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Abstract

The scientific study of animal welfare involves measuring physiological, behavioural, and/or cognitive variables to infer the welfare state of animals. Such 
an approach implies these measures are indicators, or reflect, an unmeasured latent variable of welfare state. Drawing inspiration from recent develop-
ments in human psychology and psychiatry, in this paper we propose an alternative perspective in the form of a network theory of animal welfare. This 
theory posits that there is no latent variable; rather, welfare is a network system of causal interactions between and within behavioural, physiological, and 
cognitive components. We then describe a statistical network modelling approach motivated by network theory, in which welfare-related response 
variables are associated with each other after controlling for all other variables measured. In three examples using simulated data, we demonstrate how 
this approach can be used, and the sort of novel insights it can bring. These examples cover a range of species and research questions, which network 
analysis is well suited to address. We believe a network approach to animal welfare science holds promise for developing our understanding of the concept 
of animal welfare, as well as producing practical and meaningful information to improve the welfare of animals.
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Introduction 
The scientific study of animal welfare is traditionally 
approached from a ‘triangulation’ perspective, in which 
physiological, behavioural, and (more recently) cognitive 
measures are recorded and used to make inferences about 
the welfare of an animal or group of animals (Webster 
1998). Such an approach implies that these measures all 
reflect an unobserved variable of welfare state. Despite 
this triangulation approach, it is a well-recognised 
problem that welfare is hard to measure, and many 
measures do not ‘agree’ or turn out not to be in the 
direction predicted (Mason & Mendl 1993). There is thus 
a lack of knowledge about how various welfare measures 
relate to each other, which may impede our understanding 
of, and inferences about, animal welfare. In this paper, we 
propose a network approach to tackle this problem. This 
perspective carries with it a novel conceptualisation of 
animal welfare; that is, one that is not based on measures 
reflecting an unobserved latent variable but, rather, a 
construct that emerges from mutual interactions in a 
network system. Drawing inspiration from recent devel-
opments in human psychology and psychiatry, we begin 
by proposing the basis of a network theory of animal 
welfare. We then move on to discuss how novel insights 
can be gained by statistically modelling animal welfare 
measures (‘indicators’) as networks of interactions.  

A network theory of animal welfare 
In the human psychology and psychiatry literature, it has 
been argued that the traditional approach to conceptualising 
and measuring psychological constructs has been a latent 
variable perspective, in which the co-variation between 
measures (eg items on a questionnaire, components of 
emotion, symptoms of mental illness, and so on) occurs due 
to an underlying unobservable common cause (van der 
Maas et al 2006; Cramer et al 2010; Borsboom & Cramer 
2013; Schmittmann et al 2013; Fried & Cramer 2017). This 
implies, for example, that symptoms group together due to 
a latent variable of the underlying illness which causes all 
psychiatric symptoms of a disorder. More recently, the 
network theory approach to psychological phenomena has 
been proposed (initially by Cramer et al 2010, but also see 
van der Maas et al 2006) which essentially posits that 
components group together because they causally influence 
each other, not because they share a common cause; as such, 
there are no latent variables and components are not inter-
changeable (for detailed discussions, see Cramer et al 2010; 
Borsboom & Cramer 2013; Schmittmann et al 2013; 
Borsboom 2017; Fried & Cramer 2017; Dalege et al 2018). 
This suggests that the disorder is the causal interactions 
among symptoms (Borsboom 2017). This powerful idea has 
been proposed as an alternative conceptualisation of various 
psychological phenomena, ranging from psychopathology 

Universities Federation for Animal Welfare Science in the Service of Animal Welfare

https://doi.org/10.7120/09627286.30.3.001 Published online by Cambridge University Press

https://doi.org/10.7120/09627286.30.3.001


236   Rowland et al

(Cramer et al 2016; Borsboom 2017) to personality (Cramer 
et al 2012), attitudes (Dalege et al 2016, 2018), intelligence 
(van der Maas et al 2006), and emotions (Lange et al 2020), 
and has been applied to behavioural phenotypes in dogs 
(Goold et al 2016). We believe that this network approach 
also has considerable potential to transform how we 
conceptualise animal welfare and opens up new ways of 
modelling and interpreting welfare data.  
When considering animal welfare from the animals’ 
perspective, welfare is essentially an internal subjective 
psychological state (Sandøe & Simonsen 1992; Duncan 
2002; Mason & Mendl 1993; Mellor 2012, 2016; Browning 
2019), and can be considered somewhat analogous to 
mental health in humans. We therefore propose that the 
network conceptualisations developed in human 
psychology and psychiatry are also valid to animal welfare 
when viewed from the animals’ perspective. That is, if the 
response variables used in animal welfare research can be 
justified to be relevant to the welfare of animals, then the 
network theory position is that these animal welfare 
measures can be considered components in a network 
system of causal interactions (Figure 1B). This means that 
behavioural, physiological, and cognitive components are 
not necessarily reflective of an unobservable latent variable 
(Figure 1A), rather, their interactions are what constitute the 
welfare of an animal (Figure 1B).  
As a simple example, consider the following three welfare 
measures: fearful posturing (behavioural), low appetite 
(behavioural), and low body condition score 
(physical/physiological). These measures do not necessarily 

