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The flow-induced oscillation of a transversely clamped buckled flexible filament in
a uniform flow was explored using the penalty immersed boundary method. Both
inverted and conventional configurations were analysed. The effects of bending rigidity,
filament length and Reynolds number were examined. As these parameters were varied,
four distinct modes were identified: conventional transverse oscillation mode, deflected
oscillation mode, inverted transverse oscillation mode and structurally steady mode. The
filament exhibited a 2S wake pattern under the conventional transverse oscillation mode
and the small-amplitude inverted transverse oscillation mode, a P wake pattern under the
deflected oscillation mode and a 2S + 2P wake pattern for the large-amplitude inverted
transverse oscillation mode. Irrespective of their initial conditions, all of the filaments
converged to the conventional transverse oscillation mode under low bending rigidity.
Multistability was observed in the transversely clamped buckled flexible filament under
moderate bending rigidity. The deflection in the oscillation mode increased with increasing
filament length. The inverted buckled filament was sensitive to the Reynolds number,
unlike the conventional buckled filament. The transverse oscillation mode demonstrated
superior energy-harvesting performance.

Key words: flow–structure interactions

1. Introduction
Clean energy has become a focal point, praised for its eco-friendliness and cost
effectiveness in contrast to traditional fossil fuels. Flexible structures such as flags and
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sails can effectively convert fluid kinetic energy into electric energy by incorporating
piezoelectric materials on their surfaces, thus holding potential for energy harvesting.
Buckled filaments, clamped on both ends, possess substantial elastic energy in their initial
configuration. The substantial deflection and high strain energy of buckled filaments make
them suitable for energy-harvesting applications. Hence, understanding the flow-induced
oscillation of buckled flexible filaments is critical for advancing the field of flexible energy
harvesting.

Flags, or filaments, are ubiquitous flexible structures whose flow-induced vibration
has been extensively studied through various theoretical, experimental and numerical
methods. Categorized on the basis of clamping conditions, flags can be conventional,
inverted or wall clamped. A conventional flag features a clamped leading edge and a free
trailing edge, exhibiting stretched-straight, flapping and chaos modes as parameters such
as the mass ratio, Reynolds number and bending rigidity vary (Zhang et al. 2000; Zhu &
Peskin 2003; Shelley, Vandenberghe & Zhang 2005; Alben & Shelley 2008; Michelin,
Llewellyn Smith & Glover 2008; Banerjee, Connell & Yue 2015; Cisonni et al. 2017).
Instability in conventional flags arises from the interplay between pressure and elastic
forces (Eloy et al. 2008; Shelley & Zhang 2011), with a relatively high critical velocity
required to activate oscillation modes, limiting their application in energy harvesting
(Doaré & Michelin 2011; Michelin & Doaré 2013; Xia, Michelin & Doaré 2015; Yu & Liu
2016). Kim et al. (2013) introduced inverted flags, which are clamped at the trailing edge,
reducing the critical flow velocity. Various modes, including straight, flapping, deflected,
deflected flapping and chaos modes, emerge in inverted flags as the mass ratio, Reynolds
number and bending rigidity vary (Gurugubelli & Jaiman 2015; Tang, Liu & Lu 2015;
Sader et al. 2016; Orrego et al. 2017; Yu, Liu & Chen 2017). For lightweight flags, flapping
results from vortex-induced vibration (Sader et al. 2016; Sader, Huertas-Cerdeira & Gharib
2016); by contrast, heavy flags exhibit self-induced vibration (Goza, Colonius & Sader
2018; Tavallaeinejad et al. 2020). Despite their potential for energy harvesting due to large
oscillation amplitudes, inverted flags are applicable only within specific ranges of flow
speeds and bending rigidity (Ryu et al. 2015; Park et al. 2016). The motion of vertically
wall-clamped flags, where clamping is perpendicular to the flow direction, has also been
investigated (Lee et al. 2017, 2018; Chen et al. 2020a, 2020b; Park 2020); the oscillation
amplitudes of such flags are typically lower than those of inverted and conventional flags,
making them less suitable for energy harvesting. Using elastic energy for energy harvesting
requires careful consideration of material properties. Several methods can convert stored
elastic energy into electricity, including piezoelectric (Jung & Yun 2010; Cottone et al.
2012), electromagnetic (Bai et al. 2022) and triboelectric mechanisms (Zhu & Zu 2013;
Kim et al. 2020).

The buckled filament, characterized by its two clamped edges, stores greater elastic
energy than a single-side-clamped filament. Its bistability enables it to snap through
from one equilibrium state to another under external excitation, resulting in substantial
deflection (Gomez, Moulton & Vella 2017a; Gomez, Moulton & Vella 2017b). Kim
et al. (2020) proposed energy harvesting based on the flow-induced snap-through
oscillation of streamwise-clamped buckled sheets, investigating its instability mechanism
experimentally (Kim et al. 2021; Kim, Kim & Kim 2021). Mao, Liu & Sung (2023)
systematically examined the effect of Reynolds number, bending rigidity and filament
length on the snap-through dynamics. They delineated distinct phenomena, including
snap-through oscillation (STO), streamwise oscillation and structurally steady modes.
The critical bending rigidity to activate STO is relatively lower than that observed in
inverted flags. Efforts have been made to enhance the critical bending rigidity of STO,
with Chen et al. (2023) exploring the effect of the edge condition. They found that a
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simply supported leading edge combined with a clamped trailing edge led to increased
critical bending rigidity and improved energy-harvesting performance. Moreover, buckled
filaments performed better in channel flow conditions, exhibiting higher bending rigidity
(Chen et al. 2024). For a side-by-side configuration, an appropriate gap distance between
filaments can enhance energy-harvesting performance and increase critical bending
rigidity (Chen, Liu & Sung 2024). Despite these efforts, the critical bending rigidity of
buckled filaments remains lower than that of conventional and inverted flags because of
the substantial external energy required to initiate snap through (Chen et al. 2023).

To address this challenge, transversely clamped buckled filaments, with clamped
edges perpendicular to the flow, have been proposed to expand their application area.
Transversely clamped buckled filaments, which combine the high critical bending rigidity
of inverted flags with the high strain energy of buckled filaments, have emerged as a more
suitable candidate for energy harvesting. In the present investigation into the dynamics of
transversely buckled flexible filaments, bending rigidity emerges as the pivotal parameter.
Understanding the fluid dynamics associated with variations in bending rigidity is
essential. Experimentally manipulating bending rigidity is highly challenging, mainly
because of the difficulty in sourcing appropriate materials. Employing numerical analysis
significantly facilitates the research process and offers advantages over experimentation for
parametric and quantitative analyses of fluid–flexible structure interactions. In particular,
the immersed boundary (IB) method has been widely adopted to handle this interaction
(Huang, Shin & Sung 2007; Huang & Sung 2010; Huang, Chang & Sung 2011;
Ryu et al. 2015; Park, Ryu & Sung 2019). Few numerical studies on flow-induced
oscillations of transversely clamped buckled filaments have been reported. More
importantly, the mechanisms underlying the energy-harvesting efficiency of these
filaments have not yet been fully elucidated and warrant a more detailed investigation.

