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Using equations obtained in a previous analysis, results are computed numerically which illustrate the 
effects of diffusion and viscosity on faecal excretion patterns of markers in ruminants. Results are first 
given for plug flow, a velocity gradient produced by viscosity, and diffusion, each mechanism operating 
alone. Plug flow gives a period during which no marker appears in the faeces, then a sharp increase in 
faeces marker concentration, followed by rapid washout. A velocity gradient gives a more gradual 
appearance of marker in the faeces followed by a slower washout. DMusiou alone (although not realistic 
for ruminant marker kinetics) can give early appearance of marker followed by slow washout. Combining 
diffusion with a velocity gradient produced by viscosity can give a range of behaviour, depending on the 
effective diffusion coefficient, D’; an approximate method is used to compute these solutions. Because plug 
flow with no velocity gradient plus diffusion gives results similar to convective flow with a velocity 
gradient plus diffusion, we believe it will not be possible to determine the main mechanisms defining 
marker outtiow patterns from observations of marker kinetics alone, and more detailed investigations 
will be needed. Although estimates of quantities such as mean transit time are unaffected by detailed 
mechanism, the interpretations of measures such as sigmoidicity, sharpness of the faecal marker 
concentration v. time curve, and length and nature of the washout tail are highly dependent on 
mechanism. 

Ruminants: Digesta markers: Compartmental model: Diffusion: Viscosity 

The use of digesta markers in ruminants provides a well-established methodology for 
investigating the dynamics of the ruminant digestive tract (e.g. Faichney, 1975; France et 
al. 1988). The technique involves oral or direct application of an indigestible, non- 
absorbable marker to the rumen, with the subsequent measurement of the time course of 
marker concentration in the faeces and often that of the accumulated marker excretion. 
Compartmental analysis is then usually used to interpret these data, and a number of 
compartmental models have been proposed and characterized for this purpose. The models 
are of the sequential irreversible type (reviewed by France et al. 1985, 19881, and they 
permit the estimation of biological measures such as the rate of passage out of the rumen, 
the transit time in the gastrointestinal (GI) tract, and the rate of faecal production. 
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748 J. H. M. T H O R N L E Y  A N D  O T H E R S  

The GI tract is usually represented by a series of well-mixed pools connected by simple 
plug flows with first-order kinetics applying throughout. Diffusion and viscosity are 
neglected and their importance has not been assessed quantitatively. Recently, France et al. 
(1993) introduced diffusion and viscosity into the traditional formalism and, while they 
derived integral equations for the solutions, they were unable to make further progress 
analytically. Our objective here is to compute numerical solutions for the scheme 
incorporating diffusion and viscosity proposed by France et al. (1993), and to illustrate the 
qualitative and quantitative effects of these processes. This enables us to compare and 
contrast model predictions with results obtained from experiment, leading to an improved 
understanding of how these physical mechanisms, which seem certain to impinge on 
nutrition, may affect faecal marker curves. 

Blaxter et al. (1956) suggested that the ruminant gut is essentially composed of two 
mixing compartments and a tubular compartment, and that digesta flow can be described 
by a model consisting of two exponential components and a discrete time delay. 
Subsequently, Grovum & Williams (1973) used this model to describe the change in marker 
concentration in sheep faeces following an intraruminal dose of marker and showed that 
the longer mean residence time was associated with the rumen. Other workers, however, 
have encountered difficulties in fitting this model to faecal marker excretion curves, 
particularly in cases where a slow initial increase in faecal marker concentration was 
evident. Milne et al. (1978) and Faichney & Boston (1983) both increased the number of 
mixing pools in Blaxter’s scheme to three in order to describe their data satisfactorily. 

This slow initial increase in marker concentration prompted Ellis et al. (1979) to suggest 
the inclusion of a y time dependency of two in the faster rate constant of Blaxter’s model. 
The introduction of a time dependency of two into the model is in essence representing the 
GI tract by three mixing pools and a discrete delay with two contiguous pools having the 
same rate constant (France et al. 1985). Whilst this ‘ time-dependent, time-independent’ 
model was found to be superior to the original Blaxter model and its refinement by Milne 
et al. (1978) and Faichney & Boston (1983), Dhanoa et al. (1985) found it sensitive to initial 
data points and not always able to give good agreement between the predicted and 
observed concentrations in the ascending phase of the curve. This prompted these workers 
to propose and examine an alternative model (Dhanoa et al. 1985, 1989). 

