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Abstract

For 0 < p < oo, we let 3>p_x denote the space of those functions / that are analytic in the unit disc
A = {z € C : \z\ < 1) and satisfy / a ( l - |z|)''-||/'(z)|''rfjtd>> < oo. The spaces ^ _ , are closely
related to Hardy spaces. We have, S^_, C Hp, if 0 < p < 2, and Hp C ^ _ , , if 2 < p < oo. In this
paper we obtain a number of results about the Taylor coefficients of Qp

p_x -functions and sharp estimates
on the growth of the integral means and the radial growth of these functions as well as information on
their zero sets.
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Keywords and phrases: Spaces of Dirichlet type, Hardy spaces, Bergman spaces, integral means, radial
growth, sequences of zeros.

1. Introduction and main results

We denote by A the unit disc { z e C : | z | < l } . I f / i s a function which is analyt ic in
A and 0 < r < 1, we set

/ 1 r . \ 1 / p

Mp(r,/)=(— / \f{re")\pdt\ , 0 < p < oo,

Ip(r, f) = Mp
p(r, f), 0<p<oo,

Mnir, / ) = sup | /(z) | .

For 0 < p < oo, the Hardy space Hp consists of all analytic functions / in the disc
for which \\f\\Hp == sup0<r<1 Mp{r, f) < oo. We refer the reader to [10] and [13] for
the theory of Hardy spaces.
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If 0 < p < oo and a > — 1, we let Ap denote the (standard) weighted Bergman
space, that is, the set of analytic functions / in A such that

(\-\z\)a\f(z)\pdA(z)<oo.

Here, dA(z) = (l/n)dxdy denotes the normalized Lebesgue area measure in A.
The standard unweighted Bergman space AQ is simply denoted by Ap. We mention
[11] and [17] as general references for the theory of Bergman spaces.

The space S>p (p > 0, a > — 1) consists of all functions / which are analytic in A
such that / ' e Ap. The space Q)\ is the classical Dirichlet space ffi. For other values
of p and a the spaces @p have been extensively studied in a number papers such as
[27, 28, 30, 33] for p = 2 and [4, 8, 34, 36] for other values of p. If p < a + 1, it is
well known that S>p = Ap_p with equivalence of norms (see [12, Theorem 6]). For
a = p — 2, the space @£ is the Besov space Bp (compare to [3]).

The space 2>p is said to be a Dirichlet space if p > a + 1. In this paper we shall
be primarily interested in the 'limit case' p = a + 1, that is, in the spaces @p_x,
0 < p < oo, which are closely related to Hardy spaces. Indeed, a classical result of
Littlewood and Paley [19] (see also [20]) asserts that

(1) H" C 9P_V 2<p<oo.

On the other hand, we have

(2) 9p
p_x C H", 0 < p < 2,

(see [34, Lemma 1.4]). Notice that, in particular, we have &2 = H2. However, we
remark that if p ^ 2 then

(3) Hp 5̂  Q)p

This can be seen using the characterization of power series with Hadamard gaps which
belong to the spaces &p_,.

PROPOSITION A. If f is an analytic function in A which is given by a power series
with Hadamard gaps, f(z) = YlT=i a^"k U € A) with nk+i > \nkfor all k (A. > 1),
then, for every p € (0, oo), / e 3>p

p_x if and only if YlT=i la*lP < °°-

Since for Hadamard gap series as above we have, for 0 < p < oo, / 6 Hp if and
only of Y1T=\ la*l2 < ° ° ' w e immediately deduce that 9p

p_x ^ Hp if p £ 2. We
remark that Proposition A follows from [7, Proposition 2.1]. In Section 2 we shall
see that Proposition A can also be deduced from the following theorem which gives a
condition on the Taylor coefficients of a function / , analytic in A, which implies that
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THEOREM 1.1. Let fbe an analyticfunction in A, f(z) = Y^=oa"z" (z G A),

(i) I/O < p < oo and

( E H <CX)-
/ G 0£_,.

(ii) I/O < p <2 and

n = l

Here and throughout the paper, for n = 0, 1 , . . . , / ( « ) is the set of the integers k
such that 2" < k < 2"+1.