independently reflect a single underlying latent construct of 
welfare. Instead, they may be causally related because they 
directly influence each other: fearful posturing→low 
appetite→low body condition score. If an animal is fearful 
of people and finds itself in an environment regularly 
exposed to people, this may directly cause a reduction in 
appetite, which if persistent over time directly influences 
and causes a low body condition score. This makes intuitive 
sense. Resource acquisition and consumption is not a 
priority in the presence of threat, and the lower number of 
calories consumed due to reduced nutrient intake/poor 
appetite, will eventually result in weight loss and a low 
body condition score.  
Network theory has important implications for how we think 
about improving animal welfare. Consider the three welfare 
measures we have just mentioned. If a latent variable model 
is the ‘true’ data-generating mechanism, then to improve 
scores on these three measures we would have to directly 
intervene at the level of the unobservable latent variable. If 
we manipulated a single measure, only that measure would 
change, and there would be no effect on the other two. 
However, if the ‘true’ mechanism is a network model of the 
form: fearful posturing→low appetite→low body condition 
score, then in order to improve scores on all three measures 
one needs to directly target fearful posturing. It can be seen 
that the two models make very different predictions, and this 
may be one useful way that the theoretical ideas of network 
versus latent theories can be empirically tested (for more 
details, see Marsman et al 2018). Additionally, methodolo-
gists are beginning to work on formal ways of testing whether 
a given multivariate dataset is likely to have been generated 
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Figure 1

Different conceptualisations of animal welfare showing (A) welfare as a latent variable: welfare state of an animal (central circle) is an 
unmeasured latent variable that gives rise to (directed arrows) measurable indicators at the levels of behaviour, cognition, and physiology 
that directly reflect the latent variable and (B) network theory: in this conceptualisation there is no latent variable and as such ‘welfare 
state’ is not directly labelled. Rather, welfare state is represented by a large circle, within which there is a network system of causal 
interactions. These interactions occur between (longer directed arrows), and within (curved self-directed arrows) behavioural, cognitive, 
and physiological levels/measures.  
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by an underlying latent variable system or a network system 
(van Bork et al 2019). 
With this theoretical concept of causal interactions between 
components of welfare in mind, in the following sections 
we explain how this idea relates to statistical network 
models of animal welfare data. We begin by explaining 
what the networks we are proposing actually represent and 
proceed to show a series of practical applications using 
simulated data. All simulations were conducted using R 
3.6.1 (R Core Team 2019). The code to reproduce all simu-
lations reported here can be found on the open science 
framework (Rowland et al 2020). 

Statistical animal welfare networks 
There is already a small body of literature on social network 
analysis as it relates to animal welfare (for reviews, see Asher 
et al 2009; Kleinhappel et al 2016). In such networks, nodes 
(or vertices) represent individuals, and connections between 
nodes, called edges, represent the presence and/or strength of 
physical or social interactions between individuals 
(Wasserman & Faust 1994; Krause et al 2009). However, the 
approach we describe here differs from these ‘traditional’ 
networks in that nodes represent animal welfare-related 
response variables, rather than individuals, and edges 
represent statistical (rather than physical or social) associa-
tions between them (for explanations and tutorials from the 
human psychology literature, see Costantini et al 2015; 
Dalege et al 2017; Epskamp et al 2018a; Epskamp & Fried 
2018). Typically, these statistical associations represent 
partial correlations (see Epskamp et al 2018a,b; Epskamp & 

Fried 2018; Williams & Rast 2020) or regression coefficients 
(see van Borkulo et al 2014; Haslbeck & Waldorp 2020). 
These parameters represent conditional dependence relations, 
which describe the association between two variables after 
taking into account all other nodes in the network, regardless 
of the network size (Epskamp et al 2018a; Altenbuchinger et 
al 2020). Essentially, this allows us to model direct relation-
ships between the various measures, in order to better under-
stand how they interact.  
To demonstrate this property of conditional dependence, we 
simulate and discuss a three-node network with a structure 
similar to that discussed in previous reviews (Epskamp et al 
2018a; Altenbuchinger et al 2020). We do so, however, within 
the context of three commonly used animal welfare measures. 
The purpose of this simulation is not to demonstrate a realistic 
application to animal welfare, rather, the aim is to provide a 
simple example that explains the basic building block of the 
network approach we are proposing. The three measures we 
chose to simulate are hair cortisol levels (COR), fear of 
novelty (NOV: measured as time spent in proximity to novel 
object), and cognitive bias (COG: latency to approach 
ambiguous probe). We therefore have elements of a 
behavioural component (time spent in proximity) of an acute 
affective response (novel object test), as well as a physiolog-
ical component (hair cortisol) and a cognitive/appraisal 
component (cognitive bias) of longer-term mood state.  
One traditional approach to investigate how the measures 
relate to each other would be, for example, to calculate 
Pearson’s correlation coefficients between each pair of 
variables (Figure 2A). In our simulated data set, hair 
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Figure 2