The objective of the present study is to explore the flow-induced oscillations of
transversely clamped buckled flexible filaments using the penalty IB method. We
investigate two distinct configurations: inverted and conventional buckled filaments.
The effects of bending rigidity (γ ), filament length (L) and Reynolds number (Re)
on mode transition are examined for both configurations. When these parameters are
varied, four distinct modes are identified: conventional transverse oscillation (TOc)
mode, deflected oscillation (DO) mode, inverted transverse oscillation (TOi) mode and
structurally steady (SS) mode. The corresponding wake patterns and filament motions for
each mode are analysed. To elucidate the relationship between the filament’s oscillation
and vortex shedding, we examine vorticity and pressure contours while tracking the
temporal evolution of force and energy. Finally, we evaluate the energy-harvesting
performance of inverted and conventional buckled filaments using elastic energy and
power coefficient metrics.

2. Computational model

2.1. Problem formulation
The transversely clamped filament can be categorized into two types: inverted and
conventional buckled filaments. Schematics illustrating their configurations in a uniform
flow are depicted in figures 1(a) and 1(b), respectively. In these schematics, L0 represents
the distance between the two clamped edges and L denotes the length of the filament. The
fluid motion is described within a fixed Euler coordinate system, and x and y represent the
streamwise and transverse directions, respectively. Dirichlet boundary conditions (u = U0,
v = 0, where u is the velocity component in the x-direction, v is the velocity component in
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Figure 1. Schematic of the (a) inverted and (b) conventional buckled flexible filament in a uniform flow.

the y-direction and U0 represents the free-stream inflow velocity) are applied at the inlet,
top and bottom boundaries, whereas a Neumann-type boundary condition (∂u/∂x = 0)
is enforced at the outlet (Huang & Sung 2007). The filament’s motion is defined within a
moving curvilinear coordinate system (s), where s represents the arc length of the filament.
The clamped edges are indicated by boxes, positioned at (0, 0.5) and (0, −0.5). The initial
buckled shape is determined via simulation in a static fluid environment, starting from an
arc-shaped configuration. During the process, the filament’s elastic force equilibrates with
the fluid force.

The fluid motion is governed by the Navier–Stokes equations and the continuity
equation, whose non-dimensional forms are

∂u
∂t

+ u · ∇u = −∇ p + 1
Re

∇2u + f , (2.1)

∇ · u = 0, (2.2)

where u = (u, v) is the fluid velocity vector, p is the pressure and f = ( fx , fy) represents
the momentum forcing used to enforce the no-slip condition along the IB; the Reynolds
number Re is defined as ρ0U0L0/μ, where ρ0 and μ are the fluid density and the
dynamic viscosity, respectively. Equations (2.1) and (2.2) are non-dimensionalized using
the following characteristic scales: L0 for length, U0 for velocity, L0/U0 for time,
ρ0U0

2 for pressure and ρ0U0
2/L0 for the momentum forcing f . For convenience, the

dimensionless quantities are written in the same form as their dimensional counterparts.
The filament motion is governed by the dimensionless nonlinear structure equation and

the inextensibility condition

∂2 X
∂t2 = ∂

∂s

(
T

∂ X
∂s

)
− γ

∂

∂s

(
∂K

∂s
n
)

− Ff , (2.3)

∂ X
∂s

· ∂ X
∂s

= 1, (2.4)

where X = (X (s, t), Y (s, t)) denotes the displacement vector of the filament, s is the
arclength, T and γ represent the tension coefficient and bending rigidity along the
filament, respectively, K is the curvature of the filament, n denotes the normal direction
and Ff is the Lagrangian momentum forcing exerted by the surrounding fluid on the
filament. Equations (2.3) and (2.4) are non-dimensionalized by the following characteristic
scales: L0 for length, L0/U0 for time, ρ1U 2

0 for the tension coefficient T , ρ1U 2
0 L2

0 for
the bending rigidity γ and ρ1U 2

0 /L0 for the Lagrangian forcing Ff . Here, ρ1 denotes the
density difference between the filament and the surrounding fluid. Given that the filament’s
cross-sectional length is negligible, ρ1 is treated as the filament’s density. The elastic force
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of the filament is given by Fs = ∂/∂s(T (∂ X/∂s)) − γ (∂/∂s)((∂K/∂s)n). In the present
study, γ is a constant value during filament motion, whereas T is assumed to be a function
of s and t , determined by the inextensibility. A Poisson equation is constructed to solve
the value of T (Huang et al. 2007). Clamped boundary conditions are imposed at the two
fixed edges of the filament, which are

∂ X
∂s

= (0, −1) at s = 0, L . (2.5)

The penalty IB method is used to calculate the interaction between the filament and the
fluid. In this approach, the IB represents the flexible structure’s interface, which is divided
into a massive boundary and a massless boundary, interconnected by a stiff spring. The
Lagrangian momentum forcing Ff is calculated using the following equation (Goldstein,
Handler & Sirovich 1993):

Ff = α

∫ t

0
(U ib − U)dt ′ + β(U ib − U), (2.6)

where α = −3 × 106 and β = −100 are large negative constants to impose the no-slip
condition on the IB (Huang et al. 2007; Shin, Huang & Sung 2008). Although α and
β do not directly impact the filament’s motion, they affect system stability by limiting
the maximum allowable time step. The time step must satisfy the condition −α�t2 −
2β�t < CT , whereCT is a constant value related to ρ. Here, U ib is the velocity of the
massless boundary obtained by interpolation at the IB, and U denotes the velocity of the
massive boundary, calculated as U = dX/dt . The transformation between Eulerian and
Lagrangian variables is realized using the Dirac delta function. The values of U ib and f
can be obtained using the following equations:

U ib(s, t) =
∫

Ω

u(x, t) δ(X (s, t) − x)dx, (2.7)

f (x, t) = ρ

∫
Γ

Ff (s, t)δ(x − X(s, t))ds, (2.8)

where ρ = ρ1/ρ0L0 = 1 is the density ratio derived from the non-dimensionalization
process.

