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Abstract

We prove that for any infinite sets of nonnegative integers A and B, there exist transcendental analytic
functions f ∈ Z{z} whose coefficients vanish for any indexes n � A + B and for which f (z) is algebraic
whenever z is algebraic and |z| < 1. As a consequence, we provide an affirmative answer for an asymptotic
version of Mahler’s problem A.
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1. Introduction

The most interesting classes of numbers for which transcendence has been proved are
given by values of suitable analytic transcendental functions. Weierstrass initiated the
investigation of the set of algebraic numbers for which a given transcendental function
f takes algebraic values. Since that time, many mathematicians have studied such
questions.

In one of his books, Mahler [2, Ch. 3] posed three problems on the arithmetic
behaviour of transcendental functions at algebraic points, calling them Problems A, B
and C. Problems B and C were solved completely by Marques and Moreira [3, 4], but
Problem A remains open. As usual, Q denotes the field of algebraic numbers and Z{z}
denotes the set of the power series analytic in the unit ball B(0, 1) and with integer
coefficients. Let us state this remaining unsolved problem.

MAHLER’S PROBLEM A. Does there exist a transcendental function f ∈ Z{z} with
bounded coefficients and such that f (z) is algebraic whenever z is algebraic and
|z| < 1?

We remark that Mahler himself showed the existence of a function f ∈ Z{z} such
that f (Q ∩ B(0, 1)) ⊆ Q. Problem A was the only one for which Mahler made some
prediction: ‘I conjecture that this problem has a negative answer’. Recently, Marques
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and Moreira [5] proved the existence of a transcendental function f ∈ Z{z} whose
coefficients have only 2 and 3 as prime factors and such that f (Q ∩ B(0, 1)) ⊆ Q.
We refer the reader to [2, 7] (and references therein) for more results related to the
arithmetic behaviour of transcendental analytic functions.

For a given power series f (z) =
∑

n≥0 anzn and M ≥ 0, we denote by L( f , M) the set
of indexes n ≥ 0 such that |an| ≤ M, that is,

L( f , M) = {n ∈ N : |an| ≤ M}.

We can rewrite Problem A as follows.

PROBLEM A*. Does there exist a transcendental function f ∈ Z{z} and an integer M
such that L( f , M) = Z≥0 and f (Q ∩ B(0, 1)) ⊆ Q?

This suggests a less demanding problem where we ask for f ∈ Z{z} having almost
all its coefficients bounded. As usual, we write A(x) := A∩ [0, x] for x > 0 and δ(A)
denotes the natural density of a setA ⊆ Z≥0, that is, the limit (if it exists)

δ(A) := lim
x→∞

#A(x)
x

.

ASYMPTOTIC PROBLEM A. Does there exist a transcendental function f ∈ Z{z} and
an integer M such that δ(L( f , M)) = 1 and f (Q ∩ B(0, 1)) ⊆ Q?

We give an affirmative answer for this questions and prove the following more
general result.

THEOREM 1.1. LetA and B be infinite sets of nonnegative integers and S := A + B =
{a + b : a ∈ A, b ∈ B}. Then there exist uncountably many transcendental functions
f (z) =

∑
n∈S anzn ∈ Z{z} such that f (Q ∩ B(0, 1)) ⊆ Q.

As an immediate consequence, this gives a positive answer to Asymptotic Problem
A (for M = 0). For example, we can choose A = B = Z2

≥0, since S = A + B =
{m2 + n2 : m, n ∈ Z≥0} has asymptotic density zero (see, for example, [1, page 24]).

REMARK 1.2. We point out that there exist sets A which do not contain any sum set
of two infinite sets (for example, take A = {2k : k ≥ 0}). However, if δ(A) > 0, then
B + C ⊆ A for some infinite sets B and C. This was proved by Moreira et al. [6] settling
a conjecture of Erdős.

2. The proof of Theorem 1.1

2.1. A key lemma. In this section, we shall prove a result which will be an essential
ingredient in the proof of Theorem 1.1.

LEMMA 2.1. Let P(z) ∈ Z[z] be a polynomial of degree d ≥ 1 and S an infinite set of
positive integers. Then there exists a nonzero polynomial Q(z) ∈ Z[z] with degree m,
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say, such that the product PQ ∈ Z[z] is a polynomial of the form
∑

n∈S(d+m)

anzn.