If 0 < p < 2, then (4) implies (5). Hence, for p e (0, 2], (ii) is stronger than (i).
We remark also that if 0 < p < 2, then the condition X ^ o \a"\P < ° ° implies (5).
Consequently, (ii) improves [34, Lemma 1.5].

In Theorem 1.2 we give a condition on the Taylor coefficients of an analytic function
/ which is necessary for its membership in @p

p_x if 2 < p < oo.

THEOREM 1.2. Let f be an analytic function in A, f(z) = TZ=oanZ" (* e A ) - lf
2 < p < oo and f G @P

P-V then

n = l

If 0 < p < 2 then (3) can be seen in some other ways. Rudin proved in [29]
that there exists a Blaschke product B which does not belong to $)Q (see also [24]).
Vinogradov [34] extended this result showing that for every p € (0, 2) there exist
Blaschke products B which do not belong to 3>p

p_x. This clearly gives that @p_x ^ Hp

if 0 < p < 2, a fact which can be also deduced from the results of [9] and [14].
In contrast with what happens for 0 < p < 2, it is not easy to give examples of
functions / G <&p_x \ Hp for a certain p G (2, oo) that are not given by power series
by Hadamard gaps. Since Hp C @p-i if p > 2, any Blaschke product belongs
to H2<p<oo ®p-\- Also, for a number of classes & of analytic functions in A we have
& n S>p_x = ^DHp(0<p< oo). For example, it is very easy to prove the
following lemma.

LEMMA 1.3. (i) If a > 0, 0 < p < oo, and f(z) = 1/(1 - z)a, (z e A), then
f G Hp if and only if f e Qp

x if and only ifap < 1.
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(ii) If a, p > 0, p e (0, oo), and

izeA)<

then f € Hp if and only iff € $>p_x if and only ifap < 1 and p > 0 or ap = 1 and
p P > \ .

A much deeper result is stated in [6, Theorem 1] which asserts that, if ^ denotes
the class of all univalent (holomorphic and one-to-one) functions in A, then % HHP =
9/ n 9p

p_x for all p > 0 (see also [25] for the case p = 1).
In spite of these facts we shall prove that, for every p e (2, oo), there are a lot

of differences between the space Hp and the space 3>p
p_v In Section 3, we shall be

mainly concerned in obtaining sharp estimates on the growth of the integral means of
^_,-functions. If 0 < p < 2 and / e ^ _ , , then f e Hp and hence, the integral
means Mp(r, f) are bounded. This is no longer true for p > 2. Our main results in
Section 3 are stated in the following two theorems.

THEOREM 1.4. // 2 < p < oo and f € 9>p
p_x, then

(i)

(7) Mp(r, f) = O ( (log - ) ) , asr-+\.
1

1 - r

(ii)

1/2-t/pN

(8) M2(r,/) = 01 I log-j-—j I , asr^X.

THEOREM \.5.lf2<p< oo and 0 < fi < 1 /2 - \/p, then there exists a function
f e @p_x such that

as r -» 1".(9) e x p ( ^ / log\f(re")\dt\ jt:Ol(logj±-\\,

Since

Theorem 1.5 shows that part (ii) of Theorem 1.4 is sharp in a very strong sense.
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REMARK. Using Theorem 1.4 we can obtain an upper bound on the integral means
Mq{r, / ) , 2 < q < p, of a function / 6 @p-v Indeed, if q e (2, p), then
q = pX + 2(1 - X), where X = (q - 2)/(p - 2) e (0, 1). Consequently, using
Theorem 1.4 and Holder's inequality with exponents I/A. and 1/(1 — A) we see that,
if / e 9p

p_x and 2 < q < p, then

Mq(r,f)= ( Y l o g - j ^ ] V a s r - + l ,

w h e r e IJ = r){p, q) = /?A/<7 + ( p - 2 ) ( 1 - A.) / />0 a n d k = (q- 2)/(p - 2 ) .

