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Centrifugal instability in a weakly magnetized
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A two-fluid model is developed to study the stability of weakly magnetized rotating
plasma columns. Previous works have shown that rotating plasma columns are prone to
centrifugal flute modes. Most of these models are based on the low-frequency assumption
which is valid when the instability frequency and the plasma azimuthal frequency are
small compared with the ion cyclotron frequency. This assumption is challenged in many
laboratory plasma devices, including weakly magnetized plasma columns. A radially
global dispersion relation relaxing the low-frequency approximation and applicable in
these devices is derived. The validity domain of the low-frequency approximation is
discussed. In addition, the impact of the radial boundary on the linear stability is
investigated and comparison with results obtained in the radially local approximation are
performed.
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1. Introduction

A canonical configuration for the study of weakly magnetized plasmas is a cylindrical
plasma column immersed in an axial magnetic field. Here, weakly magnetized is
understood as a plasma radius of typically 3 to 30 ion Larmor radii. The presence of a
radial electric field Er or a radial gradient of the plasma pressure perpendicular to the
magnetic field leads to flows in the azimuthal direction. These flows, when combined
with plasma inhomogeneities (density or temperature gradients), give rise to various
instabilities resulting in turbulence, the appearance of coherent structures and anomalous
transport which generally affect the performance of the device.

Understanding the formation of large-scale structures in weakly magnetized plasmas
is of particular interest for both fundamental research and technological applications like
magnetron sources (Abolmasov 2012), Penning discharges (Ellison, Raitses & Fisch 2012)
and negative ion sources. Rotating coherent structures have also been observed in Hall
thrusters (Sekerak et al. 2015; Parker, Raitses & Fisch 2010) where they are called ‘spokes’
and limit the performance of the device.

In the past decades, many models have been proposed to study instabilities in E × B
plasmas, where B is the magnetic field (Rosenbluth, Krall & Rostoker 1962; Chen 1966;
Stringer & Schmidt 1967; Lehnert 1971; Perkins & Jassby 1971; Jassby 1972; Ilić et al.
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1973; Rognlien 1973; Smolyakov et al. 2016; Gueroult, Rax & Fisch 2017). Rosenbluth
et al. (1962) have explained the stability of a rotating cylindrical plasma column in the
frame of kinetic theory, valid for a low β plasma, where β is the ratio of plasma pressure to
the magnetic pressure, for kρi < 1 and ω/ωci ≈ (kρi)

2, where ω is the plasma perturbation
frequency, ωci is the ion-cyclotron frequency, k is the wave vector of the perturbation
and ρi is the ion Larmor radius. Terms of the order of (kρi)

2 have been retained and
higher-order terms have been neglected. Rotating plasma columns were shown to be prone
to the centrifugal instability that stems from the difference between the azimuthal velocity
of ions and electrons caused by inertia.

Chen (1966) verified the results of Rosenbluth et al. (1962) using a two-fluid model,
still, however, under the low-frequency assumption (LFA) i.e. ωph � ωci, where ωph is
the Doppler shifted frequency given by ωph = ω − mω0. Here, m is the azimuthal mode
number and ω0 is the equilibrium flow frequency of ions. In this treatment, both the mode
frequency and equilibrium flow frequency are ordered small, with ωph/ωci = O(ρ2), where
ρ � 1 is the magnetization parameter defined as ρ = ρi/l, with l as the scale length of
macroscopic gradients. Chen studied the influence of finite Larmor radius and magnetic
shear on the linear stability. He also extended the model to the regime of fast rotation by
assuming ωph/ωci = O(ρ).

As an extension of the above-referenced work, Rognlien (1973) gave analytical and
numerical solutions of low-frequency electrostatic waves (ω � ωci) in a radially bounded
plasma column for lower azimuthal mode numbers (m = 1, 2) for uniform as well as
non-uniform rotation.

Most of the models formulated so far to study E × B plasmas are based on the LFA
(ωph � ωci) and therefore not suitable for weakly magnetized linear plasma devices such
as MISTRAL (Jaeger 2010), RAID (Furno et al. 2017), and VKP (Plihon et al. 2014)
where the frequency values, ω and ω0, are typically comparable to the ion-cyclotron
frequency ωci.

Recently, Gueroult et al. (2017) have studied the centrifugal instability for an E × B
plasma column in the regime of fast rotation (|ω0 − ω0e|/ωci ≈ O(1), where ω0e is the
equilibrium flow frequency of electrons) with no constraint on the perturbation frequency
ω. The analysis was performed in the radially local limit and focused on the case of
a radially outward electric field, Er > 0. To the authors’ knowledge, no attempt has
been made to go beyond the LFA in a radially global model, including the influence
of boundary conditions. This is the purpose of the present work. We have verified and
extended the results of Chen (1966) and Gueroult et al. (2017) to obtain a radially
global solution valid at arbitrary frequency. The differences between the radially local
and global solutions, with and without LFA, have been explored to clarify the effect
of these assumptions. Throughout the paper, the example of MISTRAL is used to
highlight typical parameters encountered in linear plasma columns. No direct comparison
with experimental measurements is attempted yet since this still requires further model
developments.