Network representations of the three simulated welfare measures. Response variables are represented as nodes (circles) in the network 
graphs. Edges (represented by lines) between the nodes represent Pearson’s correlations in A, and partial correlations in B, the values of 
which are also numbered in the middle of each edge. The blue edges represent positive relationships, while the red represent negative 
relationships. The thickness of each edge represents the absolute magnitude of the parameter, which is why the red negative edges 
appear thicker. The partial correlation between COR and COG is 0.00, and as such, there is no edge between these two nodes in B. COR, 
Hair Cortisol; NOV, Fear of Novelty (time spent in proximity to novel object); and COG, Cognitive Bias Test (latency to approach 
ambiguous probe).  
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cortisol positively correlates with fear of novelty, fear of 
novelty negatively correlates with cognitive bias, and hair 
cortisol also negatively correlates with cognitive bias, and 
so the three measures are linearly associated. However, such 
correlations are a poor estimate of direct 
relationships/dependencies, primarily because there is a 
large degree of uncertainty as to whether the correlation is 
mediated by a third (or more) variable(s) (Costantini et al 
2015; Altenbuchinger et al 2020). An alternative approach 
that does take into account the effects of other variables 
when estimating associations, and which is closer to the 
causal interaction conceptualisation of welfare, is estima-
tion of conditional dependencies. In this example, we can 
estimate conditional dependence by calculating partial 
correlation coefficients (Epskamp et al 2018a,b; Epskamp 
& Fried 2018; Williams & Rast 2020) and representing 
these as a graphical network (Figure 2B). Therefore, in the 
three-node network we estimate here, in Figure 2B, an edge 
between two nodes represents a correlation after controlling 
for the effects of the third node. If that relationship is 0 (rare 
in empirical data), not statistically significantly different 
from 0, or does not survive other methods of model 
selection, then we infer that those two measures are condi-
tionally independent, meaning there is no evidence of a 
causal relationship (Epskamp & Fried 2018; Altenbuchinger 
et al 2020).  
In Figure 2B, because the edges represent partial correla-
tions, the network model shows that hair cortisol and 
cognitive bias do not directly interact when fear of novelty 
is controlled for. That is, hair cortisol and cognitive bias are 
conditionally independent and therefore not causally 
related. However, hair cortisol and fear of novelty do 
predict each other after controlling for cognitive bias. As 
such, in this simulation if an animal is measured to have a 
‘pessimistic’ cognitive bias (high latency to approach 
ambiguous probe), it is more likely to have high hair 
cortisol levels if they also present with fear of novelty 
(latency to approach novel object). Likewise, fear of 
novelty and cognitive bias predict each other after control-
ling for the effect of hair cortisol. That is, if an animal has 
high hair cortisol levels, it is also likely to have a 
‘pessimistic’ cognitive bias if they also have a fear of 
novelty. By conditioning on all variables, we see that 
although hair cortisol and cognitive bias initially correlated 
(Figure 2A), once fear of novelty is taken into account, they 
have no predictive relationship (Figure 2B). Therefore, if 
this example were real data from a study that we had carried 
out, we could conclude that knowing the concentration of 
cortisol on its own would not necessarily provide us with 
any useful information to make a welfare inference. 
Conditional dependence between variables is an important 
statistical property of this approach because such relation-
ships are more likely to indicate possible causal pathways 
(Epskamp et al 2018a,b; Epskamp & Fried 2018). Therefore, 
exploratory estimation of networks containing many more 
than three variables can be used to generate causal 

hypotheses. While conditional dependence relations 
estimated from cross-sectional data is a better estimation of 
causality than non-conditional associations, it is still only 
considered an estimate. This is, in part, because such models 
assume that all relevant measures have been included in the 
model (Epskamp & Fried 2018), and the direction of the 
effect is unknown (Epskamp et al 2018a,b). Using the 
simulated example, we have just worked through, imagine if 
we had only measured hair cortisol and cognitive bias. We 
would not have known that the correlation between them is 
conditional on fear of novelty had we not also measured fear 
of novelty. Missing important variables in the system may 
also affect our estimates of network metrics derived from 
network models and can induce edges in networks that 
would not be present had the relevant variable(s) been 
included (Epskamp & Fried 2018). This is an important limi-
tation of undirected network models that prevents strong 
causal interpretations being made. However, all statistical 
models have limitations which are important to bear in mind 
when making statistical and theoretical inferences, and 
network models are not immune to this. Nonetheless, the 
network in Figure 1B provides an example of the conceptual 
basis of the network approach we are proposing, and the 
building blocks of larger network models.  
In the following sections, we provide three different 
examples of applications of statistical network modelling to 
animal welfare science using simulated data, introduce 
some of the metrics used to summarise network structures 
and their characteristics, and discuss the novel application 
of these metrics to animal welfare data. 