In Section 4 we study properties of the sequences of zeros of non trivial 3>p_x-
functions. If 0 < p < 2 then @p_x c Hp and hence, the sequence of zeros of a
non-identically zero 3>p

p_x-function satisfies the Blaschke condition. This does not
remain true for p > 2. Our main results about the sequences of zeros of functions /
in the space $p_x, 2 < p < oo, are stated in Theorem 1.6 and Theorem 1.7

THEOREM 1.6. Suppose that 2 < p < oo and let f be a function which belongs to
the space $p_x with / ( 0 ) ^ 0. Let \Zk}^Lx be the sequence zeros of f ordered so that
\zk\ < \Zk+i\forallk. Then

N 1
(10) T l — = o((logA0l/2- | /p), as N -» oo.

From now on, if / is a non-identically zero analytic function of zeros and {Zk}'j*Lx is
the sequence zeros of / ordered so that \zk I < |z*+i I for all k, we shall say that {z*}^
is the sequence of ordered zeros of / . Theorem 1.7 asserts that Theorem 1.6 is best
possible.

THEOREM 1.7. If 2 < p < coandO < fi < 1 / 2 - \/p, then there exists a function
f € 3>p_x with / ( 0 ) ^ 0 such that if [Zk}f=i is the sequence of ordered zeros of f,
then

(11)

Asa consequence of Theorem 1.6 and Theorem 1.7, we obtain the following result.

COROLLARY 1.8. If2<p<q<oo then there exists a sequence {Zk) C A that
is the sequence of zeros of a &q

q_x-function but is not the sequence of zeros of any
®p

 x-function.
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Hence the situation in this setting is similar to that in the setting of Bergman spaces
(see [18, Theorem 1]).

Next we shall get into the proofs of these and some other results. We shall be using
the convention that Cpa,... denotes a positive constant which depends only upon the
displayed parameters p, a, ... but is not necessarily the same at different occurrences.

2. Taylor coefficients of 9)'p_x functions.

We start by recalling the following useful result due to Mateljevic and Pavlovic
[21] (see also [5, Lemma 3] and [22]) which will be basic in the proofs of Theorem 1.1
and Theorem 1.2.

LEMMA B. Let a > 0 and p > 0. There exists a constant K that depends only on p
and a such that, if {an}%Ll is a sequence of non-negative numbers, tn = X^*e/(n)a"
(n > 0), and f(x) = £ ~ , ex""1 (x € (0, 1)), then

oo - i

K-i Y^2~natP < / (1 -x)"-lf(x)pdx <
n=0 ° n=0

PROOF OF THEOREM 1.1. Take p G (0, oo) and let / be analytic in A,

(12)

Suppose that (4) holds. Using Lemma B and (4) we see that

p

-\z\2)"-{dA{z)<Cp\ ( 1 - / • ) " - ' ( yn\an\r"-x\ dr

n=0

<CP f (1 - / • )"- ' [Yn\an\r"-<

(
n=0 \keHn)

n=0 \kel(n)

n=0

Hence, / e @p
p_{ and the proof of (i) is finished.
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Suppose now that 0 < p < 2, f is as in (12) and satisfies (5). Using the fact that
Mp{r, / ' ) < M2(r, / ' ) for all r e (0, 1), making the change of variable r2 = s and
using Lemma B, we obtain

|/'(z)|"(l - Izl2)'-1 dA(z) = 2 / r(l - r^'M^r, / ' ) ' dr
JO

<2 [ r(l - r2)"-1 M2(r, f')" dr
Jo

= 2/

<Cjf

V
\»=i

P/2

n=0 \*€/(n)

00 / \ Pi2

( )( )

n=0 Ve/(n) /

Hence, / € 3>p
p_v This finishes the proof of (ii). •

Next we see that Proposition A can be deduced from Theorem 1.1 as announced.