The plan of the paper is as follows: in § 2, the two-fluid model equations and
assumptions are presented. In § 3, the equilibrium flow frequency in the cylindrical
geometry is derived. Section 4 details the dispersion relation for the radially global case
and in the local limit with and without LFA. In § 5, the linear stability is discussed to
highlight the regimes where the instability can be found. In § 6, a comparison between
local and global growth rates is made, and in § 7, the summary and conclusions are
presented.
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2. Model equations

We consider a cylindrical plasma bounded radially and immersed in a homogeneous
magnetic field such that B = Bêz (see figure 1). The model is based on the continuity and
momentum equations for electrons and ions

∂nj

∂t
+ ∇ · (njvj) = 0, (2.1)

nimi

(
∂vi

∂t
+ vi · ∇vi

)
= nie(−∇φ + vi × B) − Ti∇ni − miniνinvi, (2.2)

0 = −ene(−∇φ + ve × B) − ∇(neTe), (2.3)

with

∇ = ∂

∂r
êr + 1

r
∂

∂θ
êθ + ∂

∂z
êz, (2.4)

where êr, êθ and êz are the unit vectors in r, θ and z directions, respectively. Here, j = i, e
denotes either ions or electrons, nj is the number density, vj is the velocity of the species,
mj is the mass of the species, Ti,e is the species temperature, φ is the electric potential and
νin is the ion–neutral collision frequency. The following assumptions are used:

• Electrostatic approximation, ∂B/∂t = 0.
• Quasi-neutrality, ni = ne.
• No particle source.
• No variations in the axial direction (k‖ = 0).
• Radially uniform ion temperature i.e. Ti ≈ 0.1 eV.
• No Gyroviscosity (∇ · πi = 0, ∇ · πe = 0).
• Electron inertia neglected as a consequence of the small mass of electrons i.e.

me/mi � 1.
• Electron collisions with ions and neutrals neglected. This is, for instance, relevant

for the regimes met in MISTRAL (Annaratone et al. 2011) where νei, νen/ωce � 1.

The plasma density, flow and electric potential are written as the sum of a
time-independent equilibrium part denoted by subscript 0 and a fluctuating part denoted
by superscript ∼ as n = n0 + ñ, v = v0 + ṽ and φ = φ0 + φ̃, where the fluctuating part
has the following form:

ñ = n1(r) exp[i(mθ − ωt)]
ṽ = v1(r) exp[i(mθ − ωt)]

φ̃ = φ1(r) exp[i(mθ − ωt)]

⎫⎪⎬
⎪⎭ . (2.5)

Here, n0 is the equilibrium density of ions or electrons, φ0 is the equilibrium electric
potential and v0 is the equilibrium flow. For the fluctuating part, n1 and φ1 give the
perturbation amplitudes of the density and potential, respectively, v1(r) = vr1 êr + vθ1 êθ ,
vr1 and vθ1 are the radial and azimuthal components of the perturbed velocity, respectively,
m is the azimuthal mode number and ω = ωr + iγ , where ωr is the mode frequency and
γ is the growth rate.

The equilibrium density (n0) and plasma potential (φ0) are assumed to have Gaussian
and parabolic profiles, respectively. This is compatible with typical profiles measured in
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FIGURE 1. Cylindrical coordinate system and direction of rotation for ion-cyclotron frequency
ωci, positive E × B frequency (ωE0 > 0) and positive diamagnetic frequency (ω∗0 > 0).

MISTRAL (see the Appendix)

n0(r) = n00 exp
(

−r2

r2
0

)
; φ0 = p1r2 + p2, (2.6a,b)

where n00, p1 and p2 are constants. Here, r is the radial coordinate and r0 is the width
of the Gaussian used to parametrize the density profile; r0 characterizes how fast the
plasma density decays to zero when moving radially outward. These equilibrium profiles
are consistent with the rigid body rotation assumption used for the equilibrium, see § 3.

3. Equilibrium flow

In this section, we derive the expression for the ion equilibrium flow as a function of
the E × B flow and the diamagnetic flow under the assumption of rigid body rotation. The
equilibrium flow velocity for ions is first split into radial and azimuthal components

vi0(r) = vir0 êr + viθ0 êθ , (3.1)

and rigid body rotation is assumed such that viθ0 = rω0 with ω′
0 = ω′′

0 = 0, where ′

represents ∂/∂r and ′′ represents ∂2/∂r2. The ion inertial term vi0 · ∇vi0 entering (2.2)
becomes

(vi0 · ∇)vi0 =
(

vir0

∂vir0

∂r
− rω2

0

)
êr + 2ω0vir0 êθ . (3.2)

Substituting equations (3.1) and (3.2) into the ion momentum equation ((2.2)), assuming
∂vi0/∂t = 0, taking the cross-product with B and then projecting along êr, one gets

vir0 = −νinrω0

ωci + 2ω0
. (3.3)

The equation above is normalized by dividing vir0 with vthi = √
Ti/mi; r with

ρi = mvthi/eB; νin, ω0 with ωci = eB/mi where the normalized quantities are noted with
an overbar, see table 1,

v̄ir0 = −ν̄inr̄ω̄0

1 + 2ω̄0
, (3.4)

which is the equilibrium flow of ions in the radial direction.

https://doi.org/10.1017/S002237782300051X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300051X


Centrifugal instability 5

Variable Notation Definition

Normalized frequencies ω̄, ω̄0 ω/ωci, ω0/ωciω/ωci, ω0/ωci
Normalized lengths r̄, 1/L̄n r/ρi, ρi/Ln
Normalized perturbed density n̄1 n1/n0
Normalized perturbed potential φ̄1 eφ1/Te0ref
Normalized velocities v̄i,e vi,e/vthi

TABLE 1. Normalized parameters and their definitions. Here, Te0ref is the reference value of the
electron temperature.

Using (3.3) in (2.2) and projecting along êθ , the azimuthal flow frequency ω0 = viθ0/r
is given by(

νinω0

2ω0 + ωci

)2

− ω2
0 = −ωciωE0 + ωciω0 − ωciω∗0 +

(
ν2

inω0

2ω0 + ωci

)
. (3.5)

Here, ωE0 is the E × B drift frequency

ωE0 = B × ∇φ0

rB2
· êθ = φ′

0

rB
, (3.6)

and ω∗0 is the ion diamagnetic drift frequency

ω∗0 = Ti

en0B
B × ∇n0

rB
· êθ = Ti

erB
n′

0

n0
(3.7)

= − Ti

erB
1
Ln

, (3.8)

where 1/Ln = −n′
0/n0 = 2r/r2

0 is the logarithmic density gradient. It should be noted that
ωE0 and ω∗0 are independent of r because of the choice of n0 and φ0 given by (2.6a,b).