PROOF. Define

Q(z) :=
L∑

i=0

qizi,

where L and the qi values will be chosen later. The polynomial PQ has degree at most
L + d and its coefficients are linear forms in q0, . . . , qL. So, it suffices to prove that
it is possible to choose the coefficients of Q(z) to eliminate the terms zn in (PQ)(z),
for which n � S(L + d) (observe that there are L + d + 1 − #S(L + d) of these terms).
By equating the corresponding coefficients of PQ to zero, we obtain a homogeneous
linear system with L + d + 1 − #S(L + d) equations in the L + 1 variables qi, i ∈ [0, L].
This system has a nontrivial integer solution provided that

L + 1 > L + d + 1 − #S(L + d),

that is, #S(L + d) > d. Since S is an infinite set, this inequality holds for all sufficiently
large integers L. If we set m := max{i ≤ L : qi � 0}, then

Q(z) =
m∑

i=0

qizi ∈ Z[z]

is the desired polynomial. This finishes the proof. �

2.2. Proof of Theorem 1.1. Let {α1,α2, . . .} be an enumeration of Q ∩ B(0, 1) and
let Pi(z) of degree di be the minimal polynomial (over Z) of the algebraic number αi.
We apply Lemma 2.1 to the polynomials

P1(z), P1(z)P2(z), P1(z)P2(z)P3(z), . . . .

Since B is an infinite set, Lemma 2.1 ensures the existence (for any k ≥ 1) of a
polynomial Qk(z) ∈ Z[z] of degree mk such that

Qk(z)P1(z) . . .Pk(z) =
∑

n∈B(mk+Dk)

ak,nzn,

where Dk :=
∑k

i=1 di. Now, we define recursively the sequence (tk)k≥1 by choosing t1 =
minA and tk+1 ∈ A satisfying

tk+1 ≥ max{k(tk + Dk + mk) + 1, �(Qk+1P1 . . .Pk+1) + (k + 1)}.

This choice is possible, becauseA is an infinite set of nonnegative integers. As usual,
�(P) denotes the length of a polynomial P (that is, the sum of the absolute values of its
coefficients).
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We claim that the function

f (z) :=
∑

k≥1

ztk Qk(z)P1(z) . . .Pk(z)

satisfies the conditions of the theorem. Indeed, first note that by construction, f (z)
can be written as

∑
n∈S anzn (using the fact that tk+1 > tk + Dk + mk). We also have

f (Q ∩ B(0, 1)) ⊆ Q, since for any i ≥ 1,

f (αi) =
i−1∑

k=1

αtk
i Qk(αi)P1(αi) . . .Pk(αi)

is a finite sum of algebraic numbers. Moreover, tk+1/(tk + Dk + mk) tends to infinity
as k → ∞ (indeed, tk+1/(tk + Dk + mk) > k), so f (z) is a strongly lacunary series and
hence a transcendental function (by the transcendence criterion from [2, page 40]).

To finish, it remains to show that f is an analytic function in the unit ball. For that,
take R ∈ (0, 1) and z ∈ B(0, R). Since |P(z)| ≤ �(P) when |z| ≤ 1, one infers that

|ztk Qk(z)P1(z) . . .Pk(z)| ≤ Rtk�(QkP1 . . .Pk) < R�(QkP1...Pk)+k�(QkP1 . . .Pk),

since tk > �(QkP1 . . .Pk) + k and R < 1. Note now that the maximum value of the
function x 	→ xRx, for real positive values of x, is attained at x = 1/|log R| and is equal
to e−1/|log R|. This implies that

R�(QkP1...Pk)+k�(QkP1 . . .Pk) <
e−1

| log R|R
k.

Summarising, we see that

|ztk Qk(z)P1(z) . . .Pk(z)| ≤ e−1

|log R|R
k =: Mk,

for all z ∈ B(0, R). Since
∑

k≥1 Mk converges, then by the Weierstrass M-test, the series∑
k≥1 ztk Qk(z)P1(z) . . .Pk(z) converges absolutely and uniformly on B(0, R) for any R ∈

(0, 1). Consequently, this series defines an analytic function (namely, f (z)) in the unit
circle B(0, 1).

The function f (z) =
∑

n∈S anzn is analytic in the unit ball and f (α) ∈ Q for all
α ∈ Q ∩ B(0, 1). There is an ∞-ary tree of different possibilities for f. In fact, for
any k ≥ 1, tk can be chosen in infinitely many different ways and each choice gives
a different function f. Thus, we have constructed uncountably many of these functions.
This completes the proof. �
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