PROOF OF PROPOSITION A. Let / be an analytic function in A given by a power
series with Hadamard gaps

00

(13) f(z) = J2ajZ"> with — > A > 1 for a l l ; ,

and suppose that JZyli \aj \P < °°- Using the gap condition, we see that there are at
most Cx = logA 2 + 1 of the n'jS in the set I(n). Then there exists a constant Cx,p > 0
such that

oo / \ P oo

n=0 \y€/(n) / .1 = 1

and consequently, using Theorem 1.1, we deduce that / e S'pp_x.
To prove the other implication suppose that / is as in (13) and / € ^ _ , for a

certain p > 0. It is well known (see [38, Chapter V, Vol. I]) that there exist constants
A(X, p) and B(k, p) such that

A(k, p)Mp(r, / ' ) < Mp(r, / ' ) < B(X, p)Mp{r, / ' ) , 0 < r
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This and Lemma B give

oo> f \f'(z)\"(l-\z\2)p-ldA(z)= [ r(\-r2)"-lMp
p(r,f')dr

JA JO

>A(k,p) f r(l-r2r-]M'(r,f')dr
Jo

/ oo \ P / 2

n]
2\a]\

2r2'"-2\ dr

fl / °° \"/2

>A{X,p)j f(l - 0""' I ^ n / l ^ l V " 1 1 dt

£ nJ2\aA

( E \aj\
n,£l(n) ) j=0

The last inequality is obvious if p > 1 and, in the case 0 < p < 1, follows again
using the fact that there are at most Ck = logx 2 + 1 of the n^s in the set I(n). Thus,
we have YlJLo \aj\p < °°- This finishes the proof. •

PROOF OF THEOREM 1.2. Suppose that 2 < p < oo and / € ̂ p_,,

00

f(z) = Y^a»z"' z€A-
n=0

Using Lemma B, bearing in mind that k x 2" if k e I(n), making a change of variable,
and using that since p > 2, M2(r, / ' ) < Mp(r, / ' ) , we obtain

00

n=l \jte/<7!)

<cp
 r'

\ P/2

-A dt

Jo <oo.
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3. Growth properties of £^_j-functions

In this section we are mainly interested in obtaining sharp estimates on the growth
of functions / in the spaces 2P_X (2 < p < oo).

3.1. Integral means estimates Let us start with estimates on the growth of the
maximum modulus Mx(r, / ) . We can prove the following result.

THEOREM 3.1. Let f be an analytic function in A. If f € $P
P-V 0 < p < oo, then

(14) M o o ( r , / ) =

PROOF. Let / e <2)p
p_x and z e A. Let D(z) denote the open disc

w e C : \z - w\ < —-—

Clearly, D(z) C A. Since the function z —> \f'(z)\p is subharmonic in A, we have

(15) \f'(z)\p < -£— f \f'(co)\"dA(co)< C f \f'(oj)\pdA{co).
\D(z)\ JD(Z) (1 - k l 2 ) 2 JD(Z)

It is clear that ( l - | z | 2 ) x (1 - \co\2), co e D(z),z e A. Using this and (15) we obtain

On the other hand, since / 6 3>p
p_\, it follows that

I (1 -\co\)p'l\f'(co)\pdA(co) = o(l), a s | z | - » r ,

which, with (16), implies

(17) A^(r,/')=o((i J)1+,/p), as r - r ,

and (14) follows by integration. D
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REMARK. We observe that for any p e (0, oo), the exponent l/p in (14) is the best
possible. Moreover, if we take

log

with p > - then, as we noticed in Lemma 1.3, fp^ e ̂ _ , and it is easy to see that

So condition (14) in Theorem 3.1 cannot be substituted by the condition

M^ f) = ° (d-D./.doga/d-D)^)' a s ^ r •

for any s > 0.

Now we turn to the proofs of Theorem 1.4 and Theorem 1.5.

PROOF OF THEOREM 1.4. Suppose that 2 < p < oo and / e 9p
p_v Then

(18) lim / (1 -s)p-lMp(s,f')ds = 0.