The rotation direction for positive E × B and diamagnetic frequency is illustrated in
figure 1. Azimuthal flows are counted positive in the direction of increasing θ .

The normalized form of (3.5) is

4
(

ω̄0 + 1
2

)4

− (1 − ν̄2
in + 4(ω̄E0 + ω̄∗0))

(
ω̄0 + 1

2

)2

− ν̄2
in

4
= 0, (3.9)

which is a fourth-order polynomial in ω̄0 whose solutions are given by

ω̄0 = ± 1
2

√
1
2 [b +

√
b2 + 4ν̄2

in] − 1
2 , (3.10)

where b = 1 + 4(ω̄∗0 + ω̄E0) − ν̄2
in. Equation (3.9) has four roots. Only two roots will

be considered since the other two are imaginary and the equilibrium flow is undefined.
Equation (3.10) gives the remaining two roots. The branch for which ω̄0 increases with
increasing ω̄E0 + ω̄∗0 is the slow rotation mode and the one that decreases with increasing
ω̄E0 + ω̄∗0 is the fast rotation mode (Rax et al. 2015).

The normalized equilibrium flow ω̄0 is shown in figure 2 as a function of the sum of the
normalized E × B and diamagnetic flows, ω̄E0 + ω̄∗0, for different values of ν̄in.
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FIGURE 2. Normalized equilibrium flow frequency (ω0/ωci) as a function of normalized E × B
drift frequency (ωE0/ωci) and ion diamagnetic drift frequency (ω∗0/ωci) for different values of
normalized ion–neutral collision frequency (νin/ωci). The black dashed line presents the stability
limit for ν̄in = 0. The red dashed line is the diagonal.

For zero collisionality i.e. ν̄in = 0, (3.9) reduces to

ω̄2
0 + ω̄0 − (ω̄E0 + ω̄∗0) = 0, (3.11)

and the equilibrium flow ω̄0 is given by (Chen 1966; Jassby 1972; Gueroult et al. 2017)

ω̄0 = −1 ± √
1 + 4(ω̄E0 + ω̄∗0)

2
. (3.12)

Equation (3.12) shows that, for the equilibrium to exist at ν̄in = 0, the following condition
should be satisfied:

ω̄E0 + ω̄∗0 > − 1
4 . (3.13)

For finite collisionality, ω̄E0 + ω̄∗0 > −1/4 is no longer required for the equilibrium to
exist. From figure 2, it is seen that collisions increase the angular frequency of the fast
rotation mode and decrease the angular frequency of the slow rotation mode. A more
detailed discussion of collisional and non-collisional equilibrium flow can be found in
Rax et al. (2015). Turning now to electrons and writing the equilibrium flow velocity as

ve0 = ver0 êr + veθ0 êθ , (3.14)

(2.3) is solved directly to get

v̄er0 = 0; v̄eθ0 = r̄ω̄0e and ω̄0e = ω̄E0 + ω̄∗e, (3.15a–c)

where ω̄0e is the electron equilibrium flow frequency and ω̄∗e is the electron diamagnetic
drift frequency ω∗e normalized to the ion-cyclotron frequency, with

ω∗e = − 1
en0B

B × ∇(n0Te0)

rB
· êθ . (3.16)

After deriving the equilibrium flow, the next section will focus on the linear stability
of the plasma. Finite ion–neutral collisions (and ionization sources) result in a finite
radial equilibrium flow, which adds many contributions to the dispersion relation. In the
following, we will focus on the collisionless case and assume ν̄in = 0.
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4. Dispersion relation

To proceed with the derivation of the dispersion relation, we first linearize the model
equations and then use the momentum equations, (2.2) and (2.3), to express the ion and
electron flow in the continuity equation. The system is closed by invoking quasi-neutrality.
From the electron momentum equation, (2.3), the electron flow is written in the customary
form

ve = b × ∇φ

B
+ 1

ene

b × ∇(neTe)

B
. (4.1)

When B is homogeneous and straight (linear plasma column), for any function A, we have

∇ · (b × ∇A) = 0. (4.2)

Therefore, on multiplying equation (4.1) with ne and taking the divergence on both sides

∇ · (neve) = b × ∇φ

B
· ∇ne, (4.3)

which upon linearization yields

∇ · (neve)|1 = im
rB

[−φ1n′
0 + φ′

0n1] (4.4)

= −im
φ1

rB
n′

0 + imωE0n1. (4.5)

Combining equation (4.5) and the electron continuity equation ((2.1)), one obtains the
relationship between perturbed density (n1) and perturbed potential (φ1)

n1

n0
= m

rLn

1
ω − mωE0

φ1

B
. (4.6)

Normalizing length to ion Larmor radius (ρi) and frequencies to the ion-cyclotron
frequency (ωci), the normalized form of the above equation is

n̄1 = m
r̄L̄n

1
ω̄ − mω̄E0

τ φ̄1, (4.7)

where τ = Te0ref/Tio with Te0ref , the reference value of the electron temperature. It should
be noted that the radial variation of the electron temperature is retained here but,since the
diamagnetic flux is divergence free ((4.1)–(4.3)), it does not enter the continuity equation.
The relation between the perturbed density of electrons and perturbed potential given by
(4.7) is therefore identical to that of Chen (1966), Rognlien (1973) and Gueroult et al.
(2017), where the electron diamagnetic flow was neglected.
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Turning now to ions, the linearized momentum equation writes

