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In this study we consider a freely decaying, stably stratified homogeneous
magnetohydrodynamic turbulent plasma with a weak vertical background magnetic
field (B0 = B0ẑ), aligned with the density gradient of strength N (i.e. Brunt–Väisälä
frequency). Both linear theory and direct numerical simulations (DNS) are used to analyse
the flow dynamics for a Boussinesq fluid with unitary magnetic and thermal Prandtl
numbers. We implemented a normal mode decomposition emphasizing different types
of motions depending on whether both the Froude Fr and Alfvén–Mach M numbers are
small or only Fr is small but M is finite. In the former case, there is a non-propagating (NP)
mode and fast modes: Alfvén waves with frequency ωa and magnetogravity waves with
frequency ωag. In the latter case, there are fast gravity waves with frequency ωg and
slow modes: NP mode and slow Alfvén waves. The numerical simulations carried out are
started from initial isotropic conditions with zero initial magnetic and density fluctuations,
so that the initial energy of the NP mode is strictly zero, for 0 < B0/(LiN) � 0.12 and a
weak mean magnetic field (B0 = 0.2 or B0 = 0.4), where Li denotes the isotropic integral
length scale. The DNS results indicate a weak turbulence regime for which Fr is small
and M is finite. It is found that the vertical magnetic energy as well as the energy of the
NP mode are drastically reduced as N increases, while there is instead a forward cascade
even for the magnetic field. The contribution coming from the energy of fast (gravity)
waves does not exceed 50 %, while that coming from the energy of the NP mode does
not exceed 10 %. Vertical motions are more affected by the effect of stratification than by
the effect of the mean magnetic field, while it is the opposite for horizontal motions. We
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show that the spectrum of slow (Alfvén) waves and fast (gravity) waves tends to follow
the power law k−3

⊥ for a wide range of time, 3 < t < 20. At high vertical (or horizontal)
wavenumbers, the main contribution to total energy comes from the energy of slow Alfvén
waves. At large and intermediate horizontal (or vertical) scales, the spectra of the energy
of NP mode exhibit a flat shape.

Key words: MHD turbulence, stratified turbulence, wave-turbulence interactions

1. Introduction

The magnetic field plays a vital role in structuring the atmosphere of stars like the Sun and,
in general, in the dynamics of astrophysical plasma. The interplay of non-propagating (NP)
turbulent motions and propagating plasma waves is a fundamental process in astrophysical
magnetohydrodynamics (MHDs) (see, e.g. Marino & Sorriso-Valvo 2023). In addition
to the presence of Alfvén waves, acoustic waves and MHD Rossby waves in the solar
atmosphere (see, e.g. Straus et al. 2008; Wiśniewska et al. 2016; Grant et al. 2018;
Zaqarashvili et al. 2021), several observations provided strong evidence for the presence
also of internal gravity waves (IGW) (Straus et al. 2008; Kneer & González 2011;
Nagashima et al. 2014; Vigeesh & Roth 2020). The IGW propagating through the lower
solar atmosphere, where buoyancy plays the role of the dominant resorting force, may be
generated by turbulent motions close to the visible solar surface (see Hague & Erdélyi
2016). Because the magnetic activity is ubiquitous throughout the solar atmosphere, so
it is expected that the behaviour of IGW is to be affected (see Vigeesh, Jackiewicz &
Steiner 2017). In this work, we study the dynamics of Alfvén waves, magnetogravity
waves and NP modes occurring in stably stratified MHD turbulence subject to a uniform
mean magnetic field for a electrically conductive, Boussinesq fluid. In the frame of the
Boussinesq approximation (see Spiegel & Veronis 1960), higher-frequency acoustic waves
are filtered out and, hence, the Boussinesq MHD equations (Davidson 2013) can be used
to study the turbulent motions in stably stratified regions of stars and gas giants below their
surfaces (see, e.g. Skoutnev 2023).

The introduction of a uniform background magnetic field B0 or the buoyancy force
(under the Boussinesq approximation) reduces the number of inviscid/ideal invariants in
three-dimensional (3-D) incompressible MHD. In the first case, the magnetic helicity
is no longer conserved while in the second it is the cross-correlation between the
velocity and the magnetic field. For the Boussinesq MHD equations, the Ertel potential
vorticity (PV), denoted here by Π̃κ, which is the fundamental correlation between vorticity
and stratification (e.g. Pedlosky 2013), is not a Lagrangian invariant in MHD because it
removes the baroclinic torque in the extended vorticity equation, but not the counterpart of
the Lorentz force. In contrast, the so-called ‘magnetic induction potential scalar’ (MIPS)
(i.e. the scalar product of the magnetic field vector and the buoyancy scalar gradient,
denoted here by Π̃) is a Lagrangian invariant for a non-diffusive, electrically conducting,
Boussinesq fluid as shown by Salhi et al. (2012) (see also Salhi et al. 2017; Salhi & Cambon
2023).

Consider the two systems: stratified MHD turbulence subject to a uniform mean
magnetic field (B0 = B0ẑ) and (non-magnetized) stratified turbulence with system rotation
(Ω = ( f /2)ẑ). Here, f > 0 is the Coriolis parameter and B0 > 0 is the Alfvén velocity
scaled from the mean magnetic field. For both systems, the mean density gradient
aligns with the unit vertical vector ẑ, with constant strength N (i.e. the Brunt–Väisälä
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frequency). Accordingly, Π̃κ and Π̃ take the form (see § 2)

Π̃κ = fN + Nωz + f ∂zϑ + ω · ∇ϑ, (1.1a)

Π̃ = B0N + Nbz + B0∂zϑ + b · ∇ϑ. (1.1b)

Here, ωz = ω · ẑ and bz = b · ẑ are the vertical components of the vorticity vector, ω =
∇ × u, and the fluctuating magnetic field, respectively, and ϑ denotes the fluctuating
buoyancy scalar. Note that the constant parts fN and B0N do not participate in the dynamics
and therefore can be ignored. The question that may arise from (1.1) is whether the
similarity between Π̃κ and Π̃ is or not limited to a formal analogy.

It appears useful to briefly recall some previous studies characterizing the role played by
Πκ in the dynamics of geophysical flows and stratified turbulence. The evolution of weak,
homogeneous turbulence with strong rotation and stratification was recently revisited by
Scott & Cambon (2024). In the linear limit, the flow consists of oscillatory spectral modes
which represent inertia-gravity waves with frequency ωig,

ω2
ig = f 2k−2k2

‖ + N2k−2k2
⊥, (1.2)

and time-independent ones that express a NP component of the flow. Here k⊥ = ‖k × ẑ‖
and k‖ = k · ẑ are, respectively, the horizontal and vertical components of the wavevector
k. The evolution under weak nonlinearity, which is the purpose of the wave turbulence
theory, was obtained without stratification (e.g. Galtier 2003; Bellet et al. 2006), whereas
the presence of the NP mode renders more problematic the case with coupled stratification.
whereas the presence of the NP mode makes it more problematic the case with coupled
stratification. The NP mode corresponds to PV and its dynamics, when it is decoupled
from waves. It is very close to what one has in the quasigeostrophic (QG) theory
(see Pedlosky 2013), which is one of the cornerstones in the study of atmospheric and
oceanic flows since its development by Charney (1948, 1971). The new results with direct
numerical simulations (DNS) without forcing for the NP component are consistent with
the prediction of Charney (1971), both in terms of power laws and the lack of a cascade
(see also Leith 1980; Embid & Majda 1998; Kurien, Wingate & Taylor 2008). In the case
of the evolution of both the NP component and the inertia-gravity waves one, via wave
turbulence theory, the emphasis is put on angle-dependent spectra for a wide range of the
ratio f /N, as the most detailed description of anisotropy.

On the other hand, an inverse cascade is suggested by previous quasilinear studies
as follows. The inviscid statistical tendency at low Rossby Ro = U/( fL) and Froude
Fr = U/(NL) has been explored theoretically and numerically by, e.g. Bartello (1995),
Kurien, Smith & Wingate (2006), Kurien et al. (2008), Herbert, Pouquet & Marino
(2014) and Herbert et al. (2016). Here, U and L are characteristic velocity and length
scales, respectively. Bartello (1995) employed statistical mechanics to consider the effects
of combined conservation of total (kinetic + potential) energy and potential enstrophy
(i.e. the L2 norm of PV). Indeed, in the limit Fr → 0 and/or Ro → 0, the potential
enstrophy can be approximated by its quadratic part, and hence, the two inviscid invariants
can be expressed in terms of the abovementioned normal modes. In the study by Herbert
et al. (2014), it was shown that restricting the equilibrium probability distribution to the
slow manifold produces an inverse cascade. In contrast, taking into account the whole
phase space, including the waves, results in a direct cascade (see also Lucarini et al. 2014).

Moderate and strong nonlinearity is taken into account in several pseudospectral DNS
studies in triperiodic boxes: the presence an inverse cascade of energy is evidenced, but
most of these computations are forced and are eventually affected by finite-box effects,
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sometime also using elongated boxes. It is shown that turbulent QG flow produces
an inverse energy cascade (see, e.g. Vallgren & Lindborg 2010) resulting in a total
(kinetic + potential) energy spectrum scaling as E(k) ∝ k−5/3 for the low wavenumbers,
and a forward cascade of potential enstrophy, analogous to the enstrophy cascade in
two-dimensional turbulence, with E(k) ∝ k−3 at high wavenumbers (see also Nastrom
& Gage 1983; Lilly 1989; Maltrud & Vallis 1991). Note that the QG enstrophy cascade
from the large-scale circulation is one source of PV at intermediate and small scales in the
atmosphere and ocean (see, e.g. Waite & Richardson 2023). Recently, van Kan & Alexakis
(2022), who studied forced rapidly rotating and stably stratified turbulence performing
DNS with an elongated domain, showed that there is an inverse cascade even for weak
stratification (large Fr) but for sufficiently large λ = (hRo)−1 where h is the ratio of the
domain height to the energy injection scale. Other previous DNS studies of rapidly rotating
stratified turbulence report the observation of a split energy cascade where the ratio N/f
has been identified as a control parameter: rotating and stratified flows at moderate values
N/f develop inverse cascade (see, e.g. Smith & Waleffe 2002; Marino et al. 2015; Herbert
et al. 2016).