Network models as a tool to identify inter-
vention targets  
Network theory proposes that welfare can be conceptualised 
as a network system of mutual interactions (Figure 1B). In 
a statistical network model, edge weights in conditional 
networks denote the strength of potential causal relation-
ships (Epskamp & Fried 2018). As such, network models 
can be viewed as exploratory statistical models that can be 
used to generate causal hypotheses. From a network theory 
perspective, these causal hypotheses are substantively 
different to hypotheses that would be derived from a latent 
variable theory (Marsman et al 2018; van Bork et al 2019). 
That is, if we intervened at the level of an individual 
variable, network theory posits that the probability distribu-
tion of the other variables will subsequently change (due to 
the connections in the system), a prediction that would not 
be made if the causal model is assumed to be a latent 
variable that gives rise to the indicators and in which the 
indicators are independent of each other (Marsman et al 
2018). We discuss this idea here as an example within the 
context of shelter dog welfare.  
We start by simulating some cross-sectional data, which 
allows the estimation of an undirected network that encapsu-
lates our uncertainty regarding the direction of the associa-
tions. Suppose you are interested in identifying (i) estimates of 
causal relationships in welfare measures, and (ii) using this 
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information to identify potentially important variables for 
targeted intervention. You conduct a cross-sectional study 
measuring fourteen binary variables on the 7th day, post-
shelter intake. Such binary data have been collected and 
reported before in the shelter dog welfare literature (for 
example, see the Quality of Life Assessment Tool in Kiddie & 
Collins 2014). We simulate data for this hypothetical study 
following Dalege et al (2017), using parameter estimates of a 
previously reported human major depression network 
(Cramer et al 2016) as inputs. However, we consider the 
results within the context of the variables representing welfare 
measures rather than human depressive symptoms. That is, we 
arbitrarily renamed the variables such that the network 
resembles a logically feasible shelter welfare network.  
We then use the simulated binary data to estimate a network 
of conditional dependencies between variables (Epskamp 
2015). In the case of binary variables, the edge weights 
represent logistic regression coefficients (van Borkulo et al 
2014) that can still be interpreted as conditional dependen-
cies as described in the previous section. We identify poten-
tially important measures/nodes by calculating the network 
metric of strength centrality (Epskamp et al 2018a). This is 
a useful metric here because strength centrality tries to 
capture the relative importance of each individual node 
within the network by representing the magnitude and 
number of connections of each node (for detailed discus-
sions, see Bringmann et al 2019 and cf Hallquist et al 2019). 
In the psychopathology network literature, the centrality 
hypothesis suggests central symptoms are important 
because they are more likely to activate a larger range of 
other symptoms (Cramer et al 2010; Robinaugh et al 2020). 
Based on this, if targeted node level intervention is feasible, 
then it may be that nodes with the highest strength centrality 
make good intervention targets (Cramer et al 2010; Fried 
et al 2017; Robinaugh et al 2020). Such a concept may also 
apply to animal welfare. 
Following the centrality hypothesis, the shelter dog 
network in Figure 3 and its centrality characteristics may 
give us useful information to design interventions aiming 
to improve the welfare state of dogs in a shelter. It would 
be challenging to implement a targeted intervention on 
every single node. Therefore, practically speaking, the 
most time and cost-effective interventions would be those 
that are simple to deliver, and which target nodes that have 
the largest effect on the overall network. Based on the 
centrality hypothesis, in our example we could hypothe-
sise that intervening specifically on response to novelty 
(NOV), which has the highest strength centrality, would be 
more efficacious than intervening on kennel activity 
(ACT), which has the lowest strength centrality. A targeted 
NOV intervention could be implemented with desensitisa-
tion and classical counterconditioning to a variety of novel 
stimuli (Zulch & Mills 2012). ACT could be intervened on 
via remote operant counter conditioning with reward 
contingent on stationary, calm behaviour.  
To simulate the two interventions described above, we 
implemented an intra-individual dynamic model previ-

ously reported in Cramer et al (2016), which was initially 
developed to model major depression in humans. In short, 
this models the time course of symptom activation within 
an individual where nodes are either active or inactive. At 
each time step, node activity is determined by a proba-
bility influenced by (i) the state of the system at the 
previous time-point, and (ii) parameters from the network 
structure we have estimated (for more details on the 
model, see Cramer et al 2016).  
We applied this model in two simulations. In both, we start 
with all nodes being inactive (they are assigned 0) and half-
way through the simulation we intervene on the system. The 
high centrality intervention involves setting the NOV node to 
always be 0, and the low centrality intervention involves 
setting the ACT node to always be 0. That is, the dog no longer 
avoids approaching novel objects, and in the other, the dog no 
longer remains active for over half the sampling period. We 
then calculate the probability of each node being active as the 
number of time-points after intervention that the node is 
active/total number of time-points after the intervention. 
This simulation demonstrates that intervention on the high 
centrality node has a much greater effect on the network than 
intervention on the low centrality node (Figure 4). It is readily 
apparent that the high centrality intervention results in a 
marked decrease in all nodes activation probability (Figure 4B 
compared to A), whereas the low centrality intervention either 
has almost no effect on node activation probability or a very 
small effect on a small subset of nodes (4C compared to A). 
Further, we can also calculate the median number of nodes 
active across all time-points after intervention. In the high 
centrality intervention, the median number of nodes active is 
1, compared to 12 in the low centrality intervention.  
We believe that estimating network structures and using 
node-level metrics such as centrality is a promising 
approach for identifying intervention targets for experi-
mental manipulation. However, there are limitations of 
this approach. In undirected networks, the direction of 
association (and causality) is unknown. Thus, a node in an 
undirected network may have a high centrality score either 
because it has lots of outgoing edges or because it has lots 
of incoming edges. This limitation may be somewhat 
overcome using directed networks (a form of network 
model which we consider in more detail in the 
Discussion). Additionally, causal effects could be identi-
fied in an empirical study testing an undirected centrality 
intervention (Marsman et al 2018). That is, if a node is at 
the end of many causal pathways, and thus was highly 
central in an undirected network, then an intervention 
experiment on it would not result in improvements to the 
rest of the multivariate system. Unfortunately, there are 
very few reports in the human psychology literature 
empirically testing the causality of these ideas, although 
some non-causal designs exist providing some support 
(Zwicker et al 2020). Nonetheless, we believe the 
centrality hypothesis is useful to pursue in animal welfare 
science. In the following section, we discuss how statis-
tical network models and their comparisons may be useful 
for making welfare inferences in experimental work. 
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Comparing networks to aid welfare inference 
Networks can be compared qualitatively via visual 
inspection, but statistical inferences cannot be made 
without formal testing (Fried et al 2020). In this example, 
we demonstrate how network comparisons and formal 
testing of network characteristics can be used to aid infer-
ences about welfare. 
To do this, we simulated cross-sectional multivariate 
normally distributed data for two groups. Suppose these data 
reflect the results of an experiment that housed laboratory 
mice in one of two conditions, solitary or in groups of four 
(group), and that after a one-month period, a cross-sectional 
battery of animal welfare measures was collected for each 
mouse (the simulated data). The variables simulated include 
a mixture of cognitive, behavioural, and physiological 
variables, as well as a mixture of acute emotional ‘anxiety’ 
tests and longer-term mood state measures (see Figure 5). A 
number of papers have been published investigating group 
housing of mice (Whittaker et al 2012; Bailoo et al 2018). 
This example is not a simulated replication of these studies, 