The elastic strain energy Es is an important parameter for estimating the energy-
harvesting performance of the filament; it is defined as

Es (t) =
∫

Γ

0.5γ K 2 (s, t) ds. (2.9)

To directly calculate the electricity generated during filament motion, we consider piezo–
structure coupling. The filament is equipped with infinitesimal piezoelectric patches on
both sides, each with segmentation lengths much smaller than L . These patches are
connected to an electric circuit, which harnesses the piezoelectric effect: the stretching
and compression of the patches induce charge transfer between each patch’s electrodes.
An electric voltage applied to the electrodes creates additional internal torque on the
piezoelectric patch and the filament (Doaré et al. 2011). Each patch’s local electric state
is characterized by the voltage between its positive electrodes, denoted as V (s, t) and the
charge transfer Q(s, t) along the filament axis. Both V (s, t) and Q(s, t) are continuous
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functions of s and t (Michelin et al. 2013). The piezoelectric coupling effect is modelled
by the following equations:

Q (s, t) = cV + χ K , (2.10)

M (s, t) = −γ K + χV, (2.11)

where M(s, t) is the torque of the filament. The constants c and χ are the lineic
capacitance and piezoelectric coupling coefficient, respectively, which depend on the
material and geometric properties of the patch pair (Doaré et al. 2011). The positive
electrodes are linked to a purely resistive circuit with lineic conductivity, as depicted in
the equation

∂ Q

∂t
(s, t) = −ςV, (2.12)

where ς represents the linear conductivity coefficient between the piezoelectric patches on
the upper and lower surfaces of the filament. When the piezoelectric effect is considered,
the equivalent bending rigidity can be expressed as

γE = ∂ M

∂s
= −γ

∂K

∂s
+ χ

∂V

∂s
. (2.13)

By combining equations (2.10)−(2.13), we can express the nonlinear structure equation
incorporating the piezoelectric effect and the electrical equation as follows:

∂2 X
∂t2 = ∂

∂s

(
T

∂ X
∂s

)
− γ

∂

∂s

(
∂K

∂s
n
)

+ αe
√

γ
∂

∂s

(
∂V

∂s
n
)

− Ff , (2.14)

βe
∂V

∂t
= −V − αeβe

√
γ

∂K

∂t
, (2.15)

where αe = χ/
√

cγL and βe = cU/ς L are the coupling coefficient and the tuning
coefficient of the electrical system, respectively (Shoele & Mittal 2016). Here, γL
represents the dimensional bending rigidity of the filament. The voltage and charge density
are non-dimensionalized by U

√
ρL/c and U

√
ρLc, respectively. In the present study, we

maintain αe and βe at constant values of 0.1 and 0.1, respectively, without affecting the
filament motion. The harvested energy, which is equivalent to the instantaneous power
dissipated in the piezo patches (Michelin et al. 2013; Shoele et al. 2016), can be assessed
using the power coefficient, defined as

cp = P

ρU 3L
= 1

βe

∫ L

0
V 2ds. (2.16)

The fractional step method on a staggered Cartesian grid is adopted to solve the Navier–
Stokes equations (Kim, Baek & Sung 2002). A direct numerical method developed by
Huang et al. (2007) is used to calculate the filament motion. Details of the discretization
of the governing equations and numerical method can be found in the works of Kim,
Sung & Hyun (1992) and Kim et al. (2002).

2.2. Validation
Table 1 summarizes the results of the domain test for the conventional buckled filament
with L/L0 = 3, γ = 0.01, Re = 100. The domain dimensions, defined by its length and
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Domain C D εC D
Ay εAy St εSt

32 × 8 1.4675 0.0598 0.8319 0.0452 0.1500 0.0714
I 32 × 16 1.3712 0.0097 0.8500 0.0244 0.1400 0

32 × 24 1.3847 – 0.8713 – 0.1400 –
16 × 16 – – – – – –

II 32 × 16 1.3712 0.0177 0.8500 0.0132 0.1400 0
64 × 16 1.3473 – 0.8389 – 0.1400 –

Table 1. Domain test, including the averaged drag coefficient C D , oscillation amplitude of Ay , the Strouhal
number St and the relative errors ε to 32 × 24 (domain height test in part I) and 64 × 16 (domain length test in
part II) (L/L0 = 3, γ = 0.01, Re = 100, conventional configuration).

(a) (b)

0.5

0

−0.5

−1.0

0.5

0

−0.5

−1.0

ym

180 190 200 180 190 200

t t

∆t = 0.006
∆t = 0.004
∆t = 0.002

∆x = 1/64
∆x = 1/32

∆x = 1/128

Figure 2. Time evolution of the transverse displacement of the mid-point of the filament (yum ) for different
(a) grid sizes and (b) time steps.

height, were specifically chosen to induce large-amplitude oscillations in the filament.
The table includes the averaged drag coefficient C D , oscillation amplitude Ay and the
Strouhal number St (= fv L0/U0), along with the corresponding relative error ε. Here,
fv represents the vortex shedding frequency from the filament. The simulation does not
converge for the 16 × 16 domain. The results for the 32 × 16 domain are consistent with
those for the 32 × 24 and 64 × 16 domains. Therefore, a domain size of 32 × 16 was
selected, covering the range of −10L0 ≤ x ≤ 22L0 and −8L0 ≤ y ≤ 8L0, as this allows
for simulation over a greater number of time steps, thereby enhancing the accuracy of
the results. To assess the impact of grid resolution and time step on the simulation
outcomes, convergence studies were conducted for various grid resolutions and time steps.
Figure 2 shows the time evolution of the transverse displacement at the midpoint of
the filament. The results obtained with �x = 1/64 and �t = 4 × 10−4 align well with
those for �x = 1/128 and �t = 2 × 10−4. Consequently, a grid resolution of 1/64 and a
time step of 4 × 10−4 were chosen to ensure sufficiently high accuracy in the simulation.
The maximum Courant number was approximately 0.04 in the simulation. The grid was
uniform in the x-direction but stretched in the y-direction. Specifically, within the range
−Y/4 ≤ y ≤ Y/4, the grid size was �y = �x . Outside this range, the grid size was the
grid size was �y = 2�x . The grid size for the filament was matched to that of the fluid
domain.

We conducted an experiment to explore the dynamics of inverted buckled filaments.
The experiments were carried out in a small open suction wind tunnel, with wind
speeds ranging from 10 to 55 m s–1. The flexible filament used was made of polyethylene
terephthalate (PET) film with a thickness (h) of 0.1 mm, Young’s modulus (E) of 4 GPa,
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(a) (b)

Experiment

Simulation

0.8

0.7

0.6

0.5

0.5

1.0

0
2 4 0 1 2 3

Ay L/L0 = 4

W/L

W

γ

Figure 3. (a) Oscillation amplitude (Ay) as a function of γ and (b) Ay as a function of aspect ratio (W/L)
under γ = 0.5 (L/L0 = 4).