In the stratified MHD flows with mean magnetic fields (B0 /= 0), the normal mode
analysis in the inviscid linear limit indicates that, in the case of small Fr and small
Alfvén–Mach number M = U/B0, there are three decoupling normal modes: a NP mode,
fast Alfvén and fast magnetogravity waves whose dispersion relations are

ω2
a = B2

0k2
‖, ω2

ag = ω2
a + ω2

g = B2
0k2

‖ + N2k−2k2
⊥, (1.3a,b)

respectively. In counterpart, in the case of small Fr and finite M, there are fast gravity
waves with frequency ωg and slow modes: a NP mode and slow Alfvén waves with
frequency ωa.

For the assessment of the effect of stratification and of a background magnetic field,
separately, we refer to the cases of purely stratified turbulence (PST) and of purely MHD
turbulence with a mean magnetic field. Here we briefly report some results from the
literature relative to these two configurations.

As it was shown in previous studies, the buoyancy Reynolds number Reb =
U3

h/(νLhN2) can be considered a primary control parameter in characterizing PST, as
far as is concerned energy transfer, dissipation, mixing and dispersion properties (Smyth
& Moum 2000; Billant & Chomaz 2001; Brethouwer et al. 2007; Bartello & Tobias
2013; Waite 2013; Maffioli & Davidson 2016). Here, Uh and Lh denote characteristic
horizontal velocity and length Lh scales, respectively, and ν being the kinematic viscosity.
The potential relevance of Reb is based on the shearing dynamics observed to occur
when strong stratification leads to the tendency for vertical decoupling of horizontal
motions (Riley & de Bruyn Kops 2003; de Bruyn Kops & Riley 2019). In the lower-Reb
regime (called the viscosity-affected stratified flow regime (Watanabe, Zheng & Nagata
2022)), the flow is characterized by thin layers of horizontal flow, glued together by the
viscosity acting along the vertical direction Waite (2013). In previous studies, using and/or
comparing anisotropic multimodal eddy damped quasinormal Markovian (EDQNM) and
DNS, the layering was quantified by angle-dependent spectra, showing the concentration
of energy towards vertical wavevectors (Godeferd & Cambon 1994); it was shown in
Liechtenstein, Godeferd & Cambon (2005) that this anisotropic nonlinear effect affected
almost exclusively the NP mode. In that case, the inviscid potential enstrophy can be
approximated by its quadratic part which dominates the higher-order terms allowing for
the use of equilibrium statistical mechanics which indicates the lack of an inverse cascade
of energy (see Waite & Bartello 2004; Herbert et al. 2014). In the high-Reb regime
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(also called strongly stratified turbulence regime), stratified turbulence is characterized
by layerwise ‘pancake’ flows with associated Kelvin–Helmoltz instabilities, consistent
with the breakdown of the quadratic approximation of PV (see Waite 2013). Note that
the scaling analysis of Billant & Chomaz (2001) in strongly stratified turbulence regime
gives Frv = Uh/(NLv) ∼ 1, where Lh is the horizontal length scale. We also note that the
numerical simulations by Kimura & Herring (2012) for sufficiently strong stratification
(Reb > 1) indicate that the wave spectrum is a steeper than k−2

⊥ , while that for the NP
mode is consistent with k−3

⊥ . Our numerical simulations for the purely stratified case are
characterized by Reb < 1, Frh < 0.1 and Frv < 0.1 meaning that the flows we considered
in those cases do correspond to a stratified weak wave MHD turbulence regime that is
rather affected by viscosity (see § 4).

The MHD turbulence in the presence of a mean magnetic field has been the subject
of many studies (Iroshnikov 1963; Kraichnan 1965; Shebalin, Matthaeus & Montgomery
1983; Galtier et al. 2000; Nazarenko 2011; Alexakis & Biferale 2018). Indeed, the presence
of a mean magnetic field (here, B0 = B0ẑ) in (non-stratified) MHD turbulence supports
the development of a high degree of anisotropy with most of the energy cascading
perpendicular to B0. The turbulent fluctuations are elongated along the mean magnetic
field and the anisotropy is scale-dependent (Müller, Biskamp & Grappin 2003). Thus,
two time scales can be introduced: the nonlinear eddy turnover time the nonlinear eddy
turnover time τ−1

nl = k⊥bλ where bλ the root mean square (r.m.s.) magnetic fluctuations
at the scale λ = k−1

⊥ , and the Alfvén time τ−1
a = k‖B0. The latter time scale can be

interpreted as the interaction time between two counter-propagating Alfvén wave packets,
in the ±B0 directions. Depending on the ratio τnl/τa different turbulent regimes can be
distinguished (Zhou 2010). In the case where τ−1

a = k‖B0 � τ−1
nl = k⊥bλ, or equivalently,

when the linear terms dominate, there is a weak turbulence regime. Otherwise, turbulence
is called strong. A direct evidence transition from weak to strong MHD turbulence has
been presented by Meyrand, Galtier & Kiyani (2016) that showed how the change of
regime is characterized, among other things, by a variation of the slope of the energy
spectrum going from approximately −2 to −3/2 and by an increase of the ratio τa/τnl. We
note that Galtier et al. (2000) had analysed the weak turbulence limit of MHD turbulence
for large B0 and showed that the anisotropic spectrum scales as E(k⊥) ∼ k−2

⊥ . On the
other hand, in the strong MHD turbulence regime, phenomenological models taking into
account anisotropy do predict that the anisotropic energy spectrum would scale as k−5/3

⊥
(i.e. Kolmogrov’s exponent (Goldreich & Sridhar 1995) or as k−3/2

⊥ (Boldyrev 2005)).
The outline of the paper is structured as follows. In § 2, we present the mathematical

formulation used in our study, including the Boussinesq-MHD equations as well as the
equations for conserved quantities of an inviscid system. The normal mode decomposition
in the inviscid linear limit is provided in § 3. The main DNS results are then presented and
discussed in § 4. In § 5, we report our concluding remarks.

2. Mathematical formulation

2.1. The Boussinesq-MHD equations
The dynamics of a stably stratified fluid subjected to a mean uniform magnetic field, B0
can be described, under the Boussinesq approximation, by the momentum equation for
the velocity, u, the induction equation for the magnetic field, b, and an equation for the
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buoyancy scalar, ϑ (e.g. Davidson 2013),

∂tu + (u · ∇) u = −∇p + ((B0 + b) · ∇) b + Nϑ ẑ + ν∇2u, (2.1a)

∂tb + (u · ∇) b = (B0 · ∇) u + (b · ∇) u + η∇2b, (2.1b)

∂tϑ + (u · ∇) ϑ = −Nẑ · u + κ∇2ϑ, (2.1c)

together with the incompressibility condition and the divergence-free condition for the
magnetic field,

∇ · u = 0, ∇ · b = 0. (2.2a,b)

Here, the magnetic field is scaled using Alfvén velocity units, i.e. it is divided by
√


0μ0
where 
0 and μ0 are a constant reference density and the magnetic permeability of the
fluid, and the fluctuation of the buoyancy scalar ϑ = −(g/(N
0))ρ has the dimension of
a velocity where ρ is the density fluctuation and N, such that

N2 = − g
ρ0

d


dz
� 0 (2.3)

denotes the Brunt–Väisälä frequency which is a positive constant since we assume a linear
background stable stratification,


 = 
0

[
1 −

(
N2/g

)
z
]
, g = −gẑ, (2.4a,b)

with g being the acceleration of gravity, and ẑ denotes a vertical upward unit vector such
that (x̂, ŷ, ẑ) is the canonical basis of R3. In the present paper, we consider that the
magnetic and thermal Prandtl numbers, Pm = ν/μ and Pr = ν/κ are equal to unity.

In (2.1), p denotes the total pressure fluctuations (including the magnetic pressure)
divided by 
0, and ν, η and κ denote the kinematic viscosity and the magnetic and
density diffusivities, respectively. The second and third terms on the right-hand side of the
momentum equation (2.1a) represent the Lorentz and the buoyancy forces, respectively.
For simplicity, in the present study, we consider that the unperturbed magnetic field B0
aligns with the ẑ-direction,

B0 = B0ẑ, (2.5)

where B0 is a positive constant. Note that the pressure p can be eliminated by computing
the divergence of the momentum equation in (2.1) together with ∇ · u = 0 and ∇ · b = 0,

and then solving the resulting elliptic equation for the pressure p to get

p(x, t) = −∇−2 (∇ · (u · ∇u − b · ∇b) − N∇ϑ · ẑ
)
. (2.6)

From (2.1) and (2.2a,b) we deduce that the sum of the kinetic, magnetic and potential
energies,

E = 1
2

∫ (
‖u(x)‖2 + ‖b(x)‖2 + ϑ(x)2

)
d3x (2.7)

is conserved for a non-diffusive Boussinesq fluid,

∂tE = −
∫ (

ν‖ω‖2 + η‖ j‖2 + κ‖∇ϑ‖2
)

d3x, (2.8)

where ω = ∇ × u is the vorticity vector and j denotes the normalized current density.
Likewise, from (2.1) and (2.2a,b) we derive the equation for the so-called MIPS (Salhi
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et al. (2012); see also Salhi et al. (2017); Salhi & Cambon (2023))

Π̃ = b̃ · ∇ϑ̃ = NB0 + Nẑ · b + B0ẑ · ∇ϑ + b · ∇ϑ, (2.9a)

∂tΠ̃ + (u · ∇) Π̃ = η
(
∇ϑ̃

)
· ∇2b̃ + κ b̃ · ∇2

(
∇ϑ̃

)
, (2.9b)

which makes it clear that Π̃ is conserved following the flow in the absence of magnetic
and thermal diffusion. Note that the constant part Π0 = NB0 does not participate in the
dynamics and can, therefore, be neglected.