The scheme of Dhanoa et al. (1985) for describing faecal marker concentration curves is 
based on the premise that the ruminant GI tract can be represented by an unspecified 
number of exponential compartments with the pattern of marker excretion being largely 
defined by events occurring in the two compartments having the smallest rate constants (i.e. 
k,  and k2). In order to reduce the number of parameters so as to facilitate parameter 
estimation, the assumption was made that the rate constants of all other compartments 
increase successively by a small constant amount (i.e. k, - k,). To facilitate estimation 
further, a mathematical approximation was introduced which resulted in a double 
exponential form of the model. A logarithmic transformation of this form was fitted to 
eighty-two excretion curves and was found to be superior to the other models (Dhanoa et 
al. 1985). 

All models are compromises between the prevailing state of knowledge and mathematical 
feasibility given the constraints and quality of observed data. The modelling process may 
lead to data-analysis models, whether empirical or mechanistic, which can play an 
important role in nutritional research. However, it is necessary to show that these models 
represent mechanisms which for example control the postruminal flow of digesta through 
the GI tract. Diffusion and viscosity are processes which seem likely to affect nutrient 
absorption and utilization in ruminants, and are thus worth investigating to see if they 
contribute to the observed patterns of marker concentration in faecal samples. 
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Unfortunately the incorporation of these concepts into models leads to intractable 
mathematics as outlined by France et al. (1993). A way round these difficulties requires the 
use of numerical methods so that we can study the effects of these mechanisms on what 
might be observed. Such an investigation may provide corroboration and define the scope 
of data-analysis models which may be more realistic in other respects. 

COMPARTMENTAL MODEL A N D  GENERAL THEORY 
The scheme used is shown in Fig. 1. Compartment I is assumed to be well-mixed and 
represents the proximal tract including the rumen. It is well known that both particle size 
and density affect rumen outflow (e.g. Kaske et al. 1992), and this simplification is justified 
here by the impossibility of studying all possible complexities at once. Compartment 2 
represents the distal tract including the intestines; it is approximated by a cylinder of length 
L and radius R through which transport of marker may occur by convective flow with mean 
velocity 0 (see Table 1 for definition of symbols, units and standard or initial values). It 
is assumed that the fluid in the system is incompressible and the compartment volumes do 
not change. The mean transit time of compartment 2 is 7, with 

There may be a velocity gradient within the cylinder (velocity U is a function of radius I ) ;  
also diffusion can occur, and the diffusion coefficients may be enhanced by turbulent 
mixing. Compartment 1 has volume V,; it contains mass of marker X ,  which has 
concentration C,. Concentration and mass are related by 

It is assumed that the volume V, is constant (the fluid input flux to compartment 1 is 
therefore equal to the flux from compartment 1 which is 7iR20), so that 

A single dose of marker, A, is administered to the rumen at time t = 0, so that the initial 
value of Cl is 

(1 4 
A 

C1(t = 0) = - v,' 
A system of cylindrical polar axes with radius r and distance along the axis x is assigned 

to compartment 2. Assuming that the tranverse and 1ongitudinaI diffusivities (Dt, Dl) are 
constant (do not vary with position or time), and denoting the flow velocity at radius r 
as U(r), the equation governing the concentration C2(x, r, t )  in compartment 2 at position 
Cx, r )  and time t is 

Essentially this is the continuity equation in the absence of chemical reactions that might 
produce or remove marker. The first two terms on the right represent the diffusive 
movement of marker and the last term the convective movement. 

The boundary conditions are assumed to be 
C,(O < x < L,r ,  t = 0) = 0, C,(x = 0, r,  t )  = Cl(t), C,(x = L + , r ,  t )  = 0. (1s) 
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Compartment 1 
Volume V, Compartment 2 Faeces 
Mass of marker, X,  2R 
Concentration of 
marker, C, b 

t 
Marker concn, C,(x, r )  1 Mass of marker, Xf 

r t Mean velocity, 

X 

Fig. 1. Two-compartment representation of the ruminant gastrointestinal tract. Compartment 1 is a well-mixed 
pool described by the quantities shown. Compartment 2 is a cylinder of length L and radius R whose contents 
move at a mean velocity of U .  The faeces are external to the tract. 