Poisson’s ratio (σ ) of 0.4, density of 1.3×103 kg m–3. In this study, we compared the effect
of γ on the oscillation amplitude (Ay) for both the experiment and the simulation with
L/L0 = 4, as shown in figure 3(a). In the experiment, the bending rigidity γ is defined
as γ = B/ρ0U 2L3, where B = Eh3/12(1 − σ)2 is the flexural rigidity of the filament
(Kim et al. 2013). Both sets of results showed similar trends: the filament remains in a
structurally steady mode at high γ , and as γ decreases below a certain threshold, Ay
suddenly increases due to the transition to the deflected oscillation mode, where the
filament oscillates with a bias towards one side. Further decreases in γ result in the
filament becoming too soft to sustain the fluid force, leading to a reduction in Ay . Despite
the differences in Reynolds numbers between the simulation (O(102)) and the experiment
(O(104)), the overall trends are consistent, demonstrating that our simulation captures the
physical phenomena of the inverted buckled filament. Figure 3(b) examines the effect of
the aspect ratio (W/L), where W is the spanwise length, on the oscillation amplitude
(Ay). As W/L increases beyond 2, Ay converges to a constant value, suggesting that the
effect of W/L is negligible. This observation aligns with previous studies on conventional
flags (Banerjee et al. 2015; Gurugubelli & Jaiman 2019). Experimental studies are limited
by the difficulty of altering the parameters of filament materials, which constrains the
scope of research. Simulations, however, are better suited for exploring a wide range
of parameters and investigating additional phenomena in both inverted and conventional
buckled filaments.

3. Results and discussion

3.1. Modes of filament motion
In this section, we examine the motion of the transversely clamped filament across
different modes. When L/L0 and γ vary, four distinct modes emerge: the SS mode, the
TOi mode, the DO mode and the TOc mode. To facilitate the initiation of large oscillations,
we selected a long filament (L/L0 = 3), allowing for an examination of the motion of
the transversely buckled filament. Figure 4 illustrates the superposition of the filament’s
instantaneous shapes in the SS, TOi, DO and TOc modes. Due to the bistable nature of the
buckled filament, the transversely clamped filament can exhibit both conventional flag-like
motion and inverted flag-like motion in the flow, depending on the initial conditions. Under
high γ , the filament demonstrates resilience against unsteady fluid forces, manifesting the
SS mode (depicted in figure 4(a) for the inverted initial state; the conventional initial state
exhibits a reversed shape). The TOi mode, reminiscent of the flapping mode observed in
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(a) (d)(c)(b)

Structually steady

Transverse

oscillation

Transverse

oscillation

Deflected

oscillation

γ = 5 γ = 0.1 γ = 0.1 γ = 0.02 L/L0 = 3

Figure 4. Superposition of the instantaneous shapes of the filament in (a) sSS mode (γ = 5), (b) TOi mode
(γ = 0.1), (c) DO mode (γ = 0.1) under two directions and (d) TOc mode (γ = 0.02) (L/L0 = 3).

(a) (b)

L/L0 

4

3

2

4

3

2

10−2 10−1 100 10 10−2 10−1 100 10

SS SSTOc DO TOcTOi

γγ

Figure 5. Mode diagram for (a) inverted and (b) conventional initial states depending on γ and L/L0; regions
TOc, DO, TOi and SS correspond to the conventional transverse oscillation mode, the DO mode, the TOi mode
and the structurally steady mode.

inverted flags, emerges under moderate γ for the inverted initial state. Two types of TOi
motions manifest as L/L0 and γ vary: one with large-amplitude oscillations (figure 4b),
occurring under conditions of moderate γ and high Re, and the other involving small
vibrations near the structurally steady state, which appears at high γ close to the SS
mode. In addition, the DO mode, characterized by filament deflection toward one side,
is observed under moderate γ for the inverted initial state. Figure 4(c) illustrates two DO
motions, upward DO and downward DO, based on differing initial excitations. Notably,
the same filament (L/L0 = 3, γ = 0.1) under identical conditions shows quad stability,
encompassing TOi, upward DO, downward DO and TOc (not depicted in figure 4),
depending on varying initial states. Under low γ values, the filament sustains TOc,
departing from the initial state, resembling the flapping motion of a conventional flag.

Here, we explore the influence of L/L0 and γ on the mode transition of the transversely
buckled filament. The inverted initial state and conventional initial state result in distinct
mode diagrams (figure 5). The inverted initial state shares a similar static divergence
property with the inverted flag, rendering it more unstable than the conventional initial
state, thereby leading to the emergence of the DO mode (Gurugubelli et al. 2015; Sader
et al. 2016). Under low γ values, despite their initiation in an inverted shape, the filaments
exhibit the TOc mode because the filament is too flexible to withstand the inverted
shape under fluid force, causing it to shift downstream. As γ increases to O(10−1), the
filament can sustain the inverted shape but still fails to maintain symmetry, leading to
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Figure 6. Time histories of (a) mid-point (xm , ym ) in the DO mode. (b) The sequential process of the DO
mode (L/L0 = 3, γ = 0.1).

the emergence of the DO mode. As γ increases further, the filament shifts to a small-
amplitude TOi motion around the upstream equilibrium position. The SS mode becomes
predominant at high γ values. Conversely, for filaments in the conventional initial state,
the mode diagram is more concise, featuring the filament in the TOc mode under low γ

and the SS mode under high γ .
To elucidate the DO motion, we present the time histories of the midpoint and the

sequential process in figure 6, where δ represents one quarter of the oscillation process.
In the DO mode, the filament deflects toward one side because of static divergence.
At T0, ym reaches its maximum value, whereas xm reaches its minimum value, indicating
the onset of a downward motion. By T0 + 2δ, ym reaches its minimum value and
xm reaches its maximum value, marking the filament’s extreme position with a large
deflection. The filament then commences an upward motion. At T1, the upward motion
ceases, initiating a new oscillation period. The filament displays aperiodic motion in the
DO mode, a behaviour similarly observed in the deflected flapping mode of inverted flags
(Gurugubelli et al. 2015 figure 18; Sader et al. 2016 figure 9).

The filament exhibits a distinctly different oscillation motion under the TOc mode
compared with that under the DO mode. Figure 7 illustrates the time histories of the
midpoint and the sequential process of the TOc mode. Observing the motion, ym is
symmetric along the y = 0 axis, indicating symmetric upward and downward motion
along this axis. At T0, ym reaches its maximum value, whereas xm reaches its minimum
value. The filament subsequently begins its downward motion; ym crosses the y = 0
axis at T0 + δ, with the filament exhibiting a symmetric shape. At T0 + 2δ, ym reaches
its minimum value, signifying the end of the downward motion. After T0 + 2δ, an
upward motion commences, reversing the downward motion. Notably, the TOc motion
is completely periodic because of its more stable position compared with the inverted
state. Even as γ decreases to 0.001, the filament does not transition to a chaotic mode
but maintains periodic oscillation, differing from the behaviour of conventional flags
(Argentina & Mahadevan 2005; Alben et al. 2008; Shelley et al. 2011). This stability
is attributable to the presence of two clamped edges, which reinforce the filament’s
stability.