−iωvi1 + (vi0 · ∇)vi1 + (vi1 · ∇)vi0 = e
mi

[−∇φ + vi1 × B] − Ti

mi
∇n1

no
. (4.8)

For a background rigid body rotation, vi0 = rω0êθ , the inertial terms can be written as

(vi0 · ∇)vi1 = imω0vi1 − ω0vi1 × b, (4.9)

and

(vi1 · ∇)vi0 = vir1
∂vi0

∂r
+ viθ1

r
∂vi0

∂θ
= −ω0vi1 × b. (4.10)

When included in the linearized ion momentum equation, (4.8), it yields

−i(ω − mω0)vi1 = −ωci

B
∇φ + (ωci + 2ω0)vi1 × b − ωciTi

eB
∇n1

no
. (4.11)

The background flow enters in the Doppler shifted frequency, ω − mω0, on the left-hand
side and in the linearized Coriolis force, Fco = 2mivi1 × ω0b, on the right-hand side.

Upon normalization, we get

−i(ω̄ − mω̄0)v̄i1 = (1 + 2ω̄0)v̄i1 × b − ∇Φ1. (4.12)

Writing, C = 1 + 2ω̄0, the factor by which the Laplace force is modified due to the inertial
force, ω̄ph = ω̄ − mω̄0, and the normalized Doppler shifted frequency and combining the
perturbed density and potential terms into Φ1 = n̄1 + τ φ̄1, the linearized ion momentum
equation then writes

−iω̄phv̄i1 = −∇Φ1 + Cv̄i1 × b. (4.13)

Taking first the cross-product of (4.13) with b and using again (4.13) to replace vi1 × b in
that new equation, we get

v̄i1 = C
C2 − ω̄2

ph

[
b × ∇Φ1 + i

ω̄ph

C
∇Φ1

]
. (4.14)

The first term in the brackets is the combination of the perturbed E × B and diamagnetic
flows. The second one is the polarization flow. Inertial effects are included in the factor
C. The polarization flow matters when the mode frequency ω is comparable to ωci, which
is precisely the regime of interest here. Note that the polarization flow makes the plasma
incompressible form (∇ · v̄i1 = 0).

The final step needed before obtaining the dispersion relation is to compute the
linearized divergence of the ion particle flux

∇ · (niv̄i)|1 = n0∇ · v̄i1 + v̄i1 · ∇n0 + v̄0 · ∇n1. (4.15)

These terms are given by

n0∇ · v̄i1 = n0
iω̄ph

C2 − ω̄2
ph

∇2Φ1, (4.16)

v̄i1 · ∇n0 = C
C2 − ω̄2

ph

[
− im

r̄
Φ1n′

0 + i
ω̄ph

C
Φ ′

1n′
0

]
, (4.17)

v̄0 · ∇n1 = imω̄0n1, (4.18)

where ∇2Φ1 = Φ ′′
1 + Φ ′

1/r − m2/r2Φ1.
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Combining quasi-neutrality, ne = ni, and the continuity equations yields

∇ · (neve)|1 = ∇ · (nivi)|1, (4.19)

which implies

m
r̄

1
L̄n

τ φ̄1 + mω̄E0n̄1 = C
C2 − ω̄2

ph

[
m
r̄

1
L̄n

Φ1 − ω̄ph

C
1
L̄n

Φ ′
1 + ω̄ph

C
∇2Φ1

]
+ mω̄0n̄1. (4.20)

Now, using the electron continuity equation, (4.7), to express n̄1 as a function of φ̄1 in
Φ1 = n̄1 + τ φ̄1, we get

Φ1 = (1 + α∗)τ φ̄1, (4.21)

with

α∗ = − mω̄∗0

ω̄ph − m(ω̄E0 − ω̄0)
. (4.22)

Note that, when the ion pressure gradient is neglected in the ion momentum equation
(Ti = 0), we get α∗ = 0 and Φ1 = τ φ̄1.

Using (4.21) to express τ φ̄1 and n̄1 as a function of Φ1 and recalling that, from the
equation dictating the equilibrium flow, ω̄0 + ω̄2

0 = ω̄∗0 + ω̄E0, (4.20) can be written as

Φ ′′
1 +

[
1
r̄

− 1
L̄n

]
Φ ′

1 − m2

r̄2
Φ1 + 1

r̄L̄n
NΦ1 = 0, (4.23)

where

N = m

[
C

ω̄ph
− C2 − ω̄2

ph

ω̄ph − mω̄2
0

]
. (4.24)

Equations (4.23) and (4.24) provide an extension of the model derived in Chen (1966) for
arbitrary frequency values but in the limit of vanishing gyro-viscosity. The low-frequency
expansion involved in Chen (1966) consists in approximating C2 − ω̄2

ph ∼ C2. In this limit

N = m
[

C
ω̄ph

− C2

ω̄ph − mω̄2
0

]
, (4.25)

and one exactly recovers (25) in Chen (1966) for ∇ · πi = 0.
Note that N is radially constant because of the assumption of rigid body rotation. The

differential equation (4.23) can be solved by the method used in Rosenbluth et al. (1962),
Chen (1966) and Rognlien (1973) by exploiting the change of variables

z = r2/r2
0, (4.26)

where r0 is the width of the Gaussian used to parametrize the density profile defined by
(2.6a,b), and enters (4.23) through 1/Ln = 2r/r2

0, combined with

Φ1 = z−1/2 ez/2W(z), (4.27)

to obtain Whittaker’s equation (Whittaker & Watson 1966)

d2W
dz2

+
{
−1

4
+ N + 1

2z
+ 1 − m2

4z2

}
W = 0. (4.28)
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(a) (b)

FIGURE 3. Values of N corresponding to the first zero of Kummer’s function for different values
of Z = r2

b/r2
0. The solid line denotes the values evaluated numerically and the dashed line (−−)

denotes the asymptotic values.