Since Mp(s, / ' ) is an increasing function of s

I (1 - S)" - 'M; (S , / ') rfs > Mp
p(r, / ' ) J (1 - s)"-1 <fr > CpM;(r, /')(1 - r)",

which, together with (18), yields

(19) M p ( r , / ' ) = o ( ( l - r ) - ' ) , a s r ^ l " ,

which, using Minkowski's integral inequality, implies (7).
Using (19) and the fact that for any fixed r with 0 < r < 1 the integral means

Mp(r, / ' ) increase with p, we deduce that

/2(r, /') = o((l-r)-2), asr^P.

and then using the well-known inequality (see [26, pages 125-126])
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we obtain

as r l",

which, integrating twice, gives

M2(r, / ) = o

This is worse than (8). To obtain this we use Theorem 1.2.
Say that / ( z ) = ^B°°=lanz", (z e A). Suppose, without loss of generality that

a0 = 0. Using Holder's inequality with the exponents p/2 and p/(p — 2) and
Theorem 1.2, we obtain

n=0 kel(n)
Ei
:e/(n)

n = 0

P/2

'-2"

VP

n=0

- oo -i 1-2/p

."=0 J

D

Since

exp ^ ^ log \f(re'e)\ dd\ < M2(r, / ) , 0 < r < 1,

we trivially have the following result.

COROLLARY 3.2. If 2 < p < oo anrf / e ^ _

exp
1 r— / \log|/(re's)|^J=O IV 1 \(nogy—-J

1/2~1/p

1.

Theorem 1.5 shows that Corollary 3.2 and the estimate (8) are sharp in a very strong
sense. The following lemma, whose proof is simple and is omitted, will be used in
the proof of Theorem 1.5.

LEMMA 3.3. Let f(z) =

and ak\
2 % (log N)p, as

^" be an analytic function in A. If 0 < /3 < 1
oo, //ten /2(r, / ) « (log(l - r ) - ' / â  r - • 1".

We make use of the technique introduced by Ullrich in [32]. Let us start introducing
some notation.

Let co — [0, \]N and cou co2,... be 'the coordinate functions' co}• : Q -> [0, 1]. Let
dco denote the product measure £2 derived from the Lebesgue measure on [0, 1]. Now
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(t)\, ah,... are the Steinhaus variables (independent, identically distributed random
variables uniformly distributed on [0, 1]). Note that {e2"""'}"!, is a n orthonormal set
in L2(fi), hence, if ^2jLt |a ; |

2 < oo, then Y^jLi aje2mw' 1S a w eU defined element of
L2(Q) with L2-norm ( E > l i KI 2 ) ' / 2 - T h e following theorem is [32, Theorem 1].

THEOREM C. There exists C > 0 such that for any sequence of complex numbers

{ay}~ , with YlJLx \aA2 < °°> we have

exp log
7 = 1

da>

PROOF OF THEOREM 1.5. Suppose that 2 < p < oo and 0 < p < 1/2 - \/p. Set
e = 1/2 - \/p - p, hence, e > 0. We define the sequence {bj}°°=l as bj = j ~ l / p ' e ,
j ' = l , 2 , . . . . Now, for every co e Q we define

(20) A-

Since £ , = i 1^7lp < °°- using Proposition A we deduce that fw e @p
p_{ for every

toe n.
We will see that for a.e. co e Q

^ j f l o g | / ( U ( r e ; ' ) I ^ W o ( ( l o g ( l / ( l - / - ) ) ) ^ ) , a s r - ^ l " .(21)

This will finish the proof.
Suppose that (21) is false. Then there exists a measurable set E C £2 with positive

measure and such that for all co e E

(22) exp(i- j log|/a,(/V')|^)=o((log(l/(l-r)))'i), aSr->r.

This is equivalent to saying that

\L(re")\.. i r
hm — /
' - • - 2 * ;_„

(23)

On the other hand,

log dt = - o o , co e E.

1/2 1/2

= £7
1/2
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[13] Spaces of Dirichlet type 409

Thus, there exist C > 0 and JV0 > 0 such that

(24) 'Ei
1/2

N>N0.

Using (24) and Lemma 3.3, we deduce that

1/2-l/p-e

0 < r < 1, co e Q,

which implies that for 0 < r < 1 and co e Q,

(25)

From this we deduce as in (23), that there exists C > 0 such that

\Mre")\

^ ^ log \fa(re")\dt) < C flog j ^
l/2-\/p-s

(26) log dt <C, 0 < r < 1,

Bearing in mind that E has positive measure, (26) and (23) imply

(27)
(logd/d-r)))"

For Â  = 1, 2, . . . Je t QN = [0, l ] w andmN be the Lebesgue measure on £lN. Observe
now that, for any A', we have

JaN

log\fa(re")\dmN(a>)

N

log

- / ' • • • / • ' l o g
Jo Jo

7=1

E'
7 = 1

da>]da>2 • • •

, a.s.