Here, we examine the wake pattern of the filament in different modes. Figure 8 illustrates
the instantaneous contours of ωz , and the power spectral density (PSD) of v at (x = 5,
y = 0) for the TOi mode, DO mode and TOc mode. For the TOi mode, shear layers
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Figure 7. Time histories of (a) mid-point (xm , ym ) in the TOc mode. (b) The sequential process of the TOc
mode (L/L0 = 3, γ = 0.02).
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Figure 8. (a) Instantaneous contours of ωz and (b) PSD of v (x = 5, y = 0) for the TOi mode (γ = 0.5), DO
mode (γ = 0.1) and TOc mode (γ = 0.02) under L/L0 = 3.

form at the front part and two clamped edges. Vortices shed from the upper and lower
edges, creating a symmetric 2S wake pattern. The oscillation frequency of the filament
aligns with the shedding frequency of the vortices in the TOi mode. By contrast, positive
vortices form at the front part of the filament, whereas negative vortices are generated on
the clamped edge opposite deflection for the DO mode. The negative vortices shed after
the positive vortices, resulting in an asymmetric wake pattern termed P. The irregular PSD
of v is caused by the aperiodic motion of the DO mode (figure 6). Moreover, the filament’s
oscillation frequency does not synchronize with the vortex shedding frequency ( fv > fym ).
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Figure 9. (a) Oscillation amplitude (Ay) and (b) oscillation frequency ( fym ) for conventional and inverted
initial states as a function of γ (L/L0 = 3).

Lastly, for the filament in the TOc mode, negative vortices form and shed from the upper
clamped edges, while positive vortices form and shed from the lower clamped edge.
After shedding, the positive and negative vortices align into two distinct rows, resulting
in a 2S wake pattern distinct from that of the TOi mode. The oscillation frequency of
the filament also aligns with the shedding frequency of the vortices in the TOc mode.
Additional details regarding the vortex shedding for each mode will be discussed later.

3.2. Effects of bending rigidity
In this section, we investigate the influence of bending rigidity on the mode transition
of the transverse buckled filament in a uniform flow. The ratio L/L0 is fixed at 3,
ensuring that the filament is sufficiently long to display the large-amplitude oscillations
characteristic of the TOi and TOc modes (figure 5). Figure 9 illustrates the oscillation
amplitude Ay and fym for both conventional and inverted initial states (as shown in
figure 4) under varying γ , accompanied by schematics depicting the superposition of the
filament’s instantaneous shapes at specific γ values. Here, fsi and fsc denote the vortex
shedding frequency of the corresponding rigid buckled filaments. Notably, for γ values
below the bifurcation point (denoted by a vertical thin line in figure 9a), the filament
remains in the TOc mode irrespective of its initial configuration. Prior to the critical γ

value being reached, Ay decreases after γ = 0.001 and remains nearly constant thereafter,
whereas fym gradually increases. In the range 0.001 ≤ γ ≤ 0.05, fym is greater than fsc,
indicating that the filament’s oscillation is attributable to the vortices shedding. After
surpassing the bifurcation point (denoted by a thin vertical line), the filament exhibits
the DO mode when under the inverted initial state, whereas it remains in the TOc mode
when under the conventional state. Particularly noteworthy is the sudden decrease in fym

for the filament under the DO mode (γ = 0.1) and the disruption of synchronization
between the filament’s oscillation and vortices shedding (figure 8). Notably, the large-
amplitude TOi mode is absent in the inverted initial state. When γ increases to 0.2, both
the conventionally and invertedly initiated filaments experience a substantial decrease in
Ay and their respective fym values converge to fsi and fsc, respectively. This behaviour
indicates that γ = 0.2 represents a critical value for L/L0 = 3, at which the motion shifts
to low-amplitude vibration for both inverted and conventional buckled filaments. When
γ exceeds 2, the filaments shift to the SS mode for both conventional and inverted
configurations. Although the filament motion is synchronous with vortex shedding for
the conventional buckled filament ( fv = fym ), no obvious lock-in or resonance is observed
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Figure 10. (a) The r.m.s. of the fluctuation lift coefficient (C ′
L rms ) and (b) the fluctuation drag coefficient

(C ′
D rms ) for conventional and inverted buckled filaments as a function of γ under L/L0 = 3.

when γ changes. This suggests that the TOc mode is not a typical vortex-induced vibration,
unlike the behaviour observed in elastically mounted cylinders.

To explore the effect of the fluid force applied by the surrounding flow on the filament,
we investigate the root mean square (r.m.s.) of the fluctuation lift coefficient (C ′

L rms) and
the fluctuation drag coefficient (C ′

D rms), as depicted in figure 10. Here, the drag coefficient
(CD) is defined as fx/0.5ρU 2L0 and the lift coefficient (CL ) is defined as fy/0.5ρU 2L0.
The drag and lift coefficients can be further decomposed into time-averaged components
(CD and CL ) and fluctuation components (C′

D and C′
L ). The values C ′

D rms and C ′
L rms are

employed to estimate the fluctuation of the fluid force, which is a primary driver of the
filament’s motion. The vertical black thin line denotes the bifurcation γ of conventional
and inverted buckled filament. The horizontal black and red line represent the C ′

L rms of
the corresponding rigid buckled filament, respectively. Both C ′

D rms and C ′
L rms exhibit

high values under low γ . This is caused by dramatic motion of the soft filament that
leads to a peak value of fluid force as the filament reaches its extreme position. As γ

increases, the filament motion becomes moderate, accompanied by a gradual decrease
in C ′

D rms and C ′
L rms . After the bifurcation point, the DO mode presents with a slight

decrease in C ′
D rms and C ′

L rms , attributed to the deflected shapes. When γ surpasses
the critical value (γ = 0.2), both C ′

D rms and C ′
L rms decline, attributed to the filament

motion shifts to low amplitude vibration. The values of C ′
D rms and C ′

L rms converge to
those of corresponding rigid buckled filament (C ′

D rms = 0 for rigid filament) as γ further
increases. Additionally, C ′

L rms of the conventional rigid filament is larger than that of
the inverted one. This difference results in the conventional buckled filament being more
prone to vibration compared with the inverted one under high γ (figure 5).