The non-singular solution of this equation is given by,

WN,m(z) = z(m+1)/2 e−z/2F
(

m − N
2

, 1 + 2m; z
)

, (4.29)

where F((m − N)/2, 1 + 2m; z) is the confluent hyper-geometric function of the first
kind known as Kummer’s function. Imposing the boundary condition Φ(Z) = 0, with
Z = r2

b/r2
0 (where rb is the outer radial boundary of the cylindrical vessel), fully determines

the possible values of N, which for different mode numbers m are evaluated from the
zeros of the Kummer function F((m − N)/2, 1 + 2m; Z). These zeros can be evaluated
numerically. Alternatively, the asymptotic values of N (Z → ∞) are N = m + 2n, where
n = 0, 1, 2, 3, . . . is the radial mode number (Rosenbluth et al. 1962; Chen 1966). The
radial mode number n simply indicates which zero of F we are referring to; e.g. n = 0
implies the first value of N at which the function F goes to zero, n = 1 implies the second
value of N at which the function F goes to zero and so on. In figure 3, the numerical
solutions for N, obtained using the whitm function in the Python library mpmath, are
compared with the asymptotic solutions for n = 0. Convergence is reached at Z > 6 for
m = 1, but higher Z values are required at high m. For practical applications, such as
in MISTRAL where rb = 10cm and r0 ≈ 3 cm, it is, therefore, preferable to use the
numerical solution. In the following discussion, we will only use the values of N evaluated
numerically.

Note that, for a given radial mode number n, the value of N and the eigenfunction
shape only depend on the azimuthal mode number m and the value of Z, which represents
the ratio of the cylinder radius to the plasma radius. The eigenfunctions are therefore
independent of the background flow ω̄0. Eigenfunctions obtained for m = 1, 2, 5 and 10
for different Z values, including the one of MISTRAL (Z ≈ 10.8), are shown in figure 4.
The solutions of (4.24) are purely real, therefore, there is no radial variation of the phase
of the eigenfunctions.

Once N is known, rearranging (4.24) gives the cubic dispersion relation

ω̄3
ph − N

m
ω̄2

ph + (Nω̄2
0 − 2Cω̄0)ω̄ph − mCω̄2

0 = 0, (4.30)

from which the mode growth rate and frequency can be computed.
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FIGURE 4. Eigenfunction Φ as a function of r̄/r̄b for m = 1, 2, 5 and 10. The solid lines
represent the case when Z = 10.8 (for MISTRAL) and the dashed lines represent the case when
Z = 6.9.

If the LFA is applied i.e. if C2 − ω̄2
ph ≈ C2, the equation above becomes

N
m

ω̄2
ph − (Nω̄2

0 − 2Cω̄0)ω̄ph + mCω̄2
0 = 0, (4.31)

which is exactly equivalent to (30) in Chen (1966) if the terms with 1/r2
0 entering because

of the gyro-viscosity tensor are dropped.

4.1. Local limit
To make the link with previous work, e.g. Chen (1966) and Gueroult et al. (2017), the local
limit is obtained by assuming Φ ′

1 = 0, Φ ′′
1 = 0 in (4.23)

ω̄3
ph − mr̄2

0

2r̄2
ω̄2

ph +
(

−2Cω̄0 + m2ω̄2
0

r̄2
0

2r̄2

)
ω̄ph − mCω̄2

0 = 0. (4.32)

This is the same as the dispersion relation obtained by equating (17a) and (17b) in
Gueroult et al. (2017). Note that, in Gueroult et al. (2017), the diamagnetic drift of
the ions was neglected. It is kept here but only enters the equation by modifying the
equilibrium azimuthal flow ω̄0. Various asymptotic regimes and stability limits regarding
the dispersion relation ((4.32)) have been discussed in Gueroult et al. (2017) for −0.25 ≤
ωE0 ≤ 0. We extend this discussion to −0.5 ≤ ω0 ≤ 1.5 in § 5.

Using the LFA in (4.32), leads to the following dispersion relation:

ω̄2
ph +

(
4r̄2Cω̄0

mr̄2
0

− mω̄2
0

)
ω̄ph + 2r̄2Cω̄2

0

r̄2
0

= 0. (4.33)

5. Linear stability

In this section, the linear stability and the parametric dependency of the growth rate are
discussed for the global dispersion relation derived in § 4. We first examine the role of the
radial mode number n in linear stability.

Figure 5 represents the radial mode number n which yields the largest growth rate
evaluated using the global dispersion relation ((4.30)) for a given mode number m as
a function of Z and ω0/ωci. For m = 1, 2 and for the given range of ω0/ωci, the radial
mode number n = 0 has the largest growth rate for Z < 3. For Z > 3, higher radial mode
numbers are progressively dominant as ω̄0 and Z increases. For m = 10, the lowest radial
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(a) (b)

(c)

FIGURE 5. Radial mode number n corresponding to the largest growth rate γ̄ as a function of
Z = r̄2

b/r̄2
0 and ω0/ωci. The colour bar represents the radial mode number n.

mode number n = 0 corresponds to the largest growth rate when −0.3 ≤ ω0/ωci ≤ 0.3.
For large values of |ω̄0|, the radial mode number n that gives the largest growth rate also
increases with |ω̄0| and Z. When the growth rate is evaluated using the global dispersion
relation with LFA ((4.31)), the lowest radial mode number n = 0 has the largest growth
rate. In the following discussion, we will focus on the radial mode number, n = 0.