but rather a simplified example inspired by them to reflect a 
realistic experimental animal welfare study.  
We are primarily interested in whether the means are 
different between the two groups. In this simulated 
example, independent t-tests indicate that there are no mean 
differences between groups on any measure (all P > 0.05, 
following Bonferroni correction;  see supplementary Figure 
1 in the supplementary material to papers published in 
Animal Welfare: https://www.ufaw.org.uk/the-ufaw-
journal/supplementary-material). 
In addition to looking at mean differences, network analysis 
provides us with a complementary approach focusing on 
relations (Wasserman & Faust 1994). In a setting such as 
this example, one useful metric is network connectivity. 
Connectivity is a network level metric that summarises the 
strength of connections in a network (Cramer et al 2016). 
High connectivity networks have more and/or stronger 
connections between their nodes compared to low connec-
tivity networks. In the psychopathology literature, this has 
led to proposal of the connectivity hypothesis, which states 
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Figure 3

Undirected network of 14 simulated binary shelter dog welfare variables. This network shows several characteristics embedded with-
in the layout which facilitates visual inspection (for more details on network visualisations, see Epskamp et al 2012). The network is 
constructed from logistic regression coefficients where each regression contains all other nodes as a predictor. Blue edges represent 
positive regression coefficients ≥ 0.5, and red edges represent negative regression coefficients ≤ –0.5. Grey edges denote coefficients < –0.5 
and < 0.5. Edge thickness represents size of the regression coefficient, which here range between –0.82 and 3.28. The layout is based on the 
Fruchterman and Reingold algorithm (Fruchterman & Reingold 1991) which places nodes that are more strongly connected closer together 
(Epskamp et al 2012), and node size is proportional to strength centrality such that nodes with greater strength centrality appear larger 
(Cramer et al 2010). NOV, does not approach novel object; uAG, aggressive behaviour present on approach of unknown person; BAR, 
vocalises for more than half of sampling time; NOI, displays fearful posturing upon sudden white noise; FRU, Persistent attempts for entire 
period of acute insolvable task; LAM, dog is lame; ARB, repetitive behaviour present; COP,  coprophagia present during sampling; ACT, active 
for more than half of sampling period; BCS, scores low or high on body condition score; APP, left more than half of breakfast meal; uFE, fearful 
posture on approach of unknown person; FEC, faecal inconsistency present; aFE, fearful posturing present during sampling in absence of people.  
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that highly connected networks are vulnerable to symptom 
spread and thus activation of a large range of symptoms, 
whereas low connectivity networks are more resilient 
(Cramer et al 2016; Borsboom 2017). This hypothesis has 
some support from group-level studies (for an overview, see 
Robinaugh et al 2020), computational models (Cramer et al 
2016), and individual temporal network models (Wichers et 
al 2016, 2020). This quantitative concept of resilience and 
vulnerability based on network connectivity has also been 
proposed more generally for a variety of complex adaptive 
networks (Scheffer et al 2018). Based on the variables 
included in the current example, and the way they are 
measured (see the legend to Figure 5), strong absolute 
connections between variables would be indicative of a 
compromised welfare compared to a lesser connected 
network. For the benefit of this example, we are therefore 
interested in testing the hypothesis that network connec-
tivity is different between the solitary condition compared 
to the group condition. 

We estimate the partial correlation network (Epskamp et al 
2018a), identifying edges that are statistically significantly 
different from 0 using Fisher Z transformations (Williams et 
al 2019; Williams & Rast 2020). The resulting network for 
both groups is shown in Figure 5.  
When inspecting the partial correlation networks generated 
from our simulated data, notable differences between the two 
groups are immediately visually apparent. The first striking 
difference is that the group-housed condition network (Figure 
5B) contains only two statistically significant partial correla-
tions (ACT–FEC and FEC–COG), and is comprised of 
smaller edge weights in general, and such a finding would 
suggest lower connectivity. Network comparison procedures 
are an active area of network methodology research and a 
number of approaches have now been developed (van 
Borkulo et al 2016; Haslbeck et al 2019a; Williams et al 
2020). Here, we demonstrate one such method, which is the 
permutation-based network comparison test developed by 
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Figure 4

Undirected binary variable networks of (A) baseline network prior to intervention, this is the same for the two simulations, (B) network after 
high centrality intervention on the NOV node, and (C) network after low centrality intervention on the ACT node. The nodes intervened 
on (NOV and ACT) in the two simulations are square-shaped. The edge weights remain constant in this simulation and are thus the same 
across all three networks. However, the probability of each node being active after intervention (number of time-points node active/total 
number of time-points) is represented by a yellow pie chart filling each node. A completely yellow-filled node represents that the node is 
always active (probability equals 1), and a completely white node represents that the node is always inactive (probability equals 0; seen in 
NOV and ACT which are constrained to being inactivated in the two respective intervention simulations).  
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van Borkulo et al (2016), implemented in the 
NetworkComparisonTest R package. In short, this method 
resamples from the data and randomly assigns group 
membership, re-estimates the network, calculates the 
network metrics of interest, and then repeats this process for 
a defined number of iterations — here we used 1,000. The 
network metric of interest obtained in the original sample can 
then be compared to the null distribution obtained by the 
permutations to obtain a P-value. We used this procedure on 
our simulated dataset to test the null hypothesis that there is 
no difference in global connectivity between the two groups’ 
networks. Second, one can also test whether there are differ-
ences in specific individual edge weights. Here, we tested 
only the edges that were identified as statistically significant 
in the original network estimation. This is an example of an 
exploratory analysis of edge weight differences. However, if 
a researcher specified expected differences a priori, then such 
hypotheses could be tested in a confirmatory manner using 
the network comparison test.  
This analysis indicates that the global network connectivity 
between the two groups is statistically significant with 
connectivity being greater in the solitary-housed condition 
(Solitary: 4.35, Group: 1.93, difference = 2.43; P < 0.001). 
We therefore reject the null hypothesis that the groups have 
the same network connectivity. The results of the individual 
edge weight comparisons are shown as a network in Figure 6. 