To elucidate the relationship between vortex shedding and filament motion, we analyse
vorticity and pressure contours surrounding the filaments, alongside time histories of
the midpoint position, fluid force, elastic force (Fs) and energy (figure 11). We first
investigate the dynamics of vortices shedding in the DO mode, examining distinct time
steps denoted as A, B, C and D (illustrated in figure 11a). Corresponding contours of ωz
and p at these specific times are displayed in figure 11(b). At time A, when xm reaches
its minimum and ym reaches its maximum, the filament is at its extreme position, with
Ek at 0. Simultaneously, a positive vortex forms at the top of the filament, whereas a
negative vortex sheds from the upper clamped edge. Notably, a high-pressure zone above
the filament induces its deflection. Both Es and cp remain at low values because filament
deformation is minimal. During the transition from A to B, the filament descends under
negative F f y , coinciding with shedding of the positive vortex. This shedding generates
a low-pressure region beneath the filament, resulting in a local minimum value of F f y

1006 A5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.30


Z. Chen, Y. Liu and H.J. Sung

(a) (b) (c)

x m
, y

m

ym

xm

Ffx

F f
x, 

F f
y  

Ffy

Fsy

Ek

Es

E s
, 
E k

Fsx

F s
x ,

 F
sy

0

−0.5

−1.0

2

0

0

−2

2

0
40 40

−2

1.0

0.5

1

0

−1

1

0

−1

1

0

−1

1

0

−1

180 190 200
t x

y

y

y

y

x

Vp

Vp

Vp

Vp

A

A

B

B

C

C

D

D

ωz
5
0 0

1.5

−5 −2

p

Figure 11. (a) Time histories of xm , ym , F and E . Instantaneous contours of (b) ωz and (c) p at A, B, C and
D for L/L0 = 3 and γ = 0.1 under the DO mode.

and a local maximum value of Fsy . In addition, F f x increases as the filament descends,
characteristic of static divergence, further driving the downward motion. At time B, xm
reaches its maximum and ym reaches its minimum, indicating the filament’s lower extreme
position, with Ek at 0. The filament’s largest cross-sectional area leads to a maximum
F f x , whereas Es peaks because of the large deflection. During the transition from B to
C, the filament ascends, with a negative vortex shedding at the upper clamped edge. This
shedding also leads to a local maximum value of Fsy . At time C, the shedding vortices
flow downstream, causing the corresponding low-pressure field to move away from the
filament, resulting in the maximum value of F f y . Finally, at time D, the filament returns to
its upper extreme position, concluding the DO motion. Interestingly, the choice of an initial
shape with a large deflection under the same parameters results in the filament exhibiting
a large-amplitude TOi mode, resembling the bistable properties of the transition between
the flapping and deflected modes observed in the inverted flag (Tang et al. 2015). These
observations highlight that the critical factor governing both the DO mode and the large-
amplitude TOi mode is whether the filament retains sufficient elastic energy to return to
its symmetric position. Our observations suggest that, because shedding downstream does
not substantially affect filament motion, vortex shedding is not the primary factor in the
DO mode. Instead, movement-induced variation of aerodynamic and elastic forces might
play a more substantial role, indicating that the DO mode resembles a ‘galloping-type’
oscillation (Goza et al. 2018; Tavallaeinejad et al. 2020).

Shifting our focus to the vortex dynamics of the filament under the TOc mode, figure 12
presents time histories of xm , ym , F and E , synchronized with instantaneous contours of
ωz and p at A, B, C and D. At time A, the filament reaches its upper extreme position with
maximum ym , minimum xm and Ek at zero. A positive Vs forms at the lower clamped
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Figure 12. (a) Time histories of xm , ym , F, and E . Instantaneous contours of (b) ωz and (c) p at A, B, C and
D for L/L0 = 3 and γ = 0.05 under the TOc mode.

edge, inducing a low-pressure region beneath the filament and resulting in negative F f y .
The value of Es peaks because of the substantial deflection of the filament. During the
transition from A to B, the filament descends under negative F f y and Fsy , accompanied by
shedding of the positive Vs . By time B, the filament adopts a symmetric shape with nearly
zero F f y and all elastic energy is converted into kinetic energy, facilitating continued
downward motion. In the period from B to C, a high-pressure region enclosed by the
filament forms, leading to a reduction in F f y . At time C, both ym and xm reach their
minimum values, marking the filament’s lower extreme position, with all kinetic energy
converting to elastic energy, resulting in maximum Es . A negative Vs emerges at the upper
clamped edge, creating a low-pressure zone above the filament. As the filament ascends
from C to D under positive F f y and Fsy , shedding of the negative Vs occurs. By time D, the
filament adopts a symmetric shape akin to point B, continuing its upward movement until
it returns to its upper extreme position, completing a cycle of the TOc mode. The filament
under the TOc mode clearly displays a more stable and periodic motion than the filament
under the DO mode, which we attribute to its more stable position. In addition, vortices
shed directly from the filament under the TOc mode, resulting in larger fluctuations of
the lift force (as observed in figure 10) and thereby substantially influencing the filament
motion. The large-amplitude oscillation initiates rapidly when γ is lower than a certain
threshold, and the amplitude increases as γ decreases, indicating that the TOc mode is
likely a self-induced oscillation. Moreover, no significant lock-in or resonance phenomena
were observed as the bending rigidity varied, further confirming that the TOc mode is not
a vortex-induced vibration.
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Figure 13. (a) Oscillation amplitude (Ay) and (b) oscillation frequency ( fym ) for conventional and inverted
buckled filament as a function of L/L0 (γ = 0.1).

3.3. Effects of filament length
In this section, we explore the influence of L/L0 on the filament’s motion. Based on the
results of § 3.2, we fixed γ at 0.1 to ensure that both conventional and inverted filaments
exhibit large amplitude TOi and TOc modes across a wide range of L/L0. Figure 13 shows
Ay and fym for conventional and inverted buckled filaments as a function of L/L0 under
γ = 0.1. At low values of L/L0, both conventional and inverted buckled filaments exhibit
small-amplitude oscillations attributable to the greater stability of shorter filaments. When
L/L0 exceeds 2.5, Ay of the inverted buckled filament increases, whereas fym decreases,
indicating a shift from the TOi mode to the DO mode. With further increases in L/L0
to 3, both Ay and fym increase for the conventional buckled filament, signifying a
transition from low-amplitude vibration to large-amplitude oscillation. As L/L0 continues
to rise, Ay of the inverted buckled filament decreases, whereas that of the conventional
buckled filament continues to increase. This tendency is attributed to the long filament
bending more than 90 degrees, where streamwise motion dominates, resulting in a
decrease in Ay . Conversely, the conventional buckled filament retains the TOc mode as
L/L0 increases, accompanied by decreases in fym .

We used instantaneous vorticity contours and the time history of F f to elucidate the
effect of L/L0 on filament motion for the inverted buckled filament, as depicted in
figure 14. For a short filament (L/L0 = 2), the wake exhibits a symmetric von Kármán
vortex street, resulting in sinusoidal F f x and F f y . The filament displays minor vibration
due to the low-amplitude variation of F f . When L/L0 increases to 3, the filament
transitions to the DO mode, accompanied by an asymmetric wake pattern. Both F f x and
F f y exhibit substantial variation that is notably greater than that of the filament under
L/L0 = 2, leading to an increase in Ay of the inverted buckled filament (figure 13a). The
deflection of the filament intensifies when L/L0 = 4. Importantly, the variation of F f x
exceeds that of F f y , suggesting that motion in the x-direction is dominant, resulting in a
decrease in Ay (figure 13a).