Table 1. Dejnitions of principal symbols and numerical values 
(The number(s) of the equation(s) where the symbol is introduced is given in parentheses) 

Initial value, 
Symbol Definition Standard value and units 

Independent variables 
Radial (transverse) coordinate in compartment 2 
Time variable 
Axial (longitudinal) coordinate in compartment 2 

State variables 
Marker concentration at position (x ,  r) in compartment 2 

Marker concentration in Jth element of compartment 2 

Mass of marker in faeces (Fig. 1) 
Mass of marker in compartment 1 (Fig. 1, 1 n) 

Other variables 
Marker concentration in compartment 1 (1 b) 
Mean concentration of marker flowing to faeces (1 I) 
Mean faecal concentration of marker flowing to faeces 

Marker flux per unit area into Jth element of 

Output marker fluxes from compartment 1 into 2, and 

Maximum radius of material reaching faeces (3g) 
Velocity of fluid at radius r in direction x (Fig. 1) 
Transit time at radius r (3 b) 

(1 4 
(46) 

(1 m) 

compartment 2 (4b, 4 4  4e) 

from compartment 2 to faeces (1 g, 1 h) 

Parameters and derived parameters 
Cross-sectional area of compartment 2 ( 5 d )  
Longitudinal and transverse diffusivities (1 e) 
Effective diffusion coefficient (5c) 
Passage rate from compartment 1 (2 b) 
Length of compartment 2 (Fig. 1) 
Rate of faeces production (1 k) 
Radius of compartment 2 (Fig. 1) 
Mean flow velocity through compartment 2 (Fig. 1, l j )  
Volume of compartment 2 (Fig. 1) 
Volume flux from compartment 1 into compartment 2, 

Marker dose applied to compartment 1 at f = 0 
Faecal density (1 k) 
Mean transit time of compartment 2 (la) 

and from compartment 2 to faeces (lj] 

cm 
h 
cm 

mg/cm3 
mg/cm3 
mg/g faeces dry matter 

mg/cm2 per h 

mg/h 

cm 
cm/h 
h 

3.142 cm' 
loo00 cm2/h 
loo00 cm2/h 
0.2 h 
1000 cm 
157.1 g faeces/h 
1 cm 
100 cm/h 
1571 cm3 
314.2 cm3/h 

100 mg 
0 5  g faeces DM/cm3 
10h 
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COMPARTMENTAL MODEL FOR RUMINANTS 75 1 

The first states that at time zero compartment 2 is empty. The second states that the 
concentration on the input surface is constant and equal to that in compartment 1. The 
third states that the concentration on the output surface (at x = L + a small increment) is 
zero : the faeces are quickly removed from the end of the GI tract, and there is no possibility 
of movement of marker from the faeces pool back into the tract. 

The output flux of marker from compartment 1 into compartment 2 at time t ,  Ol+z(t), 
is obtained by integrating the convective and diffusion fluxes over an annular element of 
the input surface to compartment 2 of area 2nrdr, to give (using Fick’s first law of 
diffusion) 

(Ig) I O,,,(t) = 2 n ~ [ U ( r ) C l ( t ) - D , - ( x = 0 , r , t )  ac2 rdr. 

I 
ax 

Similarly, the output flux of marker from compartment 2 to faeces is 

(1 h) ac, I[ ax O,, Xt) = 277 U(r) C,(x = L, r ,  t )  - D, - (x = L, r, t )  r dr . 

The differential equation for the mass of marker in compartment 1 is 

The volume flow rates from compartment 1 to 2, and from compartment 2 to faeces, V,, 
are equal and independent of time, with 

V,,, = G+f = 277 U(r)rdr = & R 2 ,  (1.i) s: 
where the mean fluid velocity, U is defined. The rate of faeces production, P,, is 

pf = UnR2pf = V,, p f ?  (1 4 
where pf is the faecal density. 

The mean concentration of marker in the fluid flowing to faeces, C2,(t), is 

The mean faecal concentration of marker in units of mg marker/g DM of faeces in the 
output from compartment 2, ĉ ,,(t), is 

The rate of change of marker accumulated in the faeces is 

P L U G  FLOW 

It is assumed that the wall of compartment 2 (Fig. 1) is perfectly smooth; there is no 
velocity gradient across the tube; diffusion is ignored. Equation 1 g with V(r) = U and D, 
= 0 gives 

O,,,(t) = 77rR2UC1(t). (2 4 
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- 
" " 0  10 20 30 40 

Time, t (h) 
Fig. 2. PIug flow, C, (mg ma) is the marker concentration in compartment 1 (Fig. 1,  equation 2 4 .  Also shown 
are: the faecal concentration of marker in the output from compartment 2 to faeces, c?~+ (mg/g faeces dry matter, 
equation 2f); and total marker accumulated in faeces, X, (mg, equation 28). Parameters are as in Table 1, but 
with the diffusion constants set to zero and for perkctly smooth walls. 