Letting N tend to oo, we deduce that fQ log \fw(re'')\ dco is independent of t. Then
using (27) and Fubini's Theorem we obtain

(28) lim / log
r ^ ' ~ JQ

\Mr)\
(logd/d-r)))'

• dco = —oo.
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However, if we set rN = 1 — 1/2W, N = 1, 2, . . . , by Theorem C and the inequality

e"1 <#<»#, l<;<tf,

we deduce

exp

that

J \og\UirN)\

= exp /log V ^ i e27riw'r2J

> c

which implies

> C log

log > log C, for all
(\og(\-rN)-*Y

which contradicts (28). Consequently, (21) is true and the proof is finished. •
3.2. Radial growth of 2>p

p_x-functions In this section we obtain some estimates on
the radial growth of ^_,-functions. If 0 < p < 2 and / e @p

p_x, then f e Hp and
so / has nontangential limit a.e. T. Therefore, we have: If 0 < p < 2 and / € 2>p

p_v

then \f(rel0)\ = 0(1), as r -^ 1" for a.e. e" e 3A.
Zygmund proved in [37] that if / is an analytic function in A, then

(29) f \f(pe"
Jo

) \ d p = o \ [ l o g
1

1 - r

1/2'

as r r

for almost every point e" in the Fatou set of / , Ff, which consists of those e" € T
such that / has finite nontangential limit at e". Obviously, (29) implies

(30) \f{re-)\=o log
1

1 -r

1/2'

as r

If 2 < p < oo, there are functions / € ^ _ , such that Fj has Lebesgue measure
equal to zero. Indeed, an analytic function / given by a power series with Hadamard
gaps whose sequence of Taylor coefficients [ak] belongs to lp \ I2, is a ^p_,-function
by Proposition A and Ff has null Lebesgue measure (see [38, Chapter V]). In spite of
this, we can prove the following result for f^f,,-functions.
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THEOREM 3.4. // 2 < p < oo and f e 2>" v then

(31) \f(re")\=o log
1

p-

, as r —> 1 fora. e. e" e 9A.

This is better that the a.e. estimate which can be deduced from (17).

PROOF OF THEOREM 3.4. Let p and / be as in the statement of the theorem. Then

r ( r1 , , ., \
/ / ( l - r ) p \f(re")\pdt \ dr < oo,

J-n \Jo )
and it follows that the set A of points e" e 3 A for which

f (1 -r)p-l\f'(re")\l'dt < oo,
Jo

has Lebesgue measure equal to In.
Take and fix e" e A. Take also e > 0. Then there exists re e (0, 1) such that

(32) f (l-sy-l\f(se")\l'ds<£.
J re

Using (32) and Holder's inequality with exponents p and p/(p — 1), we obtain for
r£ < r < 1,

(33) f \f'(se")\ds= f'\f'(se")\ds+ f \f\se")\ds
Jo Jo Jr,

<Cre+ I , ,,- / (se ) \ d s

<Cf.e + e (log Y^A

Consequently, we have proved that

(
1 \ VP~' fir

log- ) / \f'{seu)\ds<e.
1 — r / Jo

Since e > 0 and e" e A are arbitrary, we have

r \( i V~1/Pl
/ \f'(se")\ds = o (log , a s r ^ - 1 " ,

for all e" e A. This implies that (31) holds for all e" 6 A, which has Lebesgue
measure equal to 2rz. This finishes the proof. D
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We do not know whether or not the exponent 1 — 1/p in Theorem 3.4 is sharp
but we know that it cannot be substitutes by any exponent smaller than 1/2 — 1/p.
Indeed, we can prove the following result.

THEOREM 3.5. / / 2 < p < oo, then there exists a function f 6 2>p
p_x such that

(34) I i m - -S^lfr ^ = °°' Ma.e. e"edA.
' ( ) ( )

PROOF. Take p > 2. Define

1
' *=1 .2 , . . . . and f{z) = J^akz*, z e A.