3.4. Effects of Reynolds number
The parameter Re plays an important role in the motion of buckled filaments. In
this section, we examine the effect of Re on both conventional and inverted buckled
filaments. For this analysis, we fix the parameters γ and L/L0 at moderate values of
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Figure 14. (a) Instantaneous contours of ωz and (b) time histories of F f for inverted buckled filament under
L/L0 = 2, 3, 4 (γ = 0.1).

0.1 and 3, respectively. Figure 15 shows the amplitude of Ay and fym for both inverted
and conventional buckled filaments as Re is varied. At Re = 50, both types of filaments
exhibit a small Ay . When Re increases to 100, Ay increases for both filaments. This
increase is attributed to the transition of the inverted buckled filament from a small-
amplitude to a large-amplitude DO mode and the conventional buckled filament to a TOc
mode. When Re surpasses 150, the inverted buckled filament exhibits a large-amplitude
TOi mode (as shown in figure 5b). This large-amplitude TOi mode is absent at low Re,
similar to the absence of flapping mode at low Re for inverted flags (Goza et al. 2018).
As Re increases further, Ay for both inverted and conventional buckled filaments stabilize,
whereas fym for the inverted buckled filament decreases. Interestingly, fym remains
constant as Re increases for the conventional buckled filament. This constancy aligns
with the conventional buckled filament’s vortex shedding frequency. The Strouhal number
(St), defined as fvs L0/U0, remains ∼ 0.2 for the conventional buckled filament and is
insensitive to variations of Re.

To clearly demonstrate the influence of Re on filament motion, figure 16 shows the
time histories of the midpoint (xm , ym) for both inverted and conventional buckled
filaments under different Re values. At Re = 50, the inverted buckled filament is in
a small-amplitude DO mode, indicated by a non-zero mean ym value, whereas the
conventional buckled filament remains in a near-equilibrium state. As Re increases to 200,
the inverted buckled filament transitions to a TOi mode, exhibiting periodic upward and
downward oscillations similar to the flapping mode of an inverted flag. Conversely, the
conventional buckled filament shifts to a TOc mode, characterized by a high oscillation
frequency and a relatively lower amplitude. At Re = 300, the inverted buckled filament
maintains large-amplitude oscillations, although the periodicity begins to break down.
The conventional buckled filament displays similar behaviour at Re = 300 as it did at
Re = 200, suggesting that the TOc mode is insensitive to changes in Re. When Re is
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Figure 15. (a) Oscillation amplitude (Ay) and (b) oscillation frequency ( fym ) for conventional and inverted
buckled filament as a function of Re(γ = 0.1, L/L0 = 3).
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Figure 16. Time histories of mid-point (xm , ym ) for (a) inverted and (b) conventional buckled filament under
different Re (γ = 0.1, L/L0 = 3).

increased further, the inverted buckled filament exhibits irregular motion, whereas the
conventional buckled filament continues to oscillate regularly. These observations indicate
that Re strongly influences the mode transition of the inverted buckled filament. By
contrast, the conventional buckled filament shows less sensitivity to changes in Re than
the inverted filament.

Here, we analyse the interaction between shedding vortices and the motion of the
filament in the large-amplitude TOi mode. Figure 17 shows the instantaneous vorticity
and pressure contours, along with the time histories of the midpoint position, fluid force,
elastic force and energy over one half of a transverse oscillation period. The filament in
the large-amplitude TOi mode displays a ‘2S + 2P’ wake pattern, distinct from the low-
amplitude TOi mode and the DO mode. At time A, the filament is at its upper extreme
position, identified by the maximum values of ym and xm . Concurrently, Es also reaches
its peak because of the substantial deflection. A negative Vs forms at the upper clamped
edge, and a Vp forms at the lower clamped edge. Notably, a high-pressure region enclosed
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Figure 17. (a) Time histories of xm , ym , F and E . Instantaneous contours of (b) ωz and (c) p at A, B, C and D
for Re = 200 under the large-amplitude TOi mode (γ = 0.1, L/L0 = 3).

by the filament develops, causing a local decrease in F f x and F f y . From A to B, the
filament initiates a downward motion driven by a large negative Fsy , with the shedding
of the negative Vs and positive Vp. The high-pressure region enclosed by the filament
dissipates, resulting in an increase in F f y . During the transition from B to C, the filament
continues to descend, with a decrease in F f y and an increase in Fsy . At time C, the filament
exhibits a symmetric shape, where ym reaches zero. Both F f y and Fsy are approximately
zero because of the filament’s symmetric shape. The value of Es reaches its minimum,
indicating low deflection at this point. From C to D, the filament continues its downstream
motion due to inertia, accompanied by the shedding of a negative Vp from the upper
clamped edge, induced by the previously shed positive Vp. The value of F f y decreases
during this period because of the static divergence of the inverted buckled filament,
contributing to the downward motion. At time D, Ek achieves its maximum value, Fsy
reaches a local maximum and F f y hits a local minimum. After time D, a high-pressure
region forms in the closure area, leading to an increase in F f y and a decrease in Fsy .
When the filament reaches its lower extreme position, the downward motion ceases and
a symmetric upward motion begins. Indeed, we note that the fluid force is higher for
Re = 200 than for Re = 100, which results in a larger deflection of the filament, enabling it
to store more elastic energy. Consequently, the filament can return to its symmetric position
after reaching its lower/upper extreme position, thereby contributing to the manifestation
of the large-amplitude TOi mode. On the basis of this analysis, the filament’s motion does
not synchronize with the vortex shedding frequency ( fv = 3 fym = 0.16), suggesting that
vortex shedding might not be the primary driver of the large-amplitude TOi mode. Instead,
the interplay between destabilizing fluid forces and stabilizing elastic forces likely governs
the dynamics of the TOi mode.
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3.5. Energy-harvesting performance
A dimensional analysis of the energy equations is employed to further evaluate the
contribution of each component on energy-harvesting performance. The term K in (2.15)
represents the curvature of the filament. By applying a Fourier transform to both sides of
(2.15), we derive the energy equation in the frequency domain

(iβeω + 1)V̂ = −iαeβeω
√

γ K , (3.1)

where ω = 2π fym represents the dominant angular frequency of the filament, V̂ is the
amplitude, γ denotes the bending rigidity, K is the local curvature of the filament and
αe and βe are the coupling coefficient and the tuning coefficient of the electrical system,
respectively. By combining Parseval’s theorem with (3.1), the mean power coefficient cp
can be estimated by

cp ∼ 1
βe

∫ 1

0
V̂ 2ds ∼ 1

βe

(βeω)2

(βeω)2 + 1
γα2

e K 2. (3.2)

Given the small value of βe used in this study, the expression simplifies to

cp ∼ γβeα
2
eω2K 2. (3.3)

From this analysis, we can directly assess the influence of bending rigidity, oscillation
frequency and filament deformation on energy harvesting. The deformation and oscillation
frequency are particularly significant, as cp is proportional to the square of curvature,
indicating that the motion combine high frequency and large deflection is beneficial to
energy harvesting. Although cp is only linearly proportional to γ , the activation range of
γ spans several magnitudes closely impacting cp.