Combining equations 1 i, 2a and 1 c, therefore, 

ilR2U 5 = - kC,, where k = -. 
dt K 

This gives a decay or passage rate of k = 0-2/h (inserting parameter values from Table 1 ; 
the parameter values in Table 1 are rounded values, and have not been adjusted for any 
particular situation or animal). The concentration in compartment 1 is 

For plug flow with transit time 7, the output from compartment 2 at time t is simply what 
entered compartment 2 at time t - 7 ,  giving 

C,(x = L,r ,  t )  = C,(x = O,r ,  t - -7) .  (2 4 

(2 4 
With equation 1 h, the flux of marker to faeces is 

0,Jt) = nR217C,(x = L, r, t )  = nR2UC2(x = 0, r,  t -7 )  for t > 7 .  

With equations lm, 1J 2c and 26, the faecal marker concentration is 

The total marker mass accumulated in faeces is obtained by equation In ,  to give 

XAt) = A( 1 - e-k(t-rf), t 2 7 .  (2g) 
This is illustrated in Fig. 2. The temporal distribution of marker concentration in 
compartment 1 (C,) is reproduced in the output to faeces with a time delay of 7. In the 
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Discussion section, Table 2 and Fig. 7 comparisons are made between the plug flow 
mechanism and other mechanisms, and with observed responses. 

VELOCITY GRADIENT 

It is assumed that the walls of compartment 2 are rough so that the fluid in contact with 
the wall is stationary; diffusion is ignored. The velocity at radius r, U(r), is assumed to be 
given by (e.g. Newman & Searle, 1948) 

Thus with equation 3a the velocity at the centre ( r  = 0) is twice the mean velocity U and 
decreases parabolically to zero at the walls (r = R). Transit time 7 is a function of radius 
r :  

L L 
7(r) = - = 

U(r) 2U(I -r2/R2)'  

The output from compartment 1 (equation 1 g) gives the same r e d t  as for plug flow (2a)  
(as it must), with (substituting 3a into l g  and putting D,  = 0) 

rdr = rnR2UC1(t). (3 4 

Therefore equations 2b and 2 c  still apply. 

to faeces is 
Combining equations 1 h, 2d  and 3 a, in the absence of diffusion, the output marker flux 

O,,(t) = 2n I k q 1 - G )  C,(x = 0, r, t -7) r dr. I (3 4 

Since (with equations 1 f and 2 c) 

, t a r ,  (3  4 C,(x = O , r , t - ~ )  = Cl(t-7)  = -e-k(c-r) 
A 
v, 

therefore using equations 1 m, 3 d, 3 e and 3 b the mean faecal concentration of marker in 
the output from compartment 2 (mg marker/g faeces DM) is 

rm,(t) is the radius of the annulus of material which just reaches the faeces compartment 
at time t, that is, when the transit time T is equal to the actual time t. From equation 3 b, 
t = L/[2U( 1 - rmaX2/R2)], giving 

The last two equations can only be used for times t 2 t,, where t, is the time at which the 
fastest moving axial ( r  = 0) component of the distribution exits from compartment 2, where 

L 
2U' 

t =- 
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Time, t (h) 
Fig. 3. Viscous flow with a velocity gradient. C, (mg ana) is the marker concentration in compartment 1 (Fig. 1, 
equation 2 4 .  Also shown are: the faecal concentration of marker in the output from compartment 2 to faeces, 
C,,, (mg/g faeces dry matter; equation 3f); and total marker accumulated in faeces, X, (mg, equation 1 n with 
3f). Parameters are as in Table 1, but with the diffusion constants set to zero and for rough walls in compartment 
2. n 100 (equation 3 4 .  Integration interval 0.2 h. 