Since J ^ l , la*lP < ° ° ' ^y Proposition A, we have that / e
On the other hand,

1/2

^2kJ
'/2 yyl/2-l/p/ fN 1

~ j / 5—dx ) ~ , as /V - • oo,
\ J i x2/Plog 2x

and then it is easy to see that

(35) M2(r, f) = I2(r, f) l/2 ~ § ^ ^, ^ , , l .
log log —

Now, by the law of the iterated logarithm for lacunary series (see [35]) we have that

I f(re")\
(36) Iim — rjr = 1, fora.e. e" e 3A.

Now we observe that (36) and (35) imply (34). This finishes the proof. •

4. Zeros of 5^_ , functions

4.1. Products of the zeros of %)p
p_x functions We start by recalling the the following

result due to Horowitz, (see [18, page 65]).
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LEMMA D. Let f be an analytic function in A with / ( 0 ) ^ 0 and let {Zk} be the
sequence of ordered zeros of f. If 0 < p < oo, 0 < r < 1, and N is a positive
integer, then

A r"(37) \fmPY\

This lemma and the estimates for the integral means of ^_,-functions obtained in
Section 3.1 are the basic ingredients in the proofs of Theorem 1.6 and Theorem 1.7.
This method was used by Horowitz in [18] for the Bergman spaces and later by the
first author of this paper, Nowak, and Waniurski in [15] for the Bloch space SS and
some other related spaces.

PROOF OF THEOREM 1.6. L e t p , / , and {z*}£, be as in the statement of Theorem 1.6.
Using Theorem 1.4, we see that / satisfies (8) and using Lemma D with p — 2, we
deduce that

N
 r / I \ l / 2 - l / p

(38) Y\ — ^ CM2(r, f) <C I log ) if r is close enough to 1.

Now, taking r = 1 — l/N with N big enough in (38) and bearing in mind that
(1 - l/N)N > \/2e, we deduce that

N ,
1/2-1/p(39) [[ — <C(logJV)

k=\ ' z * '

This finishes the proof. •

Our next objective is to prove Theorem 1.7 which asserts that Theorem 1.6 is sharp.

We start recalling some notation and facts from Nevanlinna theory (see [16, 23] or

[31]) which will be needed in our proof.

Let / be a non-constant analytic function in A. For any u e C and 0 < r < 1, we

denote by n(r,a, f) the number of zeros f — am the disc [\z\ < r], where each zero

is counted according to its multiplicity. We define also

./o
(40) N(r,a,f)^ [nit'a>f)n(0'a>f)dt+n(0,a,f)logr, 0 < r < 1

For simplicity, we shall write n(r, f) = n(r, 0, / ) , N(r, f) = N{r, 0, / ) . The

Nevanlinna characteristic function T(r, f) is defined by

T(r, f) = ̂ ~ f log+ \f(rew)\ dO, 0 < r < 1.

https://doi.org/10.1017/S1446788700014105 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014105


414 Daniel Girela and Jose Angel Pelaez [18] i

The proximity function m(r, a, f) is given by

1
m(r,a,f) = — / log4

In J^n
•dt, 0 <r < 1.

\f{re")-a\

Now we can state the First Fundamental Theorem of Nevanlinna.

THEOREM E. Let f be a non-constant analytic function in A. Then

m(r, a, f) + N(r, a, f) = T(r, f) + 0(1), as r -> 1".

for every a e C.

Now we can prove the following result.

PROPOSITION 4.1. If 2 < p < oo and f is a non-constant ®p
p_rfunction, then

(41) n(r,a,f) = o(- log log- J, as r -> \~,for all a e C.
\ \ - r \ - r )

PROOF. Using the arithmetic-geometric mean inequality we obtain

T(r, f)<^~ f log {\f(re")\2 + l) dt
47T J_x

< \ log (J^ J {\f(re")\2 + 1) dt^j < I log (/2(r, / ) + l),

which, with part (ii) of Theorem 1.4, gives

(42) 7 ( r , / ) = O Hog logy

Using Theorem E, we deduce that

(43) N(r, a, f) = O Nog l o g - — J , as r -+ 1", for all a e C.