The most unstable mode obtained from the global dispersion relation without ((4.30))
and with LFA ((4.31)) for mode number n = 0 and m = 1, 2and10 is shown in figure 6 as
a function of ω0/ωci and Z. The two models predict the growth rate to increase with |ω̄0|,
with an asymmetry with respect to ω̄0, originating from the inertial term in the effective
magnetization factor C. The difference between two models increases with increasing m
and equilibrium flow frequency ω̄0. For m = 10, the region of higher growth rate, as well
as the stability region, are radically different with and without LFA. Without the LFA, the
largest growth rate is obtained at low Z and large ω̄0, whereas this becomes a stable region
and the growth rate is maximum at large Z with the LFA. The difference in the stability
region stems from the neglect of the terms of the order of ω̄3

ph. For frequencies satisfying
ω − mω0 � ωci, the LFA is valid, and hence the dispersion relation with LFA ((4.31))
yields correct results, but as we move towards regimes with high-frequency values, the
LFA ordering fails. There is a common region that is stable (γ̄ = 0) for both the cases and
that region corresponds to ω̄0 = 0.

5.1. Effect of LFA
The validity domain of the LFA as a function of ω0/ωci is emphasized in figure 7, where
the solution without the LFA ((4.30)) with the red curve, is compared with the solution
with the LFA valid when ωph/ωci = O(ρ2) (green curve, (4.31)) and to another solution

https://doi.org/10.1017/S002237782300051X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300051X


Centrifugal instability 13

(a) (b) (c)

(d ) (e) ( f )

FIGURE 6. Normalized growth rate γ /ωci as a function of normalized equilibrium flow
frequency (ω0/ωci) and Z = r̄2

b/r̄2
0, where r̄b is the radial boundary and r̄0 is the width of the

Gaussian normalized to the Larmor radius ρi for the global dispersion relation given by (4.30)
(a–c) and (4.31) (d–f ). The colour bar represents the normalized growth rate (γ̄ = γ /ωci).

(a) (b)

(c) (d )

FIGURE 7. Normalized growth rate γ /ωci and normalized Doppler shifted frequency (ωr −
mω0)/ωci as a function of normalized equilibrium flow frequency (ω0/ωci) for (a,c) m = 2 and
(b,d) m = 20 for Z = 10.78.

with the LFA but valid at higher frequency i.e. ωph/ωci = O(ρ) (blue curve, (38) in Chen
(1966) with ∇ · πi = 0).

All three dispersion relations predict the same growth rate γ̄ and the real part of Doppler
shifted frequency ω̄r − mω̄0 when the values of ω̄0 are close to zero. As ω̄0 increases,
the model predictions deviate, especially for higher mode numbers. This accounts from
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(a) (b)

(c) (d )

FIGURE 8. Normalized growth rate γ̄ = γ /ωci and normalized Doppler shifted frequency
(ωr − mω0)/ωci as a function of Z = r̄2

b/r̄2
0 for various mode numbers m using dispersion

relation ((4.30)); (a,c) for ω̄0 = −0.4 and (b,d) for ω̄0 = 0.4.

the fact that terms involving higher orders of ω̄ph = ω̄ − mω̄0, i.e. the Doppler shifted
frequency, have been neglected in evaluating the dispersion relations in Chen (1966) and
as the factor mω̄0 increases, the assumption is no longer valid.

5.2. Impact of radial boundary on growth rate
The position of the boundary also has a strong influence on the mode growth rate for
a given value of ω̄0. The growth rate and real part of the Doppler shifted frequency at
different radial boundary positions r̄b keeping r̄0 fixed, for various values of m evaluated
by the global dispersion relation ((4.30)) areshown in figure 8. At fixed plasma size, r̄0,
increasing the cylinder radius r̄b, for which Φ(Z) = 0 is imposed, first destabilizes all
modes and then has limited-to-no impact on the growth rate once r̄b ∼ 3r̄0 (Z ∼ 9). Note
that m = 1 has a different behaviour and gets fully stabilized when the bounding cylinder
radius is increased.

For the real part of the normalized Doppler shifted frequency ω̄r − mω̄0, for all mode
numbers, the frequency is maximum for small values of Z and then decreases as Z
increases except for m = 1 when ω̄0 = −0.4. The sign of ω̄0 plays a critical role in
determining the sign of Doppler shifted frequency (ω̄r − mω̄0).

5.3. Eigenfunction and phase difference
The expression of the eigenfunctions for the normalized perturbed density n1/n0 and
perturbed potential eφ1/Te0ref is obtained by using (4.7) and (4.21)

n̄1 = m
r̄L̄n(ω̄ − mω̄E0)

Φ1

(1 + α∗)
, (5.1)
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(a) (b)

FIGURE 9. Normalized perturbed density n1/n0 for (a) m = 1 and (b) m = 10 as a function
r̄/r̄b using Z = 10.8. The parameters used to obtain these eigenfunctions are ω̄E0 = 0.95, ω̄∗0 =
−0.35, ω̄0 = 0.42 and τ = 1.

φ̄1 = Φ1

(1 + α∗)τ
, (5.2)

where α∗ is given by (4.22). Using these expressions, the eigenfunctions n̄1 for m = 1 and
10 are shown in figure 9 for τ = 1. The perturbations in density and potential are more
spread out for m = 1 than for m = 10 or, in other words, modes with higher azimuthal
mode numbers are more localized towards the boundary region, as already discussed in
figure 4.