2.2. Non-dimensionalized version of the Boussinesq MHD equations
In order to non-dimensionalize the above Boussinesq MHD equations we introduce
characteristic scales for the physical variables: L is the length scale in both the
horizontal and the vertical directions and U is the velocity scale. As in the study of
the case of non-magnetized rotating and stratified system by Embid & Majda (1998), a
non-dimensionalized version of the Boussinesq MHD equations can be written in abstract
form as

∂t′Y + L(Y ) + B(Y , Y ) − D(Y ) = 0, (2.10)

where t′ = tU/L denotes the dimensionless time unit, Y is given by

Y =
⎛
⎝ u′

b′
ϑ ′

⎞
⎠ = U−1

⎛
⎝ u

b
ϑ

⎞
⎠ , (2.11)

the linear operator is given by

L(Y ) =

⎛
⎜⎝ −F−1

r ϑ ′ẑ − M−1∂x′
3
b′ − F−1

r ∇′
(
∇′−2∂x′

3
ϑ ′
)

−M−1∂x′
3
u′

F−1
r u′ · ẑ

⎞
⎟⎠ , (2.12)

the quadratic operator is given by

B (Y , Y ) =
⎛
⎝ u′ · ∇′u′ − b′ · ∇′b′ − ∇′ (∇′−2 (∇′ · (u′ · ∇′u′ − b′ · ∇′b′)))

u′ · ∇′b′ − b′ · ∇′u′
u′ · ∇′ϑ ′

⎞
⎠
(2.13)

and the diffusion operator is given by

D (Y ) =
⎛
⎝ R−1

e ∇′2u′
R−1

e P−1
m ∇′2b′

R−1
e P−1

r ∇′2ϑ ′

⎞
⎠ . (2.14)

Here, ∇′ = L−1∇ and the non-dimensional numbers

Fr = U
NL

, M−1 = B0

U
, Re = U

νL
(2.15a–c)

are the Froude, the inverse Alfvén–Mach and Reynolds numbers, respectively. In a
non-dimensional form, the expression of MIPS reduces to

Π ′ = b′
3 + FrM−1∂x′

3
ϑ ′ + Frb′ · ∇′ϑ ′. (2.16)

First, we consider the asymptotic limit of the small Froude number and the finite
Alfvén–Mach number (hereinafter, it is referred to as case (II)). In that case, we consider
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the scaling

Fr = ε � 1, M = O(1), Re = O(1), Pm = Pr = O(1) as ε → 0. (2.17a–d)

Accordingly, (2.10) can be rewritten as

∂t′Y + ε−1LF(Y ) + LS(Y ) + B(Y , Y ) − D(Y ) = 0, (2.18a)

Y (t = 0) = Y (x), (2.18b)

where the linear operator L = ε−1LF + LS in (2.10) decomposes into a fast component
LF and a slow component LS such that

LF(Y ) =

⎛
⎜⎝ −ϑ ′ẑ − ∇′

(
∇′−2∂x′

3
ϑ ′
)

0
u′ · ẑ

⎞
⎟⎠ , LS(Y ) =

⎛
⎝ −M−1∂x′

3
b′

−M−1∂x′
3
u′

0

⎞
⎠ , (2.19a,b)

while the expression of Π ′ takes the form

Π ′ = b′
3 + ε

(
M−1∂x′

3
ϑ ′ + b′ · ∇′ϑ ′

)
. (2.20)

In the case of small Fr and small M (hereinafter, it is referred to as case (I)), we use the
following scaling:

Fr = ε, M = C−1ε, Re = O(1), Pm = Pr = O(1) as ε → 0, (2.21a–d)

where C is the proportionality coefficient. With this scaling the equation (2.10) can be
rewritten as

∂t′Y + ε−1LF(Y ) + B(Y , Y ) − D(Y ) = 0, (2.22a)

Y (t = 0) = Y (x), (2.22b)

where the linear operator L = ε−1LF has only a fast component LF (while LS is zero),

LF(Y ) =

⎛
⎜⎝ −ϑ ′ẑ − C∂x′

3
b′ − ∇′

(
∇′−2∂x′

3
ϑ ′
)

−C∂x′
3
u′

u′ · ẑ

⎞
⎟⎠ , (2.23)

while the expression of Π ′ is of the form

Π ′ = b′
3 + C∂x′

3
ϑ ′ + εb′ · ∇′ϑ ′. (2.24)

More importantly, the non-dimensional form of the total energy equation (i.e. (2.8)) is free
of the singular parameter ε in (2.19a,b) or in (2.23), and therefore it is valid uniformly in ε.

It clearly appears that in both the asymptotic limit of cases (I) and (II), the scaling results
in the introduction of the singular term ε−1LF, and in the appearance of separated fast and
slow scales of motion. This can be shown clearly in the linear analysis of the Boussinesq
MHD equations without diffusion. Accordingly, we consider the linear equation associated
with either (2.19a,b) or (2.23),

∂t′Y + ε−1LF(Y ) = 0. (2.25)

We assume periodic boundary conditions in the spatial domain and utilize the Fourier
eigenfunctions of the operator LF (see the next section).
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Waves and non-propagating modes in stratified MHD turbulence

For case (II), the analysis of (2.25), which will be presented in the next section,
shows that there are NP modes with frequency ωnp(k) = 0 and fast (gravity) waves with
frequency ±ωg(k),

ωg(k) = Nk⊥
k

= ε−1 U
L

k⊥
k

(2.26)

where k is the wavevector, k = ‖k‖ and k⊥ = ‖k × ẑ‖ denotes the horizontal
wavenumber. Therefore, we may conclude that, in case (II), the equations admit fast
(gravity) waves moving on (dimensionless) time scales of order O(ε−1) and NP modes
moving on (dimensionless) time scales of order O(1).

For case (I) the analysis of (2.25), which will be presented in the next section, shows
that there are NP modes with frequency ωnp(k) = 0 and fast waves composed of Alfvén
waves of frequency ±ωa and magnetogravity waves of frequency ±ωag,

ωa = B0|k‖| = ε−1CU|k‖|, ωag =
√

ω2
a + ω2

g = ε−1

√
C2U2k2

‖ + U2

L2

k2
⊥

k2 (2.27a,b)

where k‖ ≡ k3 = k · ẑ is the vertical wavenumber. In case (I), the equations admit fast
(Alfvén and magnetogravity) waves moving on (dimensionless) time scales of order
O(ε−1) and NP modes moving on (dimensionless) time scales of order O(1).

3. Normal mode decomposition

We consider the linear equation associated with either (2.19a,b) or (2.23),

∂tY + ε−1LF(Y ) = 0, (3.1)

and introduce the Fourier decomposition

Y (x, t) =
∑
k∈T̂

UŶ (k, t)eix · k (3.2)

where T̂ = Z3 is the set of wavevectors and i2 = −1. In Fourier space, the
incompressibility constraint and the divergence-free condition for the magnetic field read
k · û = 0 and k · b̂ = 0, respectively, which signifies that both û and b̂ belong to the plane
perpendicular to the wavevector k.

In physical space, we even start from eight components, including the pressure, that is to
say: three for the velocity vector; three for the magnetic fluid; one for the buoyancy scalar;
and one for the pressure. The effect of the divergence-free condition is to reduce to two
independent components both the velocity field and the magnetic field in the 3-D Fourier
space, in the plane normal to k. The pressure is removed since the Poisson equation (see
(2.6)) is equivalent to an algebraic relation along k. Accordingly, in the 3-D Fourier space,
only five components remain: two for the velocity; two for the magnetic field; and one for
the buoyancy scalar.

3.1. Case of small Fr and small M (case (I))
First, we perform the Fourier analysis of the fast operator LF in the case of small Fr
and small M (case (I)). Given (2.23) the substitution of (3.2) into (3.1) leads to the linear
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differential system

dtŶ = L̂ · Ŷ (3.3)

where the non-zero elements of the matrix L̂(k) are

L̂14 = L̂25 = L̂36 = L̂41 = L̂52 = L̂63 = ik3B0, (3.4a)

L̂17 = k1k3

k2 N, L̂27 = k2k3

k2 N, L̂37 = −k2
⊥

k2 N, L̂73 = N. (3.4b)

The spectrum of the matrix L̂(k) is found as

Sp L̂(k) = {λ1 = −iωa, λ2 = iωa, λ3 = 0, λ4 = −iωag, λ5 = iωag}, (3.5)

where the eigenvalues λ1 and λ2 are of multiplicity 2, and

ωa = |k3|B0, ωg = k−1k⊥N, ωag =
√

ω2
a + ω2

g =
√

k2
3B2

0 + (k⊥/k)2N2 (3.6a–c)

denote the frequencies of the Alfvén, gravity and magnetogravity waves, respectively, as
indicated at the end of the previous section.

The associated eigenvectors, say Z  ( = 1, 2, . . . , 5), such that L̂ · Z  = λZ , are,
respectively, the columns of the following rectangular matrix:

M(k) = 1√
2kk⊥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kk2 kk2 0 k1k3 −k1k3
−kk1 −kk1 0 k2k3 −k2k3

0 0 0 −k2
⊥ k2

⊥
−skk2 skk2

√
2k1k3ω

+
g −k1k3sω+

a −k1k3sω+
a

skk1 −skk1
√

2k2k3ω
+
g −k2k3sω+

a −k2k3sω+
a

0 0 −√
2k2

⊥ω+
g k2

⊥sω+
a k2

⊥sω+
a

0 0 −i
√

2kk⊥sω+
a −ikk⊥ω+

g −ikk⊥ω+
g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)

if k⊥ /= 0 and

M(k) = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 −1
−1 −1 0 1 −1
0 0 0 0 0

−s s 0 −s −s
s −s 0 −s −s
0 0 0 0 0
0 0 −2is 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

if k⊥ = 0. Here,

s = |k3|
k3

= ±1, ω+
a = ωa

ωag
, ω+

g = ωg

ωag
, so that ω+2

a + ω+2
g = 1. (3.9)

All the eigenvectors above have been normalized so as to give an orthonormal basis,

Z  =
7∑

j=1

Mjej, Z†
 · Zm = δm, (, m = 1, 2, . . . , 5) (3.10)

where (e1, e2, . . . , e7) is the canonical basis of C7, † denotes the transpose and
complex conjugation and δαβ denotes the Kronecker delta. The corresponding Fourier
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Waves and non-propagating modes in stratified MHD turbulence

eigenfunctions are an orthogonal family. Therefore, we can decompose the vector Ŷ as

Ŷ = A−
1 Z1 + A+

1 Z2 + A0Z3 + A−
2 Z4 + A+

2 Z5 (3.11)

where

A∓
1 = 1√

2k⊥

(
k2û1 − k1û2 ∓ s

(
k2b̂1 − k1b̂2

))
, (3.12a)

A0 = −
(

isω+
a ϑ̂ + k

k⊥
ω+

g b̂3

)
, (3.12b)

A∓
2 = − 1√

2

(
k

k⊥
û3 ∓

(
k

k⊥
sω+

a b̂3 − iω+
g ϑ̂

))
, (3.12c)

if k⊥ /= 0, and

A∓
1 = 1

2

(
û1 − û2 ∓ s

(
b̂1 − b̂2

))
, (3.13a)

A0 = −isϑ̂, (3.13b)

A∓
2 = 1

2

(
û1 + û2 ∓ s

(
b̂1 + b̂2

))
, (3.13c)

if k⊥ = 0. The mode A0 is associated with zero eigenvalue, while A±
1 are associated with

the eigenvalues ±iωa characterizing the Alfvén waves and A±
2 are associated with the

eigenvalues ±iωag characterizing the magnetogravity waves. In addition, the modes A±
1

characterizing Alfvén waves are expressed in terms of the horizontal components of the
velocity and magnetic field, while the modes A±

2 characterizing magnetogravity waves are
expressed in terms of the buoyancy scalar and the vertical component of the velocity.