In our simulated experiment, based on the differences in 
network connectivity without differences in group means, 
we would infer that the solitary-housed mice have a more 
vulnerable welfare network system. Mice that present with 
compromised welfare on any one measure would be more 
likely to have a compromised score on another. For 
example, in this simulation, mice with high stereotypy 
levels in solitary, when compared with group, are more 
likely to spend less time in ambiguous arms, spend less time 
in proximity to novel objects and have a larger cortisol 
response to this novelty exposure, be generally more active 
in their cage, and have higher faecal cortisol levels. Such a 
cascade of events would be less pronounced in the group-
housed mice because the connectivity of the network is 
weaker. Further, consider the statistically significant edge 
weight difference between NOV-BLC. This edge weight is 
–0.39 in solitary mice, and –0.01 in group mice. 
Mechanistically, this edge would represent an acute cortisol 
stress response to novelty exposure. As such, in this simula-
tion, mice in the solitary condition which did not spend 
much time near the novel object, had a larger cortisol 
response to this test, compared to mice that spent little time 
near the object in the group condition. Given these differ-
ences, should one really conclude that there is no difference 
in welfare between the two groups? 
This simulated example demonstrates the additional insights 
that network analysis can bring to animal welfare inferences 
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Figure 5

Showing partial correlation networks for mice in two conditions from simulated data for (A) solitary-housed condition network and (B) group-
housed condition network. Blue edges represent statistically significant positive partial correlations, and red edges represent statistically significant 
negative partial correlations. Grey edges represent partial correlations that are not statistically significantly different from 0 after Fisher 
Z transformation (P ≥ 0.05). The magnitude of the partial correlation is shown numerically on each edge weight, as well as coded by 
the thickness of the edge. The edge thickness indicates higher absolute partial correlations, and the thickness is comparable between 
the two networks to aid visual comparison, that is, 0.33 in A is the same thickness as 0.33 in B (Epskamp et al 2012). Nodes are placed 
in a circle in the same order in each network to aid visual comparison, and therefore node position does not represent any particular 
property of the network structure. STY, overall stereotypy level; ACT, time spent active in home cage; WT, weight; FEC, faecal cortisol; 
BLC, blood cortisol sampled immediately after response to novel object test; COG, cognitive bias (time spent in ambiguous arms in 
radial maze task); NOV, novel object test (time spent in close proximity to novel object).  
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in experimental studies. That is, it shows how network 
analysis of relations can identify potentially important 
welfare differences between groups in spite of no mean 
differences. Network comparisons can, however, be used to 
answer all sorts of different questions relevant to animal 
welfare. We next turn to an example of how statistical 
network modelling can be useful for identifying differential 
and specific effects of stressors on components of welfare.  

Network models as a tool to identify specific 
direct associations between stressors and 
components of welfare 
In the human clinical psychology and psychiatry literature, 
network analysis has been used to explore how stressors are 
associated with particular symptoms. For example, spousal 
loss in the form of bereavement or marital breakdown, is 
primarily associated with the symptom of loneliness which, 
in turn, is associated with other depressive symptoms (Fried 
et al 2015; Burger et al 2020). Animal welfare science is 
often concerned with the effects of stressors on measures of 
welfare. Therefore, the approach just described lends itself 
quite intuitively to animal welfare applications. That is, it is 
logical that not all stressors have exactly the same effect, 
and that different measures (or components) of welfare are 
differentially affected depending on the particular type of 
stressor. To our knowledge, this has never been systemati-
cally investigated, and statistical network models that 
include the stressor(s) as a node(s) in the network are well 
suited to explore such differential effects.  

Consider the following simplified simulation representing a 
hypothetical study where a five-point Likert scale question-
naire is delivered to pet dog owners asking about seven compo-
nents of welfare (where higher scores indicate increased 
severity of the welfare component). Suppose we combine this 
with a question about a particular stressor, in this case, how 
strongly participants agree or disagree that they use aversive 
methods to train or manage their dog’s behaviour. An undi-
rected network model can be estimated from such data in 
which the edges represent partial correlation coefficients. This 
example highlights how specific welfare effects can be visu-
alised. In our simulation, the aversive techniques node is 
strongly conditionally associated specifically with aggressive 
behaviour toward owners and owner-perceived sleep distur-
bances, which are in turn associated with measures of other 
components of welfare. Networks such as these may reveal 
important information for managing welfare in the presence of 
a given stressor. In this example, if the data were real, one 
could hypothesise that minimising use of aversive techniques, 
and implementing interventions to improve sleep quality and to 
reduce aggressive behaviour toward owners, would be prefer-
able over alternatives that are more specific to other nodes. If 
this approach was extended to study a variety of different 
stressors, then we would better understand the differential 
effects on components of welfare that different stressors exert.  
In conclusion, the approach described above would not only aid 
in our understanding and conceptualisation of the specific 
welfare consequences of various stressors but may also help us 
to tailor interventions specific to the relevant stressor(s) present.  