Another essential information regarding the mode structure of the instability is the
phase difference between density and potential fluctuations. This is a quantity that can
be measured experimentally and which determines the level of particle flux driven by the
fluctuations n̄1v̄i1. To calculate the phase difference between φ̄1 and n̄1, we divide (5.2) by
(5.1)

φ̄1

n̄1
= (ω̄ − mω̄E0)

r̄L̄n

mτ
. (5.3)

Writing φ̄1/n̄1 = A eiφp , the phase difference φp is,

φp = tan−1

(
γ̄

ω̄r − mω̄E0

)
. (5.4)

Figure 10 shows the phase difference between φ̄1 and n̄1 as a function of ωE0/ωci and
−2/r̄2

0 for m = 1 and m = 2 with τ = 1. Note that r̄0 does not appear explicitly in (5.4)
but comes in the expression for Z = r̄2

b/r̄2
0 and ω̄0 which determines γ̄ and ω̄r. Therefore,

by varying r̄0, the combined effect of Z as well as ω̄0 on the phase difference can be
observed. The phase shift is close to zero, except in a narrow region where ω̄r − mω̄E0 is
approaching zero. In this region, the phase shift becomes large, |φp| ∼ 90◦ and changes
sign. Furthermore, the critical value of ω̄E0 at which the phase shift changes from negative
to positive increases with decreasing r̄0.

5.4. Azimuthal mode number spectra
In figure 11, the normalized growth rate γ̄ and normalized real frequency ω̄r, computed
numerically by solving the dispersion relation ((4.30)) are shown as a function of m. The
growth rate is increasing with the mode number m irrespective of the sign of ω̄0. At high
m, finite Larmor radius (FLR) effects are strongly stabilizing (Hoh 1963) and should be
taken into account. In a fluid description they enter in the gyroviscosity tensor, neglected
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(a) (b)

FIGURE 10. Phase difference between φ̄1 and n̄1 for (a) m = 1 and (b) m = 2 as a function of
normalized E × B flow frequency (ωE0/ωci) and −2/r̄2

0, where r̄0 is the normalized plasma size.
The colour bar represents the phase difference in degrees and the constant lines on the contour
represent ω̄0.

(a) (b)

(c)

FIGURE 11. (a) Normalized growth rate γ̄ = γ /ωci, (b) normalized Doppler shifted frequency
(ωr − mω0)/ωci and (c) normalized frequency ω̄r = ωr/ωci as a function of azimuthal mode
number m for various values of normalized equilibrium flow frequency ω̄0 = ω0/ωci used in the
global dispersion relation ((4.30)).

here, but have been shown to stabilize high m numbers in Chen (1966). In other words,
FLR effects are important when kθρi ∼ 1 where kθ = m/r is the azimuthal wavenumber.
This corresponds to, m ∼ r/ρi, which implies that the FLR stabilization (γ → 0) comes
into effect when m > r/ρi.

The growth rate is zero for ω̄0 = 0, which is consistent with the linear stability diagram
(figure 6). For m = 1, γ̄ is of the order of 10−2ωci for positive values of ω̄0 and for ω̄0 =
−0.2, and zero for ω̄0 = −0.4 and 0. For similar values of ω̄0 but in opposite directions
there is a small difference in the growth rate up to m = 5 and this difference in the growth
rate escalates with increasing mode number m. Overall, the growth rate increases with the
increase in ω̄0. The Doppler shifted frequency (ω̄r − mω̄0) has the sign opposite to that of
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 12. Normalized growth rate γ /ωci as a function of normalized equilibrium flow
frequency (ω0/ωci) and r̄2/r̄2

0 for the local dispersion relation given by (4.32) (a–c) and (4.33)
(d–f ). The colour bar represents the normalized growth rate (γ̄ = γ /ωci).

ω̄0 for ω̄0 < 0. For ω̄0 > 0, the Doppler shifted frequency has the sign opposite to ω̄0 until
m < 20. The real part of the frequency ω̄r has also been shown in figure 11(c) to show the
dominance of the factor mω̄0.

6. Comparison of local and global dispersion relations

In this section, the impact of the local approximation ((4.32) and (4.33)) is discussed.
In figure 12, the mode growth rate obtained in the local approximation with and without
LFA is shown as a function of ω̄0 and r̄2/r̄2

0 for m = 1, 2 and 10. Similarly to the radially
global results, the LFA assumption is shown to have a validity domain restricted to low
ω̄0 values and low m. Relaxing the LFA opens up new instability regions, in particular at
low m, where an unstable zone is obtained at ω̄0 < 0. For ω̄0 = 0, no instability exists and
stable anti-drift modes with a propagation frequency ω̄r = mr̄2

0/2r̄2 are predicted without
the LFA (Fridman 1964).

In contrast to the local dispersion relation, which evaluates the growth rate at each
radial position, the global dispersion relation describes the growth rate of an eigenmode
extending over the whole cylinder radius. To compare the local and global model
predictions, we show in figure 13, the maximum growth rate, γ̄max, obtained with the
local model over the interval 0 ≤ r̄ ≤ r̄b as a function of ω̄0 and Z = r̄2

b/r̄2
0. This quantity

is compared with the global model predictions in figure 13(d–f ). All results are shown
without the LFA. In figure 13(a–c), we see that, for ω̄0 > 0, the value of γ̄max is largely
independent of Z = r̄2

b/r̄2
0. This is because the radial position at which the maximum

growth rate is obtained in the local model is close to zero, see figure 12(a–c). The
situation is different for ω̄0 < 0 and low m, where the local growth rate increases with r̄
(see figure 12a). This is reflected by an increase of γ̄max with r̄2

b/r̄2
0.