The quadratic part of the L2 norm of MIPS (see (2.24))

Γq(t) = 1
2

∫
D

(B0∂zϑ + Nb3)
2 d3x = 1

2

∑
k∈T

∣∣∣∣iωaϑ̂ + ωg
k

k⊥
b̂3

∣∣∣∣
2

, (3.14)

can be expressed in terms of the spectral density of energy of the NP mode, denoted by
E (np)(k, t), as

Γq(t) = 1
2

∑
k∈T

ω2
ag |A0(k, t)|2 =

∑
k∈T

ω2
agE (np)(k, t). (3.15)

In the limit Fr → 0 and M → 0, the L2 norm of MIPS can be approximated by its
quadratic part Γq.

In this case, one can consider the two inviscid invariants that are E (total energy)
and Γq and study the system as a problem of equilibrium statistical mechanics. Indeed,
statistical theory is particularly informative in the case of (non-magnetized) rotating
stratified turbulence, since no inverse cascade appears in PST, whereas it is predicted in the
presence of rotation, with the occurrence of a negative temperature states. This is possible
because the NP mode including PV is affected by system rotation. On the other hand, the
MIPS, that is the NP mode in the present case, is not affected by rotation, at least in the
linear limit. Accordingly, application of the statistical theory, with and without rotation,
should give no presumption of inverse cascade.
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A. Salhi and others

On the other hand, we note that, for unit magnetic and thermal Prandtl numbers, the
transport equation for E (np)(k, t), for example, reads(

∂t + 2νk2
)
E (np)(k, t) = N (np)

nl (k, t), (3.16)

where N (np)
nl denotes the nonlinear transfer term. Therefore, in the linear inviscid limit,

the energy of the NP mode, as well as the energy of Alfvén waves and the energy of
magnetogravity waves, do not evolve in time.

3.2. Case of small Fr and finite M (case (II))

For case (II), the non-zero elements of the matrix L̂(k) are

L̂17 = k1k3

k2 N, L̂27 = k2k3

k2 N, L̂37 = −k2
⊥

k2 N, L̂73 = N. (3.17a–d)

In this case, the spectrum of the matrix L̂(k) is found as

Sp L̂(k) = {λ1 = λ2 = λ3 = 0, λ4 = −iωg, λ5 = iωg}. (3.18)

The associated eigenvectors, say Z  ( = 1, 2, . . . , 5), such that L̂ · Z  = λZ , are,
respectively, the columns of the rectangular matrix given by (3.7) provided that ω+

g is
replaced by one and ω+

a by zero. In this case, the normal modes A0 and A±
1 are associated

with zero eigenvalues, whereas the modes A±
2 are associated with the eigenvalues ±iωg

characterizing the gravity waves,

A∓
1 = 1√

2k⊥

(
k2û1 − k1û2 ∓ s

(
k2b̂1 − k1b̂2

))
, (3.19a)

A0 = − k
k⊥

b̂3, (3.19b)

A∓
2 = − 1√

2

(
k

k⊥
û3 ± iϑ̂

)
, (3.19c)

if k⊥ /= 0, and

A∓
1 = 1

2

(
û1 − û2 ∓ s

(
b̂1 − b̂2

))
, (3.20a)

A0 = 0, (3.20b)

A∓
2 = 1

2

(
û1 + û2 ∓ s

(
b̂1 + b̂2

))
, (3.20c)

if k⊥ = 0. It clearly appears that, for the case of small Fr and finite M (case (II)) for
which the slow component of the linear operator is not zero (see (2.18)), the modes A±

2 are
associated with fast (gravity) waves, while A0 and A±

1 characterize slow modes.
Because in both the cases (I) and (II) the mode A0 is associated with a zero eigenvalue,

we will call it a NP mode. Likewise, the modes A±
1 , which are associated with zero

eigenvalues only in case (II) and not in case (I), we will call them slow Alfvén waves.
The present DNS results, which will be analysed in § 4, correspond more to case (II)

than to case (I) (see figure 1). They characterize a weak MHD turbulence regime (with or
without stratification) because the ratio of the nonlinear eddy turnover time to the Alfvén
time, τnl/τa, exceeds unity (see figure 2a).
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Figure 1. (a) Time evolution of horizontal Froude number Frh = Uh/(NLh) for (non-magnetized) PST
with N = 5 and stratified MHD turbulence with (B0 = 0.4, N = 5) and (B0 = 0.4, N = 10) (runs B04N5 and
B04N10, see table 2). (b) Time evolution of Alfvén–Mach number, M = Uh/B0, for MHD turbulence with
or without stratification: (B0 = 0.4, N = 2) (B0 = 0.4, N = 5) and (B0 = 0.4, N = 10) (runs B04N2, B04N5
and B04N10, see table 2) and (B0 = 0.4, N = 0).
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Figure 2. (a) Time evolution of the ratio of the nonlinear eddy turnover time to the Alfvén time, τnl/τa =
(B0/Lv)/(Ub/Lh) for (non-magnetized) PST with N = 5 and stratified MHD turbulence with (B0 = 0.4, N =
5) and (B0 = 0.4, N = 10) (runs B04N5 and B04N10, see table 2). (b) Variation of the ratio of gravity wave
frequency to Alfvén wave frequency, ωg/ωa = (k⊥/k)N/(B0|k‖|) versus k⊥/k‖ for (B0 = 0.4, N = 5) and
several values of k‖.

3.3. Asymptotic behaviour of energy ratios from linear theory

In the inviscid linear limit, an analytical solution for Ŷ (k, t) can be found (see Salhi et al.
2017). From such a solution, we deduce that for initial isotropic conditions with zero
initial magnetic and buoyancy scalar fluctuations and a unit value for the magnetic and
thermal Prandtl numbers (ν = η = κ), the spectral density of energies (kinetic, magnetic
and potential) takes the form

Eκ(k, t) = 1
2

∣∣û∣∣2 = Eκ(k, 0)

8πk2

(
cos2(ωat) + cos2(ωagt)

)
exp(−2νk2t), (3.21a)

Em(k, t) = 1
2

∣∣∣b̂∣∣∣2 = Eκ(k, 0)

8πk2

(
sin2(ωat) + ω+2

a sin2(ωagt)
)

exp(−2νk2t), (3.21b)
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Ep(k, t) = 1
2

∣∣∣ϑ̂∣∣∣2 = Eκ(k, 0)

8πk2

(
ω+2

g sin2(ωagt)
)

exp(−2νk2t), (3.21c)

Eκ(t) =
∫

R3
Eκ d3k, Em(t) =

∫
R3

Em d3k, Ep(t) =
∫

R3
Ep d3k, (3.21d)

where Eκ(k, t) = 2π
∫ π

0 Eκ(k, t) sin θ dθ, denotes the radial spectrum of kinetic energy
and θ being the angle between the wavevector k and the vertical axis (of unit vector ẑ, the
same notation is used for the other fields).

It follows that, when ωg/ωa � 1, which is the case when k⊥/|k‖| � 1 or when |k‖|
is large (see figure 2b), the kinetic and magnetic energies behave similarly to their
counterparts in non-stratified MHD turbulence,

Eκ(k, t) ∝ (1 + cos(2ωat)) exp(−2νk2t), Em(k, t) ∝ (1 − cos(2ωat)) exp(−2νk2t),
(3.22a,b)

while the potential energy is relatively small,

Ep(k, t) ∝ (ω2
a/ω

2
g)(1 − cos(2ωat)) exp(−2νk2t). (3.23)

When ωg/ωa � 1, which is the case when |k‖| is small and k⊥/|k‖| > 1 (see figure 2b),
the energies exhibit a decaying oscillatory behaviour with frequency ωg,

Eκ(k, t) ∝ (3 + cos(2ωgt)) exp(−2νk2t),

Em(k, t), Ep(k, t) ∝ (1 − cos(2ωgt)) exp(−2νk2t).

}
(3.24)

Additionally, theoretical insights can be obtained by analysing the ratios between the
energy radial spectra. Indeed, it is found that, at small scales, B0k/N � 1, the local
Alfvén ratio Eκ(k, t)/Em(k, t) approaches one indicating an equipartition of energy
between the magnetic and kinetic components, whereas the ratios Ep(k, t)/Eκ(k, t) and
Ep(k, t)/Em(k, t) behave like k−1 for long times and independently of the form of the
initial spectrum Eκ(k, 0) (see Salhi et al. (2017) and their figure 4). In counterpart, at
large scales, B0k/N � 1, the ratio Ep(k, t)/Em(k, t) approaches one signifying that there
is equipartition of energy between magnetic and potential components, while the local
Alfvén ratio Eκ(k, t)/Em(k, t) approaches 2 for long times.

By using the initial spectrum Eκ(k, 0) ∝ kn exp(−k2/k2
p) with n = 2 or n = 4 and ν =

η = κ = 0.0025 (as in the present DNS), we integrate numerically the solution (3.21) for
several values of the ratio B0/(LiN), where Li is the (isotropic) integral length scale (see
table 1) and kp = 6 is the peak wavenumber. We found that the Alfvén ratio Eκ(t)/Em(t)
approaches 2 for small B0/(NLi) and 1 for large B0/(NLi). As for the ratio Eκ(t)/Ep(t),
it also approaches 2 for small B0/(NLi), while for large B0/(NLi) it asymptotes to a large
value as t � 1. This is illustrated by figure 3 obtained for B/(NLi) = 0.05, 2.9, 29.

As a result, we can conclude that the fact that the decay rates of the kinetic and magnetic
energies are the same as for pure Alfvenic decay in the linear limit (see Moffatt 1967)
is at least due to the fact that the magnetic and thermal Prandtl numbers are equal to
one. Indeed, the study by Sreenivasan & Maurya (2021) obtains the decay of kinetic
(Eκ(t) ∼ t−1/2) and magnetic (Em(t) ∼ t−5/4) energy for frequencies ωg � ωa with ν =
κ = 0 and η /= 0 through some approximations in this limit, so that, Eκ(t)/Em(t) ∼ t3/4

for long times.