To evaluate the mean faecal concentration of marker flowing to the faeces, ĉ ,,,.(t), we 
write 

J o  
which defines 

kL 
(20(1 - r 2 / R 2 )  

) (1 - r2 /R2)  r , h(r) =exp 4n l7A e-kt 
K 4  g(t)  = 

r,, is divided into n segments each of length Armax, so that 

rj = jArmax, j = 0,1,2, ..., n ;  rmax = nArmax. (3 k)  
For numerical integration we use the trapezium rule approximation to evaluate the mean 
faecal marker concentration: 

(3 1) c^,+f(t> = g(t) Armax[+NrJ + h(rJ + + h(rn-1) + 3h(rn)I. 
Equation I n  is applied to give the rate of change in mass of faecal marker, Xf(t), by 
substituting ?,,(t) from equation 3 I and the value of the parameter p f  (Table 1). Numerical 
integration of this rate of change from an initial value of zero provides the accumulated 
mass of faecal marker. 

Fig. 3 illustrates the time course of marker concentration in compartment 1 (CJ, the 
mean faecal marker concentration leaving compartment 2 (k,+,.(t)> and the accumulated 
faecal marker mass (Xf(t)). Comparing Fig. 3 for purely viscous flow with Fig. 2 for plug 
flow, it is seen that the maximum in the faecal marker concentration occurs at 8.4 h for a 
mean fluid transit time of 10 h, and that the accumulated marker mass in faeces now shows 
a slight sigmoid increase. Other comparisons are made in the Discussion section, Table 2 
and Fig. 7. 
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DIFFUSION 
With no bulk flow through compartment 2, velocity U(r) = 0, and there is no radial 
dependence of marker concentration. Equation 1 e becomes 

Compartment 2 is divided into n, elements, each of length AL = L/n,, volume A V  = 
.rrR2AL, and where the marker concentration at time t is CJt) ,  J = 1, ..., n,. The flux per 
unit area of marker out of compartment 1 and into the first element of compartment 2 is 
assumed to be 

This is a statement of Fick's first law of diffusion; the factor of 2 arises because the distance 
from compartment 1 to the midpoint of the first element in compartment 2 is AL/2. Thus 
the rate of change of marker concentration in compartment 1 is 

For elements J = 2,3,  . . ., n,, the flux of marker per unit area from the J- 1 th compartment 
into the Jth compartment is 

Here, the distance between the midpoints of two adjacent elements in compartment 2 is AL 
(cf. equation 4b). The flux per unit area out of the last (n,th) element of compartment 2 to 
faeces is assumed to be 

A factor of 2 arises again as in 4b. It is assumed that the faeces are rapidly removed from 
the end of the GI tract, with an effective faecal marker concentration just outside the GI 
tract of zero (see 1 f), so that there is no movement of marker from the faeces pool back 
into the tract. The rates of change of concentrations in the J =  1,2, ..., n, elements of 
compartment 2 which each have volumes of nR2AL are 

1 -- dC2+7 - -(&-4+l). 
dt AL (4f 1 

With the assumption of zero bulk flow, the concentration of marker entering the faeces 
compartment is not a meaningful quantity, since there is no movement of faeces from GI 
tract into the faeces compartment accompanying the diffusive outflow of marker into the 
faeces compartment. The rate of change of marker mass in the faeces compartment is 

- dXf = T ~ R ' F , ~ + ~  
dt 

In Fig. 4 the marker concentration in compartment 1 (C,),  that in the last element of 
compartment 2 (C,,, J = n,), and the accumulated mass of marker in the faeces (XJ are 
shown. In Fig. 4(a), where diffusion constant D = 100000 cm2/h, there is a delay of 1-2 h 
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0.1 - 0.002 - 

- 

0' 0' 

Xf (a) 

loor D= iooooo cm2/h 

0.1 - 0.002 r 

0 -  0 -  

Time, t (h) 
Fig. 4. Diffusion without convective flow. C, (mg/cm3) is the marker concentration in compartment 1 (Fig. 1, 
equation 44. Also shown are: the concentration of marker in the output from compartment 2 to faeces (C,,,,, 
mg/cma, equation 4f); and total marker accumulated in the faeces, Xr (mg, equation 4g). Parameters are as in 
Table 1, but with the convective velocity U(r) set to zero. (a) Diffusion constant, D = 1OOOOO cme/h; number of 
elements in compartment 2, nL = 10; integration interval, At  = 0.02 h. (b) Diffusion constant, D = 50000 cm2/h. 