Finally, we assess the energy-harvesting performance of both inverted and conventional
buckled filaments, using a streamwise configuration for comparison. Because of the
presence of clamped edges, the buckled filament possesses considerable elastic energy
in its initial shape. Therefore, we use the available time-averaged elastic energy (E

′
s =

Es − Es min) and power coefficient (c′
p = cp − cp min) to evaluate the harvested energy

during filament motion. Figure 18 illustrates E
′
s and c′

p for both conventional and inverted

buckled filaments as a function of γ . All configurations exhibit relatively low E
′
s and

c′
p values under low γ . As γ increases, both E

′
s and c′

p gradually increase because they
are functions of γ . When γ surpasses 0.012, the streamwise-clamped filament transitions
from the STO mode to the streamwise oscillation mode, leading to a sudden decrease
in E

′
s and c′

p (Mao et al. 2023). As γ increases to 0.02, the c′
p of both conventional

and inverted buckled filaments reaches its maximum value. At γ = 0.1, the DO mode
emerges, exhibiting substantial E

′
s value because of its large-amplitude deflection.

In contrast, the c′
p in the DO mode is lower than that of 0.02 due to the reduced oscillation

amplitude. Both inverted and conventional buckled filaments transition to low-amplitude
oscillation at γ = 0.2, resulting in a decrease in E

′
s and c′

p. As γ increases further, both

configurations eventually stabilize, causing E
′
s and c′

p to decrease to 0. From this analysis,
the transversely clamped filament demonstrates superior energy-harvesting performance
across most values of γ compared with the streamwise configuration. This improvement
is driven by the higher oscillation frequency and greater critical bending rigidity of the
transversely clamped setup.
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Figure 18. Values of (a) E
′
s and (b) c′

p for conventional and (b) inverted buckled filaments as a function of
γ under L/L0 = 3. The results are compared with those for a streamwise-clamped (snap-through) buckled
filament.
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Figure 19. Values of (a) E
′
s and (b) c′

p for conventional and (b) inverted buckled filaments as a function of
L/L0 (γ = 0.1).

Figure 19 depicts the influence of L/L0 on E
′
s and c′

p for both inverted and conventional
buckled filaments. At L/L0 = 2, both configurations exhibit low values of E

′
s and c′

p,
which are attributed to the low-amplitude vibration. As L/L0 surpasses 2.5, the inverted
buckled filament transitions from the small-amplitude TOi mode to the DO mode, resulting
in a significant increase in E

′
s and c′

p due to the large deflection characteristic of the DO
mode. As L/L0 continues to increase, both E

′
s and c′

p decline for the inverted filament,
which is attributed to a reduction in oscillation amplitude (figure 13). In contrast, when
L/L0 reaches 3, the conventional buckled filament enters the large amplitude TOc mode,
leading to an increase in E

′
s and c′

p. Further increases in L/L0 cause E
′
s and c′

p to decrease,
due to a reduction in oscillation amplitude and frequency. The inverted buckled filament
achieves higher E

′
s due to its large deflections in the DO mode, while the conventional

buckled filament demonstrates higher c′
p, driven by its higher oscillation frequency.

The parameter Re also influences the energy-harvesting performance. Figure 20
illustrates E

′
s and c′

p for the inverted and conventional buckled filaments as Re varies.
At Re = 50, both inverted and conventional buckled filaments exhibit low values of
E

′
s and c′

p, which is attributed to their low oscillation amplitudes. As Re increases to
100, the inverted buckled filament transitions to a large-amplitude oscillation, whereas
the conventional buckled filament switches to a TOc mode, resulting in an increase in
E

′
s and c′

p. As Re increases further, the inverted buckled filament maintains its
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Figure 20. Values of (a) E
′
s and (b) c′

p for the inverted and (b) conventional buckled filaments as a function of
Re(m1 = 0.1, L/L0 = 3).

TOi motion, leading to a continuous increase in E
′
s and c′

p. In contrast, the values for the
conventional buckled filament increase with Re. The higher c′

p of the conventional buckled
filament can be attributed to its increased oscillation frequency, as shown in figure 15.

4. Conclusions
We investigated the flow-induced oscillation of transversely clamped buckled flexible
filaments using the penalty IB method. The transversely clamped buckled filament can
be categorized as either an inverted buckled filament or a conventional buckled filament
on the basis of its position. Four distinct modes were identified for both the inverted
and conventional initial conditions asγ and Re varied: the TOc mode, the TOi mode,
the DO mode and the SS mode. At a low γ , the filament converges to the TOc mode
irrespective of its initial shape because it cannot resist the streamwise fluid force. The
TOc mode resembles the flapping mode of a conventional flag, excited by unsteady fluid
forces generated by the 2S wake pattern. When γ increases to a bifurcation point, the
inverted buckled filament can maintain its shape against the incoming flow, leading to
the DO mode. The DO mode is characterized by the large deflection but low oscillation
frequency motion with a ‘P’ wake pattern. The TOi mode resembles the flapping mode
of an inverted flag, with small- and large-amplitude TOi modes identified, exhibiting ‘2S’
and ‘2S + 2P’ wake patterns, respectively. Multistability was observed around γ = 0.1,
with filaments shifting to the TOc mode, TOi mode or DO mode on the basis of their
initial conditions. Both inverted and conventional buckled filaments sustain the SS mode
when γ is sufficiently high. When L/L0 increases to around 3, the filaments initiate large-
amplitude oscillations. For the inverted buckled filament, the deflection of the filament
in the DO mode becomes larger and the streamwise motion gradually dominates as
L/L0 increases. By contrast, the oscillation amplitude increases with increasing L/L0
for the conventional buckled filament. The parameter Re plays an important role in the
behaviour of the inverted buckled filament, with larger Re values contributing to the
presence of the large-amplitude TOi mode. Conversely, the conventional buckled filament
is almost insensitive to Re under moderate γ . Finally, we estimated the energy-harvesting
performance by considering the elastic energy and power coefficient. Transversely
clamped buckled filaments exhibit better energy-harvesting performance than streamwise-
clamped buckled filaments. Our investigation of the basic configurations of a transversely
clamped buckled flexible filament provides important insights into advanced flow-induced
applications in energy harvesting.
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