4. Direct numerical simulations for stratified MHD turbulence

The numerical simulations performed were started from isotropic initial conditions with
zero magnetic and buoyancy fluctuations (see table 1). Eleven runs were performed,
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Waves and non-propagating modes in stratified MHD turbulence

Li urms τnl ν Re Eκ ε Reλ η

1.73 1.30 1.33 0.0025 897 0.84 0.37 72 0.0144

Table 1. Initial isotropic conditions for all the runs (see table 2). Here, Li = 2π
∫ +∞

0 (Eκ (k)/k) dk/Eκ ,
Eκ = (1/2)〈u2〉 = ∫ +∞

0 Eκ (k) dk, urms = √
2Eκ , τnl = Li/urms, Re = urmsLi/ν, εκ = ν〈∂xj ui∂xj ui〉,

Reλ = (2/3)Eκ

√
15/(νεκ ), ν and η = ν3/4/ε1/4 denote the (isotropic) integral length scale, kinetic energy,

r.m.s. velocity, initial isotropic eddy turnover time, kinetic Reynolds number, kinetic dissipation rate,
microscale Reynolds number, kinematic viscosity and Kolmogorov scale, respectively, and 〈·〉 denotes an
ensemble average.
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Figure 3. Linear theory predictions for energy ratios of (a) kinetic to magnetic, Eκ (Nt)/Em(Nt), (b) kinetic
to potential, Eκ (Nt)/Ep(Nt) for several values of B0/(LiN) = 0.05, 2.9, 29 and ν = η = κ = 0.0025. Initially,
the turbulence is isotropic with zero magnetic and potential energies. The initial radial spectrum of the kinetic
energy used is of the form E(k, 0) ∝ kn exp(−k2/k2

p) with n = 2 or n = 4 and kp = 6.

Run B0 N B0/N Uh Lh Lv Frh Frv Reb M−1

B02N2 0.2 2 0.10 1.07 2.32 3.13 0.232 0.171 53.2 0.307
B02N5 0.2 5 0.04 1.07 2.32 3.13 0.092 0.068 8.3 0.307
B02N10 0.2 10 0.02 1.07 2.32 3.13 0.047 0.035 2.2 0.307
B04N2 0.4 2 0.20 1.07 2.32 3.13 0.232 0.171 53.2 0.154
B04N5 0.4 5 0.08 1.07 2.32 3.13 0.092 0.068 8.3 0.154
B04N10 0.4 10 0.04 1.07 2.32 3.13 0.047 0.035 2.2 0.154

Table 2. Runs for stratified MHD turbulence with of a mean magnetic field. Initial values of the horizontal
velocity Uh and horizontal and vertical length scales Lh and Lv, horizontal and vertical Froude numbers Frh
and Frv and buoyancy Reynolds number Reb = Frh2Re, as well as the initial value of the inverse Alfvén–Mach
number M−1 = B0/urms. The final time of the numerical simulations is tf = 30.

including two runs for non-stratified MHD cases for which B0 = 0.2 and B0 = 0.4, three
runs for purely stratified cases (i.e. PST) for which N = 2, N = 5 and N = 10, and six runs
for stratified MHD cases which are listed in table 2. Due to the close similarities between
the results obtained for B0 = 0.4 and those obtained for B0 = 0.2, we mainly focus on the
former. When useful we also present the results obtained for B0 = 0.2.

1001 A28-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1100


A. Salhi and others

10–12

10–10

10–8

10–6

10–4

10–2

100

100 101 102

(a)

E(
k,

 0
)

k

E(k, 0) ∝ k4

RPS, E(k, 0)

0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35 40

(b)

t0
.9

4
E(
t)

t
Figure 4. (a) The radial spectrum E(k, 0) ∝ k4 exp(−k2/k2

p) with kp = 6 compared with the resulting RPS
E(k, 0). (b) Time evolution of the compensated total energy E(t) with respect to t−0.94 in the case of
non-stratified MHD turbulence of B0 = 2.

4.1. Initial isotropic conditions
The approach pursued in this work consisted in performing DNS of the fully nonlinear
equations of motion (2.1) here solved numerically by using the pseudospectral SNOOPY
code (Lesur & Longaretti 2007). The domain of integration is a triple-periodic cubic
box with edge L0 = 2π consisting of 5123 grid points. Aliasing errors are filtered out
through the implementation of the so called 2/3 rule and as a result the minimum
and maximum wavenumbers are 2/3 dealiasing rule and as a result the minimum and
maximum wavenumbers are kmin = 1 and kmax ≈ 170, respectively. The simulations are
started with isotropic initial conditions of purely hydrodynamic turbulence generated with
a separate run, consisting of velocity fluctuations whose spectral distribution follows the
initial kinetic energy spectrum,

Eκ(k, 0) ∝ k4 exp
(
−k2/k2

p

)
. (4.1)

In other words, in order to let turbulence develop a well extended inertial range and
strong enough nonlinear energy transfers, a precomputation of the isotropic case is done
for approximately one eddy-turnover time (see Salhi et al. 2014) to generate the initial
condition, then mean magnetic field and mean density gradient are turned on in the
production runs. In this preliminary stage only, large-scale forcing is applied until a
statistical steady state of classical Kolmogorov-like isotropic turbulence is reached. This
forcing is applied in a shell of wavenumbers corresponding to 1 � k � 4. The different
parameters obtained at the end of this precomputation phase are summarized in table 1. We
note that the resulting precomputation kinetic energy radial spectrum (RPS) Eκ(k, 0)

(see figure 4a) exhibits indeed a −5/3 power law scaling in the range 3 � k � 20. As
the dynamics is then let to evolve, the kinetic energy spectrum Eκ(t) during the freely
decaying homogeneous isotropic turbulence (HIT) phase remains close to the Kolmogorov
prediction Eκ(t) ∼ t−10/7 (see figure 5c).

4.2. A weak stratified MHD turbulence regime
In figure 1 we show the time evolution of horizontal Froude number, Frh = Uh/(LhN)

(figure 1a) and Alfvén–Mach number M = Uh/B0 (figure 1b) for the runs B04N5
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Figure 5. (a) Time evolution of total (kinetic + magnetic + potential) energy normalized by its initial value
for the runs B04N2, B04N5 and B04N10. The DNS results for the non-stratified MHD case of B0 = 0.4
are also reported for comparison. (b) Time evolution of kinetic, magnetic, potential energies normalized by
the initial value of the kinetic energy for the run B04N2. (c) Time evolution of total (kinetic + potential)
energy normalized by its initial value for PST with N = 2, N = 5 and N = 10. The DNS results for HIT are
also reported for comparison. (d) Time evolution of kinetic, magnetic, potential and total dissipation rates
normalized by the initial value of the kinetic dissipation rate for the run B04N2.

and B04N10, as well as those for (non-magnetized) PST with N = 5 and those for
non-stratified MHD case of B0 = 0.4. As it can be seen, the present DNS results rather
correspond to case (II). Here,

Uh =
√

2Eκh, Eκh = 1
2

∑
k∈T

(
|û1|2 + |û2|2

)
, (4.2a)

Lh = 2πE−1
κ

∑
k∈T

Eκ(k⊥)

k⊥
, Lv = 2πE−1

κ

∑
k∈T

Eκ(k‖)
k‖

, (4.2b)

denotes the r.m.s. horizontal velocity, the horizontal kinetic energy (the same notation is
used for the magnetic field), and Lh and Lv are the horizontal and vertical length scales,
respectively.

Indeed, both the horizontal and vertical (Frv = Uh/(LvN)) Froude numbers decrease
rapidly with time, becoming very small at the final time of the numerical simulation
because Uh decreases while oscillating (see figure 1b) whereas Lh (respectively, Lv), which
initially takes the value Lh = 2.32 (respectively, Lv = 3.16, see table 2), increases with
time, exhibiting oscillations, and appears by asymptoting to a limit value (< 6). For the
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run B04N5, Frh = 0.01 and Frv = 0.08 at t = 1, and Frh = 0.002 and Frv = 0.003 at
t = 20.

Regarding the buoyancy Reynolds number Reb = U3
h/(νN2Lh), which constitutes a

primary control parameter in characterizing the regime of purely stratified flows (see,
e.g. Billant & Chomaz 2001; Brethouwer et al. 2007; Portwood et al. 2016; Chini et al.
2022), it decreases rapidly becoming less than unity for t > 3 (not shown). In addition,
according to our DNS results there is a weak MHD turbulence regime (with or without
stratification) because the ratio of the nonlinear eddy turnover time to the Alfvén time,
τnl/τa = (B0/Lv)/(Ub/Lh), which increases with time, exceeds unity for t > 4 as shown
by figure 2(a).

Therefore, we may conclude that the regime of the stratified MHD cases studied in the
present work rather corresponds to a weak stratified MHD turbulence regime affected by
viscosity.

4.3. Temporal evolution of global quantities

4.3.1. Decay of total energy and dissipation rate
In this section, we examine the temporal evolution of total (kinetic + magnetic +
potential) energy, E = Eκ + Em + Ep and total dissipation rate εt = εκ + εm + εp where
εκ = ν

∑
k∈T k2|û|2 (the same notation is used for the other fields). Recall that in the

present study, the magnetic and thermal Prandtl numbers are taken equal to unity (ν =
η = κ).