before marker appears at the end of compartment 2, and the total amount of marker in the 
faeces reaches half its asymptotic value of 100 mg in about 7-5 h. In Fig. 4(b), D is reduced 
to 50000 cm2/h; this doubles the time lag before marker begins to appear at the end of 
compartment 2, and also the time taken for the total faeces marker to reach half its 
asymptotic value. The results are not materially changed by taking twice the number of 
elements in compartment 2 and one quarter of the integration interval. The emptying of 
compartment 1 is rather different with pure diffusion than for plug flow or convective flow 
with a velocity gradient (Figs. 2 and 3); it is faster initially but slower in the later stages. 
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Note that, for stable integration, the integration interval, At, must be of the order of, or 
less than, AL2/4D. This result is  equivalent to requiring that the amount of substance 
moving out of an element during time At to an adjacent element where the concentration 
is zero is less than 25% of the amount of substance in the first element: that is, 
area x concentration gradient x At < volume x concentration, or AD(C/AL) At < 
$4(AL)C, giving the result above. If At is greater than this value, there are damped 
oscillations, sustained oscillations, or exponentially growing oscillations. 

DIFFUSION A N D  VISCOSITY: AN APPROXIMATE TREATMENT 

Assuming a parabolic velocity profile as in equation 3a, the general equation for the 
concentration in compartment 2 (1 e),  C,(x, r ,  t) ,  becomes 

-= ac, D17p+Dt(-p+;7)-217(1--)- azc, azc, l a c ,  r2 ac, 
at RZ ax * 

Taylor (1953) showed that if compartment 2 is sufficiently long that mixing occurs across 
the flow then the mean concentration across a transverse section at position x ,  C2, t m ( ~ ,  t), 
obeys the equation 

The effective longitudinal diffusion coefficient Dl, is given by 

i?R2 D1= D,+D,, D, =- 
480, ' 

This equation describes an additional term in the effective longitudinal diffusion coefficient 
of D,, arising from the longitudinal dispersion caused by the velocity gradient. We use this 
approximation to estimate the combined effects of longitudinal and transverse diffusion 
with a velocity gradient (see also Smith, 1990). 

It is assumed that the marker concentration in compartment 1, C,(t), falls as a simple 
negative exponential as in 212 (but see Fig. 4 where the initial decline in C, is faster than a 
negative exponential), and this defines the marker concentration at x = 0 in compartment 
2. Using equations 4.1 and 4.2 of France et al. (1993), the mean marker concentration (mg 
marker/cm3) flowing to faeces is equal to that at the distal end of compartment 2 (x = L) 
which is 

dt'. ( 5 4  kA ,,,exp( -[L- D(t-t')]2/4Dl(t-t')} 
l y e -  [4nD1( t - t')$ C,,(t) = C z , t m ( X  = L, t> = 

Cf. France et 
1' is a dummy 
density) 

al. (1993), equation 4.9. Here cross-sectional area A = nR2 and k = AU/V,;  
variable of integration. The faecal marker Concentration is (dividing by faecal 

(5  4 CZ.,(t) L < O  = -* 
Pf 

To calculate numerical solutions for faecal marker concentration, we use the trapezium rule 
approximation 

A t )  = SY(ndt',  0 (5f) 

A t )  = At(&o +yl + yz + . . . + y,  + . . . +yid2 +yt-l +&J, (5  g) 
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where iAt = t, j A t  = t' and yi = y ( i )  = y ( jAI ) ,  j = 0,1,2, ..., i- 1, i. The faecal marker 
concentration is written as (combining equations 5d and 5e) 

where 
kA exp{ - [L - o(t - t')12/4D'(t- t')} 

g ( f )  = -e-kt', h(t-t') = 
Pf [4nD'(t - t9]4 

To compute the y j  of equation 5g, we write yi = y(t') = g(t') h(t-t') = gjh,,, where 

kA exp{ - [L- i rA t i i - -~~]~ /4D'At ( i -5~}  
[4nD'At(i -5334 ? h, = - e-kfAt 

P f A  

Denoting the (constant) rate of faeces production by e( lk) ,  the total mass of marker 
accumulated in the faeces, X,, is 

Noting Taylor's expression (1953, equation 16), for the present approximation to apply 
requires that the transverse diffusion coefficient D, satisfies 

