 1 — 1/N with N big enough in (38) and bearing in mind that
(1 = 1/N)Y > 1/2e, we deduce that

N
1 _
(39) ]']Z— < Clog N)"*7"7.
k=1

This finishes the proof. O

Our next objective is to prove Theorem 1.7 which asserts that Theorem 1.6 is sharp.
We start recalling some notation and facts from Nevanlinna theory (see {16, 23] or
[31]) which will be needed in our proof.

Let f be a non-constant analytic functionin A. Foranya € Cand 0 < r < 1, we
denote by n(r, a, f) the number of zeros f — a in the disc {|z| < r}, where each zero
is counted according to its multiplicity. We define also

"n(t,a, f) =—n,a, f)

(40) N(r,a, f)dd/ - dt +n(,a, flogr, O<r <1.
0

For simplicity, we shall write n(r, f) = n(,0, f), N(r, f) = N(r,0, f). The
Nevanlinna characteristic function T (r, f) is defined by

T(r, f)= %/ log? | f(re®)|d8, 0<r <1.

-7
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The proximity function m(r, a, f) is given by

def 1 4 1
.a, = — logt ———dt, O .
m(r,a, f) 27_[‘/: og lf(re”)—aldt <r<l

4

Now we can state the First Fundamental Theorem of Nevanlinna.
THEOREM E. Let f be a non-constant analytic function in A. Then
m(r,a, fY+N@r,a, f)=T(r, f)+ O01), asr—1".
Joreverya € C.

Now we can prove the following result.

PROPOSITION 4.1. If 2 < p < 0o and f is a non-constant Qﬁ_l-function, then

loglog

41) n(r,a,f):O( ), asr — 17, foralla € C.

1—r 1 ~r

PROOF. Using the arithmetic-geometric mean inequality we obtain

10, < 3 [ Tog(5weE + 1)

-

1 1 ™ . 1
< 5log (E [ (1f(re))? + l)dt> < Elog(lz(r, H+1),
which, with part (ii) of Theorem 1.4, gives
1
42) T(r, f):O(loglog1 ), asr — 17,
—r

Using Theorem E, we deduce that

), asr —» 17, foralla € C.

43) N(r,a,f):O(loglogl_r

Now, it is well known (see [2, page 22]) that this implies (41). d
Now, we can proceed with the proof of Theorem 1.7.

PROOF OF THEOREM 1.7. Take pand B with2 < p <ocand0 < 8 < 1/2—-1/p.
Take f € 27_, with f(0) # 0 and

n _ 1 A B
(44) exp(-zl—ﬂ/ loglf(re”)ldt) ;éo((logl_r) >, asr — 17,
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such a function exists by Theorem 1.5. Using (44) we see that there exist a sequence
{r;}32, € (0,1) with r; 1 1 and a positive constant C (independent of j), such that

1 n . 1 ﬂ
(45) exp (—/ log|f(rje")|dt) = C{log , J=12....
2 _ l—rj

We shall write n(r) instead of n(r, f) for simplicity. Using Jensen’s formula (see [1,
page 206]) and (45) we deduce that

n(rj) B
r; 1
(46) If(O)IH—’2C<10g1 ) . i=12.,
Pl |2 ] -7

which implies that

47) n(r;) - 0o, asj — oo.

On the other hand, Proposition 4.1 implies that there exists C > 0 such that

1 1
n(ry<C 7 log log 1 , if r is sufficiently close to 1.
-r —r

This implies that

1
logn(r) < Clog 7 , if r is sufficiently close to 1,
—-r

which, together with (46), shows that there exists j, € N such that for every j > j,

n(r;)

£ H —L > c[logn(r)]’.

lzl —

This finishes the proof. O

4.2. A substitute of Blaschke condition If 2 < p < oo the sequence {z;} of
ordered zeros of a non trivial 2;_, function need not satisfy the Blaschke condition.
Indeed, the Blaschke condition is equivalent to saying that I—[,',V= ,(1/1z,]) = O(1) and
we have seen that this is not always true. Using Theorem 1.6 and arguing exactly as
in the proof of [15, Theorem 5] we can prove the following result.

THEOREM 4.2. Let 2 < p < oo and f € 97_, with f # 0. Let (7}, be the
sequence of zeros of f. Then

(48) Z (1 —|zl) (loglog e l) < 00
Lk

lz|>1-1/e

Joralla > 1.
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Next, we shall prove that the condition « > 1 is needed in Theorem 4.2.

THEOREM 4.3. Let2 < p < 00. Then there exists a function f € 9,‘;_1 with f # 0,
whose sequence of zeros {zi )2, satisfies

1 -1
(49) > (1—lzk1>(loglog ) = oo.

lal>1-1/e =z

PROOF. Set g(z) = Y o, k=P*2/4r7% 7 € A. Since g is given by a power series
with Hadamard gaps and 3.7 | k=727 < o0, it follows that g € 27_,.
We shall follow the argument of the proof of [15, Theorem 6]. Set

(50) rn=1-2" n=1273,....

It is easy to see that, for all sufficiently large n, I,(r,, g) > Cn'/*='/7 which, since
log(1/(1 — r,)) = nlog 2, implies that

1/2-1/p
(1)) L(r,,g)=>C (log 7 ) if n is sufficiently large.

__r"

Now, since log(1/(l —r,)) ~ log(1/(1 —r,41)), as n — 00, and since /,(r, g) and
(log(1/(1 — r)))V/>=1/? are increasing functions of r, we deduce

1/2-1/p
(52) Lir,g)=C <log I ) ,
—r

if r is sufficiently close to 1.
Using this and arguing as in [15, page 126] we deduce that there exist a complex
number a with g(0) # a, a positive constant 8, and a number ry € (0, 1) such that

(53) N(r,a, g) > Bloglog

r € (ro, 1).
1—r

Take such ana € Cand set f(z) = g(z) —a,z € A. Then f € 27, and f(0) # 0.
Also (53) can be written as

(54) N(r, f) > Bloglog , T €(ro, ).

1—r

Let {z,) be the sequence of zeros of f. Using Proposition 4.1 and arguing as in [15,
page 127], we obtain (49). ]
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