The role of a uniform magnetic field in MHD turbulence has been widely explored
in the literature (see e.g. Verma 2004; Bigot, Galtier & Politano 2008a; Briard &
Gomez 2018): it makes MHD turbulent plasmas anisotropic and slows down the energy
decay by reducing the transfer along the mean magnetic field. It is worth noticing that
two-dimensional turbulence is more representative than isotropic MHD turbulence with no
mean magnetic field (or than MHD turbulence with a weak mean magnetic field), when it
comes to the investigation of strong MHD turbulence, for which the energy cascade occurs
preferentially in the direction perpendicular to the mean magnetic field. In balanced strong
MHD turbulence (i.e. with zero cross-helicity) Cho, Lazarian & Vishniac (2002) found
that the total energy decay follows a power law E(t) ∼ tγm where γm is very close to unity.
Bigot, Galtier & Politano (2008b) predicted the slowing down of the energy decay due to
anisotropy in the limit of a strong mean magnetic field, with distinct power laws for energy
decay of shear-Alfvén waves (∼t−2/3) and pseudo-Alfvén waves (∼t−1). According to
Banerjee & Jedamzik (2004), the total energy in isotropic MHD turbulence decays as
∼t−1.33 for an initial k4-spectrum. For the non-stratified MHD cases of B0 = 0.2 and
B0 = 0.4, our numerical simulations indicate that the energy decay exponent is close to
1.25 (see figure 5a), which is lower than for isotropic MHD turbulence. This is due to the
presence of the mean magnetic field, having an effect even when its intensity is weak. In
contrast, for the non-stratified MHD case with B0 = 2 (not considered here), the total
energy decay rate is close to 0.94 (see figure 4b), which is not far from that (∼1) found in
the case of balanced strong MHD turbulence (see Cho et al. 2002).

In figure 5(a) we show the temporal evolution of E(t) for the runs B02N2, B02N5 and
B02N10 as well as for the non-stratified MHD case with B0 = 0.4. As it can be seen, the
energy level increases as N increases, and the total energy decrease is clearly slower for
the stratified MHD cases than for the non-stratified MHD case. Note that the decay of
E(t) depends on B0 and N and not only on the ratio B0/(LiN). Indeed, for runs B02N5
and B04N10, the ratio B0/(LiN) = 0.023 is the same while the energy level for the run
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B04N10 is higher than that of the run B02N5 (not shown). On the other hand, it appears
that the decay of E(t), as well as the decay of the kinetic, magnetic and potential energies
which show a decaying oscillation (see figure 5b), tend to follow the power law decay
∼t−γs with γs = 0.95 thus with the same decaying trend of the total energy (kinetic +
potential) for the PST cases shown in figure 5(c). This temporal decay exponent is higher
(respectively, lower) in absolute value than that predicted by Davidson (2010) for Saffman
turbulence γs = 4/5 = 0.8 (Bachelor turbulence, γs = 8/7 ≈ 1.14) at high-Reb. In their
study of stratified homogeneous turbulence using a two-point closure EDQNM statistical
model and DNS, Staquet & Godeferd (1998) reported that energy decay rates are close
to 1.

On the other hand, the fact that for the stratified MHD cases the temporal decay
exponents of kinetic, magnetic and potential energies are the same (see figure 5b), in
agreement with linear theory (LT) predictions for ν = η = κ = 1 (see §§ 3.3 and 4.3.2)
would be due to the fact that the magnetic and thermal Prandtl numbers are unity.

In figure 5(d) we plot the time evolution of the kinetic, magnetic and potential
dissipation rates εκ(t), εm(t) and εp(t) as well as the total dissipation εt(t) for the run
B04N2. As it can be seen, εm (respectively, εp) which is initially zero, increases with
time, due to the generation of small-scale magnetic (potential) fluctuations, and reaches
a maximum and then decreases while oscillating. The kinetic dissipation rate εκ shows
decaying oscillations. Note that εp remains less than εm and εk for all times. This means
that the energy dissipation by the viscous effects or by Joules effects are more important
than the energy dissipation by thermal diffusive effects. The total dissipation rate εt shows
a slight growth, which caused by the initial increase in εm, before decreasing. It tends to
follow the power law decay ∼t−1.95.

4.3.2. Linear theory versus DNS for energy components
In this section, we compare the LT predictions for the kinetic energy Eκ(t), magnetic
energy Em(t) and potential energy Ep(t) with the DNS results for the stratified MHD case
with B0 = 0.4 and N = 10, which has the smallest value of the initial Frh = Uh/(LhN) =
0.047. The time evolution of Eκ(t), Em(t) and Em(t) yielded by LT

Eκ(t) = 1
4

∫ +∞

0
Eκ(k, 0)

[∫ π

0

(
cos2(ωat) + cos2(ωagt)

)
sin θ dθ

]
exp(−2νk2t) dk

(4.3a)

Em(t) = 1
4

∫ +∞

0
Eκ(k, 0)

[∫ π

0

(
sin2(ωat) + ω+2

a sin2(ωagt)
)

sin θ dθ

]
exp(−2νk2t) dk

(4.3b)

Ep(t) = 1
4

∫ +∞

0
Eκ(k, 0)

[∫ π

0
ω+2

g sin2(ωagt) sin θ dθ

]
exp(−2νk2t) dk (4.3c)

have been obtained numerically by using the RPS (see the beginning of § 4 and figure 4a)
for Eκ(k, 0), so that the initial conditions are the same for both DNS and LT.

Figure 6(a) shows the evolution of Eκ(t), Em(t) and Ep(t) yielded by LT versus Nt/π. As
it can be seen, for Nt/π > 6, the kinetic energy, magnetic energy and potential energy
exhibit parallel evolution. The decay rate changes with the elapsed time. For instance,
at Nt/π > 100, the energy decay tends to follow ∼t−1.25. Note that, according to LT,
the decay rate in the long-time limit depends on the shape of Eκ(k, 0) near k = 0 so
that if Eκ(k, 0) ∝ kn then the total energy E(t) = E(0)(1 + 2νk2

pt)−(n+1)/2 as well as the
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Figure 6. (a) Linear theory predictions. Time evolution of the kinetic energy Eκ (t), magnetic energy Em(t)
and potential energy Ep(t) normalized by Eκ (0) for the case with B0 = 0.4, N = 10, so that the initial Froude
number is approximately Frh = Uh/(LhN) = 0.047. The inset shows the time evolution of Eκ (t) yielded by LT
where Eκ (k, 0) ∝ kn exp(−(k2/k2

p)) with n = 2, n = 4 and kp = 6. (b–d) Comparison between DNS results
(run B04N10) and LT predictions for the time evolution of the kinetic energy, magnetic energy and potential
energy, respectively.

components Eκ(t), Em(t) and Ep(t) behave like ∼t−(n+1)/2, as shown by the inset of
figure 6(a) obtained for n = 2 and n = 4 (see also Hanazaki & Hunt (1996) for the pure
stratified case). Recall that, for ωg � ωa � ηk2 and ν = κ = 0, LT predicts Eκ ∼ t−1/2

and Em ∼ t−5/4 for t � 1 (see Sreenivasan & Maurya 2021).
In figure 6(b–d) we compare the results of the LT for the energy components with those

of the DNS, recalling that for this comparison we have the same initial conditions for LT
and for DNS. We observe that, for Nt > 2π, LT overestimates the energy components.
The faster decay of energy components in DNS is due to the nonlinear effect. Note that
the differences between the LT predictions and the DNS results for the kinetic energy
and magnetic energy are more significant in the non-stratified MHD case than in the
stratified MHD case. Therefore, we can conclude that, compared with the non-stratified
MHD case, the nonlinear interactions are reduced due to the presence of the stable
stratification, at least for the values of N considered in the present study (N � 10).

This explains why the decay of the energy components in the present DNS is not
quasilinear.
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Figure 7. Variation of twice the vertical kinetic energy (a) and potential energy (textitb) versus the
dimensionless time Nt/π for the runs B04N2, B04N5 and B04N10. The DNS results for PST with N = 2, 5, 10
are also reported for comparison.

4.3.3. Vertical components of energies
In figure 7(a) we plot the variation of twice the vertical kinetic energy 2Ekv = 〈u2

3〉
versus the dimensionless time Nt/π for the runs B04N2, B04N5 and B04N10. The results
obtained for PST with N = 2, N = 5 and N = 10 are also reported for comparison. We
observe that for fixed (Nt/π) > 0), Ekv(t) increases as N increases, and the profiles of
Ekv(t) for the stratified MHD cases and PST look similar with decaying oscillations
whose periods are approximately the same (∼π/N). For PST the oscillations are more
damped. Note that for the non-stratified MHD case of B0 = 0.4 or B0 = 0.2, Eκv(t)
exhibits decaying oscillations with an oscillation period approximately Lv(0)/B0 ∼
π/B0 ∼ 7.85 > π/N for the values of the governing parameters used in the simulation
of the present study.

The vertical kinetic and potential energies evolve in similar ways but with strong
oscillatory energy exchanges. The potential energy Ep(t), which is initially zero, increases
with time and reaches a maximum at approximately t = π/(2N) then decays while
oscillating as shown by figure 7(b). For fixed (Nt/π) > 0, Ep increases as N increases. The
decaying oscillations around zero emerging in the buoyancy flux represent net exchanges
from the vertical component of the kinetic energy to potential energy (positive values) and
back from potential into kinetic energy (negative values).

It clearly appears that, at least, for 0 < B0 � 0.4 and 0 < B0/(LiN) � 0.12, the profiles
of the vertical kinetic energy, Eκv(t), the potential energy, Ep(t) and the buoyancy flux,
−〈u3ϑ〉 (not shown) for the stratified MHD cases and the purely stratified cases look very
similar with decaying oscillations whose periods are approximately the same ∼π/N.

Concerning the vertical magnetic energy Emv(t), it is significantly affected by the
presence of the buoyancy force. It increases from zero, reaches a maximum and then
decays with time while oscillating. The oscillation period is approximately ∼Lv(0)/B0 ∼
π/B0 in the case without stratification and approximately π/N(< Lv(0)/B0) in the
presence of the buoyancy force. The effect of stratification on the vertical magnetic energy
is conspicuous since Emv is drastically reduced as N increases (see figure 8a). In the
presence of stratification, the contribution of the vertical magnetic energy to the (total)
magnetic energy is very low: at large time, it does not exceed 1 % as shown by figure 8(b).
The significant reduction of the intensity of vertical magnetic fluctuations in the presence
of stratification is also illustrated by figure 9, representing snapshots of physical-space
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Figure 8. (a) Variation of twice the vertical magnetic energy versus the dimensionless time Nt/π for the runs
B04N2, B04N5 and B04N10. (b) Time evolution of the ratio of vertical magnetic energy to (total) magnetic
energy Emv(t)/Em(t) for the runs B04N5 and B04N10. The DNS results for the non-stratified MHD case of
B0 = 0.4 are also reported for comparison.
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Figure 9. Snapshots of physical-space surface plots at t = 5 for vertical magnetic fluctuations:
(a) non-stratified MHD case with B0 = 0.4; (b) stratified MHD case with B0 = 0.4 and N = 10 (run B04N10).

surface plots at t = 5. In the stratified MHD case, the flow appears smooth, and the
decaying magnetic field has a similar structure.