In both cases, γ̄max is obtained close to the radial boundaries, either r̄ = 0 or r̄ = r̄b,
where global effects are non-negligible. This is why the relative difference between the
γ̄max and γ̄global, shown in figure 13, is always significant, except perhaps when the growth
rate is closer to zero. The dark blue region in figure 13(d–f ) where γ̄rel is maximum,
corresponds to the region where γ̄max = 0 but γ̄global remains finite, leading to large value
of γ̄max − γ̄global. The white region in figure 13(d–f ) corresponds to the region where both
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 13. Normalized maximum growth rate γmax/ωci as a function of normalized
equilibrium flow frequency (ω0/ωci) and r̄2

b/r̄2
0 for the local dispersion relation given by (4.32)

(a–c). Normalized relative growth rate γrel/ωci as a function of normalized equilibrium flow
frequency (ω0/ωci) and r̄2/r̄2

0, where γ̄rel = 2(γ̄max − γ̄global)/(γ̄max + γ̄global) and γ̄global is
evaluated using (4.30) (d–f ). The constant lines on (d–f ) represents the difference between γ̄max
and γ̄global.

γ̄max and γ̄global correspond to zero. From the comparison, it is evident that the local
dispersion relation cannot be used to study the global behaviour of weakly magnetized
rotating plasma systems having frequencies comparable to the ion-cyclotron frequency.

7. Conclusions and summary

A dispersion relation for a rigid body rotating plasma in a cylindrical geometry has
been derived for the radially local and global eigenmodes. The instability’s growth rate is
strongly dependent on the equilibrium azimuthal flow ω̄0, which in turn depends on the
E × B flow and the diamagnetic flow. No instability is predicted for ω̄0 = 0. For fixed ω̄0
and density gradient, the azimuthal mode number m and the radial boundary limit r̄b are
the dominant factors affecting the growth rate.

The comparison of the dispersion relation with and without LFA revealed that, as soon
as the equilibrium flow frequency is a fraction of the ion-cyclotron frequency, with the
exact threshold depending on the parameters m and Z, relaxing the LFA is mandatory.
More precisely, the LFA becomes inaccurate when the Doppler shifted frequency, ωr −
mω0, becomes comparable to ωci.

The local solution of the dispersion relation was compared with the global solution
(see figure 13), showing that there is no parameter range where the local model is
applicable. This is because the local model predicts a maximum growth rate either close to
the plasma axis or the outer cylinder, where boundary effects are essential. Rotating
plasmas subject to centrifugal instability, as in MISTRAL, require a non-local treatment
taking the boundary into account.

This work is a part of an effort aimed at developing a comprehensive theory for the
description of strongly rotating weakly magnetized plasma columns. We have focused
here on the collisionless case and neglected FLR effects. These assumptions will need to
be relaxed and this is why we have so far refrained from making a direct comparison with
MISTRAL. In particular, it has been shown in Pierre (2016) that ion–neutral collisions
are important to discuss the stability mechanism of weakly magnetized rotating plasma
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columns. Furthermore, shear effects which give rise to Kelvin–Helmholtz instability
(Jassby 1972; Gravier et al. 2004; Brochard, Gravier & Bonhomme 2005) and which
are important for rotating plasmas are not included in the current discussion through the
assumption of rigid body rotation (∂ω0/∂r = 0) in the two-fluid formalism. Efforts to
resolve these issues are in progress.
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Appendix. Typical equilibrium profile measured in the MISTRAL experiment

The experimental set-up of MISTRAL is shown in figure 14 with a comprehensive
description given in Jaeger (2010), Matsukuma et al. (2003) and Escarguel (2010). The
plasma is produced in the magnetized cylindrical column after the interaction of energetic
electrons with neutrals. These energetic electrons are produced by thermionic emission in
the source chamber. A polarizable grid called the separating grid is inserted at the entrance
section of the linear plasma column and separates the source chamber from the linear
column. Another polarizable grid called the collector is placed at the end of the plasma
column.

The time-averaged electron density and plasma potential are measured with a radially
movable Langmuir probe. The electron density and plasma potential profiles are shown
in figures 15(a) and 15(b), for a configuration where the separating grid and collector are
connected and at the negative potential. The gas used is argon and the cylinder is grounded.
The magnetic field and the pressure values are B = 16 mT and P = 3.6 × 10−4 mbar,
respectively.

Within the uncertainties on the measurements, the shape of the number density n0 is
Gaussian (figure 15a) and the plasma potential φ0 is parabolic (figure 15b), consistent
with the rigid body rotation assumption used in the model.

Table 2 gives the value of dimensionless parameters entering in the model for the
MISTRAL plasma shown in figures 15(a) and 15(b).

The ion-cyclotron frequency is only a few kHz and comparable to the azimuthal
flow frequency. Models valid in the low rotation regime are therefore not applicable to
MISTRAL plasmas. Note that the ion–neutral collision frequency is also comparable to the
ion-cyclotron frequency and the present model will need to be extended to be applicable
to MISTRAL plasmas.
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FIGURE 14. Electrical schematic of MISTRAL. In the source chamber, 32 filaments randomly
emit energetic primary electrons, which are then injected into the argon-filled cylindrical
chamber. A magnetic plasma column is produced by the interaction of these primary electrons
moving along the magnetic field.

(a) (b)

FIGURE 15. (a) Radial profile of electron number density n0 for argon plasma with Gaussian
fit. (b) Radial profile of plasma potential φ0 for argon plasma with parabolic fit.

Parameter Unit Magnitude

Ion-cyclotron frequency ωci/2π KHz 6.1
Ion Larmor radius ρi cm 1.28
Normalized ExB drift frequency ωE0/ωci — −1.8
Normalized diamagnetic drift frequency ω∗0/ωci — −0.4
Normalized ion–neutral collision frequency νin/ωci — 0.4
Equilibrium flow frequency ω0/ωci — −0.4
Plasma radius r0 cm 0.3
Normalized density gradient scale length ρi/Ln (at r = 2.5 cm) — 0.7
Z = r2

b/r2
0 — 10.8

TABLE 2. Various parameters in MISTRAL for Ar at B = 16 mT.
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