Animal Welfare 2021, 30: 235-248 
doi:  10.7120/09627286.30.3.001

Figure 6

Network representation of individual edge weight differences between groups. In this network, an edge is present if the network comparison 
test identified a statistically significant (P ≤ 0.05) difference in the partial correlation between the solitary- and group-housed conditions. The 
number in the middle of each edge is the difference between the solitary-group partial correlation minus the corresponding group-housed 
condition partial correlation. The thickness of the edge is proportional to the size of the difference. 
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Discussion 
In this paper we have drawn inspiration from human psychi-
atry and psychology to introduce a network perspective on 
animal welfare. Specifically, we have (i) introduced the 
basis of a network theory of animal welfare, and (ii) 
presented examples of how statistical network modelling 
can be readily applied to animal welfare science.  
The network theory we have introduced proposes that 
welfare can be conceptualised as a network of mutual inter-
actions between cognitive, behavioural, and physiological 
components (Figure 1B). This is in contrast to a latent 
theory, in which indicator variables are caused by a latent 
variable of welfare state (Figure 1A). The network concep-
tualisation can be approximated using statistical network 
models of conditional dependencies among welfare-related 
response variables. At this point, however, it is useful to 
further clarify this difference between network theory, and 
network analysis (statistical network models). Network 
theory is a theoretical model that the ‘true’ data-generating 
mechanism involves mutual interactions within a network 
system, and network analysis is a statistical model 
describing the covariance structure of a given dataset 
(Epskamp et al 2018b; Haslbeck et al 2019b; Fried 2020). 
While the use of network modelling in human psychology 
and psychiatry proceeded, and was therefore largely 
motivated by, the development of network theory (Cramer 

et al 2010), fitting a statistical network model does not 
necessarily provide support for a given network theory 
(Haslbeck et al 2019b; van Bork et al 2019; Fried 2020). 
The practical applications of network analysis that we 
presented in this paper with simulated data are similarly 
motivated by the development of a network theory of 
animal welfare, but these statistical models can be estimated 
and analysed whether one subscribed to network theory or 
not. For example, network analysis is a useful tool if one is 
simply interested in predictive relationships between 
variables (Epskamp et al 2018b; Epskamp & Fried 2018). 
However, we envisage that as the network perspective 
develops there will be a strong relationship between 
network theory and network analysis. That is, network theo-
retical models of animal welfare problems can be 
developed, and the predictions from these models can be 
specifically tested with statistical network models estimated 
on empirical data (Haslbeck et al 2019b). While these 
distinctions are important topics that will be required to be 
fleshed out in detail as the network theory of animal welfare 
is developed, a complete treatment of these distinctions is 
beyond the scope of the current paper. We direct readers to 
recent papers in the human psychology literature for more 
detailed discussions (Haslbeck et al 2019b; Fried 2020).  
The three examples of applications of network modelling 
we presented in this paper included: (i) identifying poten-

© 2021 Universities Federation for Animal Welfare

Figure 7

Partial correlation network from simulated pet dog questionnaire data. Blue edges represent statistically significant positive partial 
correlations, and grey edges represent partial correlations not significantly different from 0 using Z tests. The magnitude of the partial 
correlation appears as a number in the middle of the corresponding edge and determines the thickness of each edge. The square node with 
grey filling represents the stressor of interest, and the circle white-filled nodes represent different components of welfare. As these 
are simulated data no questions were actually administered to generate these data but the following is an example of the sorts of questions 
that the nodes could represent: AVE, ‘I use verbal and/or physical punishment to train my dog or manage their behaviour’; SLE, ‘My dog does 
not sleep well overnight nor for periods during the day’; AGG, ‘My dog can be aggressive towards me and other household members’; PLA, 
‘My dog is not very playful’; NOV, ‘My dog can be worried by new objects, sounds, or places’; APP, ‘My dog has a poor appetite’; STO, ‘My dog 
regularly has loose stools’; EXP, ‘My dog does little exploring and sniffing on walks.’ 
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tially important intervention targets; (ii) comparing 
networks between experimental groups to aid welfare 
inferences; and (iii) identifying differential and specific 
effects of stressors on components of welfare. It should be 
noted that this is not an exhaustive list of potential appli-
cations. We decided to present these three examples for a 
number of reasons. The first is that they demonstrate 
novel and diverse applications of network modelling to 
animal welfare science. That is, they provide examples of 
applications across types of research and species, and 
each example demonstrates how different network 
metrics can be useful for different aspects of animal 
welfare research. Secondly, we wanted to provide 
examples of realistic studies that could be conducted and 
implemented in the current state of progression of the 
field. In part, we hope that in reading this paper, 
researchers are inspired to develop their own novel appli-
cations to problems within their given specialities or areas 
of interest that network analysis may be well suited to 
addressing. For example, an approach similar to the last 
example on stressors could be adopted to identify 
measures that are specifically and directly related to 
choices animals make in preference-testing paradigms. 
Network analysis may also be well suited to examine the 
multiple measures that are often taken in single welfare-
related tests, for example, open field test and elevated 
plus maze. More generally, network analysis can be used 
to study components of emotion (Lange et al 2020), to 
uncover mechanisms of change in interventions (Blanken 
et al 2019), to examine links between welfare and 
genetics (for example, in human psychosis, see Isvoranu 
et al 2020), to identify early warning signals that may 
precede and predict a change in welfare state (for human 
mental health examples, see van de Leemput et al 2014; 
Wichers et al 2016, 2020), to develop welfare assessment 
protocols originating from a network perspective (for the 
human psychometric perspective, see Christensen et al 
2020), and to test predictions from formal quantitative 
models (as described in Haslbeck et al 2019b). 
It should be noted that in this paper we have focused our 
examples on undirected networks. This is primarily because 
we believe that undirected networks estimated from cross-
sectional data is, at present, the most realistic application. It 
is, however, important to note that there are a large variety 
of different types of network models, which may all have 
uses in animal welfare science. For example, one can use 
intensive time-series data (for individuals or groups) to 
generate directed networks, in which the direction of asso-
ciations can be identified (Epskamp et al 2018b; Haslbeck 
& Waldorp 2020). This provides additional information on 
dynamics, that is, the direction of associations, and is thus a 
closer representation of the causal dynamics that network 
theory proposes. However, while directed network models 
provide this additional information, they present practical 
challenges on how to realistically collect such data. 
Intensive time-series data of welfare-related response 