4.3.4. Horizontal components of energies
For non-stratified MHD cases, the horizontal kinetic energy Eκh(t) shows decaying
oscillations with an oscillation period of approximately Lv(0)/B0 ∼ π/B0. The horizontal
magnetic energy Eκh(t), initially zero, increases and reaches a maximum then decreases
while oscillating with the same oscillation period ∼π/B0. When the buoyancy force and
the mean magnetic field are simultaneously present, an increase in the energy levels of
Eκh(t) (and also of Emh(t)) is observed. However, the profiles of Eκh(t) (and those of
Emh(t)) with or without stratification look almost the same. For instance, the maxima
(respectively, the minima) of decreasing oscillations shown in the development of Eκh(t)
(respectively, Emh(t)) are reached at times which are the same in the presence or not
of the buoyancy force as shown in figure 10(a) (respectively, figure 10b). On the other
hand, we note that the time evolution of the kinetic-magnetic flux, which represents
the exchanges from the horizontal kinetic energy to horizontal magnetic energy, is not
strongly affected by the buoyancy force (not shown). Therefore, we may conclude that the
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Figure 10. Time evolution of the horizontal kinetic (a) and magnetic (b) energies for the runs B04N2, B04N5
and B04N10. The DNS results for the non-stratified MHD case of B0 = 0.4 as well as those for PST with
N = 10 are also reported for comparison.

horizontal components of kinetic and magnetic energies are more sensitive to the effect of
the mean magnetic field than the vertical components. On the other hand, we note that the
presence of the buoyancy force can make the flow strongly anisotropic (at the magnetic
fluctuations) because it induces a significant reduction of Emv(t) and a small increase of
Emh(t). This point will be examined further in § 4.4.

4.3.5. Energy of waves
As shown in §§ 3.1 and 3.2, the modes A±

1 have the same expression in both the two
cases (I) and (II) (see (3.12a) and (3.19a)). In the former case, they are associated with
fast (Alfvén) waves while in the latter case they are slow modes. The energy of these
two modes is denoted by E(aw)(t) = 1

2
∑

k∈T (|A−
1 |2 + |A+

1 |2), where the superscript (aw)

stands for Alfvén waves. In counterpart, the modes A±
2 , which characterize fast (gravity)

waves in case (II) or fast magnetogravity waves in case (I) as well as the mode A0 (NP
mode) do not have the same expression in the two cases. Because our DNS results rather
correspond to case (II), we consider the expression given by (3.19a,b) for the modes A0
and A±

1 , so that, the energy of these modes takes the form

E(np)(t) = 1
2

∑
k∈T

|A0|2 = 1
2

∑
k∈T

k2

k2
⊥

∣∣∣b̂3

∣∣∣2 , (4.4a)

E(gw)(t) = 1
2

∑
k∈T

(∣∣A−
2

∣∣2 + ∣∣A+
2

∣∣2) = 1
2

∑
k∈T

(
k2

k2
⊥

∣∣û3
∣∣2 +

∣∣∣ϑ̂∣∣∣2
)

. (4.4b)

Note that the sum, E(np)(t) + E(gw)(t), has the same expression in both cases (I) and (II).
The energies E(aw) and E(gw) , which are initially equal, decrease with time and tend

to follow the power law decay ∼t−0.95 as for the total energy E(t) (not shown). However,
the contribution to the total energy coming from E(aw) is more important than that coming
from E(gw) especially for the cases with N = 5 and N = 10 as shown by figure 11(a).

In figure 11(b) we show the time evolution of the energy of the NP mode normalized
by half of the initial kinetic energy Eκ(0). Because the magnetic and density fluctuations
are initially zero, the energy E(np)(t) is then initially zero. The profile of E(np)(t) closely
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Figure 11. (a) Time evolution of the ratio between the energy of Alfvén waves and total energy E(aw)(t)/E(t)
and the ratio between the energy of gravity waves and total energy E(gw)(t)/E(t). (b) Variation of the energy of
the NP mode, E(np)(t), normalized by E(aw)(0) for the runs B04N2, B04N5 and B04N10.

resembles that of the vertical magnetic energy (see (4.4)): E(np)(t) increases until reaching
a maximum at Nt/π ∼ 0.5 then decreases oscillating with a period of approximately
π/N, and its maximum of E(np)(t) significantly decreases as N increases. Compared with
E(aw) or with E(gw), E(np)(t) remains very small. The energy ratios E(np)(t)/E(gw) and
E(np)(t)/E(t) do not exceed 0.27 and 0.1, respectively. From figure 11(b), it is clear that
NP mode is not a stagnant mode. It has probably become dependent on the wave modes,
as indicated by one of the referees.

Note that the dependence of E(aw)(t), E(gw)(t) and E(np)(t) on B0 and N emerging in the
DNS results is due to the nonlinear transfer terms (see (3.16)).

We now examine the behaviour of the quadratic part of the L2 norm of MIPS,

Γq(t) = N2

2

∑
k∈T

∣∣∣b̂3 + iFrM−1 (k‖L
)
ϑ̂

∣∣∣2 . (4.5)

Because the vertical magnetic fluctuations are strongly affected by stratification, so that the
vertical magnetic energy remains very small compared with horizontal magnetic energy
as well as to potential and kinetic energy components, the two terms on the right-hand
side of (4.5) can have the same order of magnitude, and hence, for small Fr and finite M
(case (II)) it is not justified to neglect the second term. This is confirmed by the present
DNS results as shown by figure 12(a) obtained for the run B04N5. The figure shows the
time development of Γq(t) and its counterpart obtained by neglecting the second term on
the right-hand side of (4.5),

Γ (a)
q = Γq (Fr � 1, M ∼ O (1)) = N2Emv(t). (4.6)

As for the contribution of the cubic and quartic parts to the L2 norm of MIPS, these
are not very significant compared with the contribution of the quadratic part Γq, at least
for the values of the governing parameters used in the simulations of the present study as
illustrated by figure 12(b) displaying the time evolution of Γq(t)/Γ (t) for the run B04N5.

4.4. Spectra
In this section our analysis focuses on spectra, which provide information on the
distribution of energy across the different scales. As shown in previous studies, in stratified
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Figure 12. Variation of the quadratic part Γq of the L2 norm of MIPS (see (4.5)) and its counterpart Γ
(a)

q
obtained in the limit of small Fr and M ∼ O(1) (case (II), see (4.6)) versus the dimensionless time Nt/π for
the run B04N5. (b) Time-evolution of Γq(t) normalized by Γ (t) (the L2 norm of MIPS) for the run B04N5.
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Figure 13. (a) Radial spectrum of total energy at t = 5 for the run B04N10. The DNS results for PST with N =
10 and for the non-stratified MHD case of B0 = 0.4 are also reported for comparison. (b) Vertical wavenumber
spectra of the horizontal magnetic energy at t = 5 for the runs B02N2 and B04N2. The DNS results for the
non-stratified MHD cases of B0 = 0.2 and B0 = 0.4 are also reported for comparison.

turbulence it is more convenient to consider horizontal and vertical spectra separately
because of the anisotropy of the flow (see, e.g. Dewan 1997; Lindborg 2006): stratification
is often considered to significantly suppress vertical turbulent motions at scales larger than
the Ozmidov scale, LO =

√
εκ/N3 (see, e.g. Sagaut & Cambon 2008).

4.4.1. Total energy
The radial spectrum E(k, t) of total energy at t = 5 is plotted in figure 13 for the run
B04N10 as well as for the non-stratified MHD case of B0 = 0.4 and for PST of N = 10.

The dashed line indicates the k−5/3 power-law scaling; our inertial range is, however, a
bit too short to perform a fit of this spectrum. Although for t < 2 and at 4 � k � 15, E(k)
looks similar to such power law scaling, it becomes more and more steep as time increases.

Compared with the case without stratification, there is a decrease in E(k) at high
wavenumbers and an increase at low wavenumbers when the buoyancy force is present.
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Figure 14. Vertical wavenumber spectra of the vertical kinetic energy (a) and vertical magnetic energy (b)
at t = 5 for the runs B02N2 and B04N2. The DNS results for the non-stratified MHD cases of B0 = 0.2 and
B0 = 0.4 are also reported for comparison.

We note that the profiles of E(k) for the stratified MHD cases with B0 = 0.2 and B0 = 0.4
remain very close to their counterparts obtained for PST, in agreement with the analysis
of the development of the total energy presented in § 4.3.1.

4.4.2. Horizontal kinetic and magnetic energies
In figure 13(b) we plot the vertical wavenumber spectra of the horizontal magnetic energy
Emh(k⊥) = 1

2
∑

k⊥(|b̂1|2 + |b̂2|2), versus the horizontal wavenumber k⊥ at t = 5 for the
runs B02N10 and B04N10. The results obtained in the non-stratified MHD cases of B0 =
0.2 and B0 = 0.4 are reported for comparison. A similar behaviour is found for the vertical
wavenumber spectra of the horizontal kinetic energy Eκh(k⊥). As we can see, at almost all
scales, Emh(k⊥)(k⊥) (or Eκh(⊥)(k⊥)) obtained in the case B0 = 0.4 remains greater than
that obtained in the case B0 = 0.2. Similar results are found for Eκh(k‖) and Emh(k‖) (not
shown). We notice that, at 4 � k⊥ ≤ 10, the decay of Emh(k⊥) (or Eκh(k⊥)) as well as the
vertical wavenumber spectra of the vertical kinetic energy Eκv(k⊥) (see figure 14a) tend
to follow the power law ∼k−3

⊥ and this for a wide range of time 3 � t � 30.

4.4.3. Vertical kinetic and magnetic energies
In agreement with the results presented in figure 8(a) which indicate that the maximum
of the vertical kinetic energy increases as N increases, at almost all scales, the vertical
wavenumber spectra of the vertical kinetic energy Eκv(k⊥) increases as N increases (not
shown). To illustrate the effect of the B0 intensity, in figure 14(a), we present Eκv(k⊥)

versus k⊥ for the runs B02N2 and B04N2 and t = 5. As one can see, at all scales, there is
a significant increase of Eκv(k⊥) for the case B0 = 0.4 compared with the case B0 = 0.2.