2R2U 
3+PL 

D, % - = 0.014 cm2/h, (5  0 

where the values R = 1 cm, 0 = 100 cm/h and L = 1000 cm have been inserted. In water 
at 20°, sucrose and albumin have molecular diffusion constants of 0.019 and 0.0021 cm2/h. 
These molecular diffusion coefficients are negligible in the present context and do not 
satisfy 51. We therefore assume that diffusion arising from turbulent mixing is dominant 
and sufficiently large as to satisfy 51. A transverse diffusion coefficient of only 1 cma/h 
satisfies 5 1, and this implies that a particle would move 1 cm in an hour which does not seem 
unreasonable as a minimum value. With the parameter values above, equation 5 c becomes 

208 
D, 

D' = D, +-. 
With D, = D, = D, therefore, 

208 D'= D+-. 
D (5 4 

In Fig. 5, D' is plotted against D. For low values of D (which also satisfy 50, the impact of 
the additional term on the effective longitudinal diffusion coefficient, D', can be 
considerable. Over part of the range, increase in D actually reduces effective longitudinal 
diffusion. While this might seem to be counter-intuitive, it is a result of increasing transverse 
diffusion reducing the ability of the transverse velocity gradient to produce longitudinal 
dispersion (which is now represented in the effective longitudinal diffusion coefficient, D'). 
For diffusion coefficients above 20 cm2/h the additional term rapidly becomes unimportant. 
Fig. 6 illustrates solutions for the diffusion/velocity situation with a range of effective 
diffusion coefficients, D', assuming that Taylor's (1953) approximate method as outlined 
above is applicable. The marker concentration in compartment 1 (C,) falls off as in Figs. 
2 or 3. Fig. 6 (a) gives the faecal marker concentration issuing from compartment 2 and Fig. 
6(b) describes the total mass of marker accumulated in the faeces. It can be seen that, 
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Fig. 5. Effect of a velocity gradient on the effective longitudinal diffusion coefficient, D’, which is plotted against 
the diffusion coefficient, D, according to equation 5n. It is assumed that the transverse and longitudinal diffusion 
coefficients are equal (see 5c). The dashed line is for 0’ = D, in the absence of any contribution from the velocity 
gradient. 

although high diffusion rates favour the early appearance of marker in the faeces, they 
delay the complete removal of marker from the GI tract. Further comparisons are made 
in the next section. 

DISCUSSION 

Some characteristics of the models are summarized in Table 2.  Note that the case of plug 
flow + diffusion has not been explicitly treated : this case is formally identical to the velocity 
gradient + diffusion case using the Taylor (1953) approximation; to obtain the solutions for 
plug flow + diffusion, use the solutions of the Diffusion and Viscosity section, replacing the 
mean velocity U by the plug-flow velocity and the effective diffusion constant D’ (in 
equation 5 b and after) by the diffusion constant. In Table 2 the faecal marker concentration 
as a percentage of its maximum value which occurs at time t = t,,, is given for times itm,, 
and 2tm,,. The it,,, value is a measure of the sigmoidicity or sharpness of the leading edge 
of the faecal marker concentration curve. The 2t- value is a measure of the rapidity of 
marker washout. The itmax and 2tm, values provide a two-parameter summary of the shape 
of the faecal marker concentration v. time curve. 

In Table 2 the experimental responses shown in Fig. 7 are also included, with the purpose 
of seeing if considering the rumen as a mixing compartment and incorporating 
diffusion/viscosity concepts into movement along the small and large intestines can mimic 
experimental findings. It should be noted that the numbers given in Table 2 were obtained 
via the fitted curves of Fig. 7, where the errors are largest towards the edges of the 
distribution. In Table 2 and Fig. 7 data from both cattle and sheep are included. This gives 
a variety of observed responses with which to compare the results of the present theoretical 
investigation. However, for cattle in particular, to approximate the GI tract by the scheme 
in Fig. 1 may be a very poor approximation. Our sample in Fig. 7 and Table 2 of four faecal 
marker experiments is only illustrative of the many responses that have been observed. 

First, we compare the models. It is clear that plug flow (row l), a velocity gradient (row 
2), and a low effective diffusion coefficient, D’, in the velocity gradient + diffusion case (row 
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Fig. 6.  Diffusion with convective flow and a velocity gradient using Taylor's (1953) approximation. (a) The 
concentration of marker in the output from compartment 2 to faeces, P,, (mg/g faeces dry matter, equation 5e). 
(b) Total marker accumulated in the faeces, A', (mg, equation 5k). Parameters are as in Table 1, but with the 
effective diffusion coefficient, D' (cm2/h, equation 5c) set to the values indicated. Integration interval, At = 0.25 h. 