variables would present significant time and financial 
investment. Even if such practical constraints were 
overcome, many welfare measures would not be suitable for 
repeat sampling due to learning effects. In our view, 
directed network models will be particularly useful and 
feasible to analyse automated high throughput data collec-
tion when this becomes more feasible in animal welfare 
research. Indeed, there are significant advances being made 
in technology involving sensors to collect data from animals 
automatically (Neethirajan 2020), and in the near future, 
large-scale time series data collection may make directed 
network models possible. 
We have also avoided too many technical details of the 
statistical procedures underlying network estimation and 
analysis. That is, we did not directly discuss the multi-
variate or univariate approaches to estimating network 
structures, nor did we discuss the large variety of model 
selection routines that are available. These are compli-
cated topics that are best dealt with separately so as not to 
detract from the focus of the current piece of work, which 
is on the theoretical and practical applications of the 
approach. Generally speaking, there are a large number of 
undirected network estimation and analysis packages 
available for the R programming language (Epskamp et al 
2012, 2018a; van Borkulo et al 2014; Epskamp 2015; 
Williams et al 2019; Haslbeck & Waldorp 2020; Williams 
& Rast 2020), which only require a basic working 
knowledge of R to utilise. Readers may find the following 
tutorials in the human psychology literature useful in this 
regard (Costantini et al 2015; Dalege et al 2017; Epskamp 
et al 2018a; Epskamp & Fried 2018).  
It is also important to note that we focused our discussion 
primarily on components of welfare that reflect compro-
mised welfare. However, there is a growing recognition 
that welfare is not just about avoiding negative states but 
also about promoting positive experiences (Mellor 2012, 
2016). While we have not directly discussed this here, it 
should be noted that the same general principles still 
apply to the study of components of ‘positive’ welfare. 
However, the interpretations of such models, and the 
network metrics obtained may be different. Consider the 
network metric of global connectivity. Whereas high 
connectivity between ‘negative’ welfare nodes is likely to 
indicate vulnerability, high connectivity between 
‘positive’ welfare nodes is likely to represent a good thing 
for welfare. Further, if positive and negative welfare 
components are included in the same network model, this 
may identify negative conditional dependence relation-
ships between them. Such information may be important 
because these relationships could indicate that positive 
nodes can inhibit the activity of negative welfare compo-
nents (or vice versa). Certainly, moving forward, network 
analysis will be well suited to study the direct interactions 
between negative and positive components of welfare. 
There are some inherent limitations of the approach we have 
introduced. From a practical perspective, perhaps the most 
noteworthy is related to statistical power and sample size. 
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Network models involve estimation of a large number of 
parameters which increases drastically with the size of the 
network (Epskamp et al 2018a). Therefore, the sample sizes 
typically required to obtain stable and accurate networks, 
and confidently identify non-zero conditional dependencies, 
can be large (Epskamp et al 2018a). Further, statistically 
speaking, sample size requirements in network-based studies 
is reported to not be a trivial problem, and there is therefore 
a lack of specific recommendations on sample size calcula-
tion in the network literature (Fried & Cramer 2017; 
Epskamp et al 2018a; Epskamp & Fried 2018), although 
work is underway in this area (Epskamp & Fried 2018; Lafit 
et al 2021). Practically speaking, this means that cross-
sectional undirected network analysis is not feasible for 
small sampled studies involving, say, 20 animals. However, 
while exploratory statistical network modelling is not 
possible in small studies, this does not necessarily negate a 
role for network theory in such cases. A researcher may want 
to test a specific conditional interaction between a small 
number of variables based on predictions from a theoretical 
model. In such cases, the network approach has still been 
useful to derive a prediction (in the form of theory develop-
ment), and provided that prediction does not involve neces-
sarily having to estimate a large network, but that say, it 
predicts a conditional independency between two variables 
when conditioned on a third, then such a test may be feasible 
in smaller studies.  

Animal welfare implications 
The work we have presented in this paper has implications 
for both theoretical developments and applied aspects of 
animal welfare. That is, a network approach to animal 
welfare science holds promise for developing our under-
standing of the concept of animal welfare in the form of 
network theory. Further, the application of statistical network 
modelling has potential to test theoretical predictions, as well 
as produce immediately practical and meaningful informa-
tion to improve the welfare of animals. This paper has only 
introduced the basis of the network perspective, and our 
primary aim is to stimulate discussion as the ideas and 
approaches are refined.  
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