Similar results are found for the potential energy spectra.
A significant decrease of the vertical magnetic energy due to the presence of the

buoyancy force occurs at all horizontal scales, as shown in figure 14(b) which displays
Emv(k⊥) versus k⊥ for the runs B02N10 and B04N10. The figure also reveals that the
difference between the spectra is more pronounced with stratification than without it. On
the other hand, we note that, at all horizontal scales, Emv(k⊥) decreases as N increases (not
shown). Conversely, the decrease in the vertical wavenumber spectra Emv(k‖), as N
increases, occurs almost at large vertical scales where Emv(k‖) flatten out.
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Figure 15. (a) Scale by scale, the ratio between the horizontal magnetic energy and twice the vertical magnetic
energy at t = 5 for the runs B04N2, B04N5 and B04N10. The DNS results for the non-stratified MHD case of
B0 = 0.4 are also reported for comparison. (b) Radial fluxes of vertical kinetic and magnetic energies at t = 5
for the run B04N5.

4.4.4. Anisotropy scale by scale
To quantify, scale by scale, the anisotropy of the flow, we examine the behaviour of the
wavenumber-dependent anisotropy parameters (see, e.g. Sundar et al. 2017),

Aκ(k) = Eκh(k)
2Eκv(k)

, Am(k) = Emh(k)
2Emv(k)

. (4.7a,b)

The parameters Aκ(k) and Am(k) are defined such that Aκ = 1 and Am = 1 for isotropic
MHD flow.

Figure 15(a) displays the plot of Am(k) for the runs B04N2, B04N5 and B04N10. In
the case without stratification, Am > 1 for k � 4 and Am < 1 for k > 4. Similar results
are found for Ak(k) (not shown). Let us recall that in our numerical simulations the mean
magnetic field is not strong enough to produce fully anisotropic dynamics. For the stratified
MHD cases, Am(k) is very large at k = 1 and remains greater than one for k > 1. The peak
at k = 1 for the ratio Emh(k)/(2Emv(k)) becomes larger and larger as N increases. This is
caused not by an excess energy of Emh(k) but rather due to the fact that Emv(k) is very
small at almost all the scales. For the velocity field, Aκ(k) < 6 (not shown). However, for
k⊥ = 0 (i.e. k ‖ ẑ), both Aκ(k⊥ = 0) and Aκ(k⊥ = 0) are very large. This is due to the fact
that, at k⊥ = 0 the vertical components of kinetic and magnetic energies contain much
less energy than the horizontal components. On the other hand, the fact that Emv � Emh
almost at all scales does not imply that there exists an inverse cascade of energy, especially
since the radial fluxes for

πmh(k) =
kmax∑
p=k

N (mh)
nl ( p), πmv(k) =

kmax∑
p=k

N (mv)
nl ( p) (4.8a,b)

are positive as illustrated by figure 15(b). Here, N (mh
nl (k) and N (mv

nl (k) denote the radial
spectra of the nonlinear transfer terms for the horizontal and vertical magnetic energies,
respectively. From figure 15(b), we observe that πmv(k) is very small compared with
πmh(k). We note that for Alfvenic turbulence, where there is a forward cascade only, it
is observed that Emh � Emv (see Alexandrova et al. 2008; TenBarge et al. 2012).
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Figure 16. (a) Horizontal wavenumber spectra of energies of Alfvén waves (E(aw)(k⊥)) gravity waves
(E(gw)(k⊥)) and the NP mode (E(np)(k⊥)) at t = 5 for the run B04N5. (b) Horizontal wavenumber spectra
E(aw)(k⊥, t) wave energy at several values of time t for the run B04N5.

4.4.5. Waves and NP mode
In figure 16(a) we show the energy spectra of Alfvén waves, gravity waves and NP
mode versus the horizontal wavenumber k⊥ for the run B04N5 and t = 5. The energy
spectra E(aw)(k⊥) and E(gw)(k⊥) are very similar, except that the energy of Alfvén
waves E(aw)(k⊥) has larger magnitude than the energy of gravity waves E(gw)(k⊥), at all
horizontal scales, in agreement with the energy partition shown in figure 16(a). Similar
results are found for vertical wavenumber spectra (not shown). The high wavenumber
energy of E(aw)(k⊥) (or E(gw)(k⊥)) decays much more rapidly in time than the low
wavenumber energy, as shown in figure 16(b). Furthermore, for 4 < k⊥ < 15, E(aw)(k⊥)

tends to follow the power law ∼k−2
⊥ for 0 < t � 3, while in a large time range, 3 < t � 20,

it behaves like k−3
⊥ as shown by figure 16(b).

Note that in the (non-magnetized) rotating and stratified case, Kafiabad, Savva &
Vanneste (2019) give an explanation for the transient slope k−2

⊥ based on the scattering
of inertia-gravity waves by the QG mode. As emphasized here, the analogy between our
case and the rotating stratified one is essentially formal, whereas the physical meaning of
the NP mode is very different. Especially the role of system rotation is probably crucial in
the dynamics of the QG mode, whereas rotation does not affect the MIPS.

On the other hand, the energy of the NP mode remains low, particularly at large
horizontal scales. The significant reduction of the energy of NP mode as N increases
rather occurs at large vertical (or horizontal) scales, that become less an less energetic
as N increases. This is produced by the reduction of the nonlinear transfer as N increases
(not shown). At large vertical (or horizontal) scales, E(np)(k‖) (or E(np)(k⊥)) exhibits a flat
shape even at early time.

5. Concluding remarks

Linear theory and DNS were used to study the effects of stable ambient density
stratification and a weak imposed mean magnetic field on initially isotropic turbulence,
for an electrically conducting Boussinesq fluid with unitary thermal and magnetic Prandtl
numbers. In all the simulations the mean magnetic field (B0 = B0ẑ) aligns with the
buoyancy gradient of strength N.
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In the inviscid linear limit, a normal mode decomposition has been performed,
indicating the existence of three types of motion depending on whether both the Froude
(Fr) and the Alfvén–Mach (M) numbers are small (case (I)) or only Fr is small but M is
finite (case (II)). In the former case, there is an NP mode, Alfvén waves with frequency
ωa = B0k‖ and magnetogravity waves with frequency ωag such that ω2

ag = ω2
a + ω2

g. In
case (II), there are slow modes (i.e. associated to zero eigenvalues of the fast linear operator
LF given by (2.19a,b)) and fast gravity waves of pulsation ωg. In this case, the Alfvén
waves are slow modes. Recall that ωg = Nk⊥/k is the buoyancy frequency, and k‖ and k⊥
are the vertical and horizontal wavenumbers, respectively.

All the simulations were performed with an improved version of the SNOOPY code and
solve numerically the MHD Boussinesq equations for incompressible decaying stratified
MHD turbulence under a weak mean magnetic field (see (2.1)). The DNS were started
from initial isotropic conditions, with zero initial magnetic and density fluctuations, and
unitary magnetic and thermal Prandtl numbers. These initial conditions constitute severe
constraining conditions for the generation of the NP mode. It is worthwhile to recall
that its definition (see (3.12), (3.19)) excludes the real vortex part, in contrast with the
non-magnetized stratified case. To our knowledge, the present numerical simulations are
among the first simulations that study the effects of the buoyancy force and the mean
magnetic field, when they are simultaneously present, on MHD turbulence. For this, we
have opted for a decaying turbulence mainly to avoid any artefact due to the external
forcing (see also Meyrand et al. 2016). Eleven runs, at a moderate initial Reynolds number
(see table 1), including two runs for the non-stratified MHD cases of B0 = 0.2 and
B0 = 0.4 and three runs for PST with N = 2, N = 5 and N = 10 have been performed.

The development of Frh (horizontal Froude number), τnl/τa (ratio of nonlinear time
to Alfvén time) and Reb (buoyancy Reynolds number) indicates that the regime of the
stratified MHD cases studied in the present work rather corresponds to a weak stratified
MHD turbulence regime affected by viscosity.

We studied the temporal behaviour of several global quantities to characterize the
dynamics of stratified MHD flows and the influence of the intensity of the buoyancy
force and the mean magnetic field on it. While for the non-stratified MHD cases, the
total energy E(t) tends to follow the power law decay ∼t−1.25, for the stratified MHD
cases as well as for the purely stratified cases E(t) tends to behave like ∼t−0.95. For the
same initial Reynolds number, the decay of E(t) depends on N and B0 and not only on
the ratio B0/(LiN) and the energy level increases as N increases even though the increase
observed between the cases of N = 5 and N = 10 is very slight. We found that vertical
motions are more affected by the effect of stratification than by the effect of the mean
magnetic field, while it is the opposite for horizontal motions. Indeed, the profiles of the
vertical kinetic energy, potential energy and buoyancy flux for the stratified MHD cases
and the purely stratified cases look very similar with decaying oscillations whose periods
are approximately the same ∼π/N. The effect of stratification on the development of the
vertical magnetic energy is very significant in the sense that, at 0 < Nt/π < 2, there is
a drastic decrease of the energy level as N increases (see figure 8). In counterpart, the
horizontal kinetic and magnetic energies are more impregnated by the mean magnetic field
although there is a slight increase of energy level as N increases (see figure 10). Compared
with the non-stratified MHD cases, stable stratification generates significant anisotropy
by restricting vertical motions in favour of horizontal fluid motions. This is particularly
reflected in the behaviour of the ratio between horizontal and vertical magnetic energies,
which takes a higher value almost at all scales: for N = 10 the peak at k = 1 of the ratio
Emh(k)/(2Emv(k)) exceeds 103. This is caused not due to excess energy of Emh but rather
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to the fact that Emv is very small in almost all scales. However, the fact that Emv � Emh at
almost all scales does not imply that there is an inverse cascade of energy, especially since
radial fluxes for horizontal magnetic energies and verticals have a positive sign.

Concerning the time-development of the energy of Alfvèn waves and magnetogravity
waves, it tends to follow the power law decay ∼t−0.95 as for the total energy. The
contribution coming from Alfvén waves to the total energy is more important than
that of magnetogravity waves: at high horizontal (or vertical) wavenumbers the main
contribution comes from Alfvén waves. This is mainly due to the fact that, at these scales,
ωa = B0|k‖| is more important than ωg = (k⊥/k)N, so that, Alfvén waves carry higher
energy in that range. On the other hand, it is shown that for 4 � k⊥ � 15, the energy
spectra of magnetogravity waves and Alfvén waves tend to follow the power law ∼k−3

⊥
for 3 < t < 20. At large and intermediate horizontal (or vertical) scales, the energy of NP
mode, which is more sensitive on both B0 and N than the energy of waves, exhibits a flat
shape.
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