4) give the sharpest leading edge to the faecal concentration v .  time curve. Regarding 
diffusion alone (row 3) as perhaps being an unrealistic model, slow washout is given by a 
velocity gradient alone (row 2) or velocity gradient + diffusion with a high effective 
diffusion coefficient, D' (row 5). 

Next when comparing the models with the experiments shown in Fig. 7 and Table 2, it 
should be remembered that the models apply strictly to soluble markers or cases where the 
particle markers behave homogenously. Soluble and particulate markers generally behave 
differently in the rumen but quite similarly in the small and large intestines. The 
complexities of particle behaviour may invalidate the model as a tool that can be applied 

https://doi.org/10.1079/BJN
19950003  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN19950003


COMPARTMENTAL MODEL FOR RUMINANTS 761 

Table 2. Characteristics of the different models: the faecal marker concentration as a 
percentage of its maximum value which occurs at time t,,, is given for :tm,, and 2tm,, 

Time, t = 

ftm., t,,, %, 
Model 

Plug flow (Fig. 2) 0 100 13 
Velocity gradient (Fig. 3) 0 100 39 
Diffusion (Fig. 46) 68 100 80 

D’= 1000 0 100 12 
d = 10000 34 100 29 

Velocity gradient + diffusion* (Fig. 6a): 

Experiment 
Holstein cows, silage? 3 100 3 
Brangus steers, molasses + hay$ 20 100 44 

Steers, dried grass4 c.2 100 57 
Sheep, hay§ 65 100 56 

* Equivalent to plug flow +diffusion (see p. 759). 
t Beauchemin & Buchanan-Smith (1987) used a particulate marker. 
t Ferreiro Gutierrez (1986) stained feed particles with magenta. 
Q R. C. Siddons (unpublished results) used a particulate marker (Cr). 

to faecal marker data in its present form. Moreover, the experiments apply to different 
species where different characteristics apply to the proximal and distal tracts. The Holstein 
cow data are not obviously compatible with any of the models although plug flow through 
the rumen itself could provide an explanation. Brangus steers are reasonably close to the 
velocity gradient + fast diffusion model. Sheep fed on hay appear similar to diffusion only. 
Steers on dried grass look most like a velocity gradient acting alone. The fact that the 
observed data cited here and model predictions do not concur suggests that the simple 
scheme and mechanisms assumed are unable to provide general solutions applicable across 
species, although this is perhaps not surprising. Nonetheless, the results are interesting and 
suggest that interpretations of marker data that ignore diffusion and viscosity may be 
hazardous. 

Within its limitations our analysis shows that interpretation of marker data alone allows 
several possibilities. It may be concluded that the establishment of the important 
mechanisms depends on detailed observations of diffusion coefficients, velocities, turbulence 
and mixing within and possibly throughout the GI tract. For example, experiments with 
markers or tracers showing a degree of movement up the GI tract or revealing the marker 
distribution within the GI tract could be most valuable. The rate of heat loss from a small 
probe could give information about the fluid velocity at the end of the probe. The insertion 
and tracking of X-ray opaque materials might also yield interesting results. 

This study illustrates the role and usefulness of numerical analysis in deriving solutions 
where analytical mathematical methods either break down or become too complex to 
handle. Such approaches will be more important where particle size distributions and their 
effects are also to be simulated. To build on current knowledge we need to understand the 
mechanisms which can effect the observed phenomenon. In basic or applied research simply 
to observe/measure and summarize is incomplete. Specialized investigation such as this 
work may challenge current beliefs and enhance understanding of ruminant nutritional 
principles. 
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Time (h) 

lime (h) 
Fig. 7. Some observed faecal marker curves. The abscissas are faecal marker concentration in arbitrary units. (a) 
Holstein cows (-) on silage with particulate marker (Beauchemin & Buchanan-Smith, 1987) and Brangus steers 
(---) on molasses and hay with feed particles stained with magenta (Ferreiro Gutierrez, 1986). (b) Sheep (-) 
on hay and steers (---) on dried grass with a particulate Cr marker (R. C. Siddons, unpublished results). 

We are indebted to Professor Ron Smith of Loughborough University of Technology for 
useful discussions and for bringing Taylor’s (1953) analysis to our attention, and to Roddy 
Dewar for helpful comments. 
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