Now, it is well known (see [2, page 22]) that this implies (41). •

Now, we can proceed with the proof of Theorem 1.7.

PROOF OF THEOREM 1.7. Take p and p with 2 < /> < oo and 0 < p < 1/2-1/p.

Take / 6 Qp
p_x with /(O) ^ 0 and

(44) ( ^ / ' i ( | r f ) * m ^
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such a function exists by Theorem 1.5. Using (44) we see that there exist a sequence
{rj}JL\ C (0, 1) with r, f 1 and a positive constant C (independent of j), such that

e x p f l - j l o g \ f ( r j e ' ' ) \ d t \ > C (log j ^ - \ , 7 = 1 , 2 . . . .(45)

We shall write n(r) instead of n(r, f) for simplicity. Using Jensen's formula (see [1,
page 206]) and (45) we deduce that

(46)

which implies that

(47) n(rj) ->• oo, as j -*• oo.

On the other hand, Proposition 4.1 implies that there exists C > 0 such that

n(r) < C log log , if r is sufficiently close to 1.
\— r \ —r

This implies that

logn(r) < C log , if r is sufficiently close to 1,

which, together with (46), shows that there exists j0 G N such that for every j > j0

n(rj)

i/wi n T^ >

This finishes the proof. •

4.2. A substitute of Blaschke condition If 2 < p < oo the sequence [zt) of
ordered zeros of a non trivial &p

p_x function need not satisfy the Blaschke condition.
Indeed, the Blaschke condition is equivalent to saying that n^Li(Vknl) = 0(1) and
we have seen that this is not always true. Using Theorem 1.6 and arguing exactly as
in the proof of [15, Theorem 5] we can prove the following result.

THEOREM 4.2. Let 2 < p < oo and f e 9p
p_x with / ^ 0. Let {z*}£L, be the

sequence of zeros of f. Then

—a

(48) y . (1 ~ \Zk\) I log log ~; ;—r ) < ° °
\Zt | > I — 1 /e

for all a > 1.
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Next, we shall prove that the condition a > 1 is needed in Theorem 4.2.

THEOREM 4.3. Let 2 < p < oo. Then there exists a function f € ^P
p-\ with / ^ 0,

whose sequence of zeros {Zk}'tLi satisfies

^ / 1 \ " '
(49) J2 d-I^DUoglogTj-—— J = oo.

PROOF. Set g(z) = YlT=i lc~(p+2)/4pz2t, z € A. Since g is given by a power series
with Hadamard gap:> and Yl7=i k~{p+2)/4 < oo, it follows that g e @p

p_v

We shall follow the argument of the proof of [15, Theorem 6]. Set

(50) rn = \-2-\ n = l , 2 , 3 , . . . .

It is easy to see that, for all sufficiently large n, I2(rn, g) > Cn1/2~1/p, which, since
log(l/(l - rn)) = n log 2, implies that

/ j vl/2-l/p

(51) h(rn, g) > C I log I if n is sufficiently large.

Now, since log(l/(l — rn)) ~ log(l/(l - r n + 1 ) ) , as n ->• oo, and since I2(r, g) and
(log(l/(l — r)))l/2~l/p are increasing functions of r, we deduce

( l / 2 - l / p

(52) /2(r, g) > C (log '

if r is sufficiently close to 1.
Using this and arguing as in [15, page 126] we deduce that there exist a complex

number a with g(0) ^ a, a positive constant p , and a number r0 6 (0, 1) such that

(53) / V ( r , a , g ) > £ l o g l o g - j — - r € (r0, 1).

Take such an a e C and set / ( z ) = g(z) - a, z e A. Then / € 9p
p_x and / (0) £ 0.

Also (53) can be written as

(54) ^ ( r , / ) ^ log log—— , r e ( r 0 , 1).
1 — r

Let (zn) be the sequence of zeros of / . Using Proposition 4.1 and arguing as in [15,
page 127], we obtain (49). •
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