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To RICHARD BRAUER on his sixtieth birthday

NOBORU ITO

Let Ω be the set of symbols 1, 2, . . . , 3p, where p is an prime number

greater than 3. Let © be a transitive permutation group on 4?, which is simple

and in which the normalizer of a Sylow /^-subgroup has order 2p. Our purpose

is to prove the following two theorems:

THEOREM 1. If (S is primitive on Ω, then p = 5 and © is isomorphic to the

alternating group 3I6 of degree 6.

THEOREM 2. If % is imprimitiυe on Ω, then © is isomorphic to the linear

fractional group LF(2, 2m) with 2m+l=p.

Our proof of Theorem 1 is fairly complicated. Theorem 1 implies that such

a group ® cannot be doubly transitive. This fact will be proved in § 2. There

the irreducible characters of dimension two of the symmetric group on Ω play

an essential role as in our previous papers [14], [15]. We need also, however,

recent result of Thompson [18] concerning groups of odd order. In § 3 we treat,

roughly speaking, the almost doubly transitive case. There a result of Wielandt

concerning the eigenvalues of intertwining matrices is very useful [21]. With

the help of this theorem of Wielandt, some results of Brauer and Suzuki [4],

[17] concerning groups whose Sylow 2-subgroups are dihedral groups of order

either 4 or 8 respectively can be used. In § 4 we consider, roughly speaking,

the strongly simply transitive case. For this case we need again some deep

results.

Theorem II is a simple consequence of our previous result [14].

Finally, we want to emphasize that we need from beginning to end Brauer's

^-block theory of irreducible characters.
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124 NOBORU ITO

§ 1. Proof of Theorem 1. Generalities.

1. Since (3 is simple, the normalizer of a Sylow ^-subgroup of (S is a

dihedral group of order 2p by the splitting theorem of Burnside. Hence the

principal ^-block Blip) of irreducible characters of © consists of two non-

exceptional characters, the principal character A and the other character X,

whose degree is congruent to ± 1 modulo p, and a family of ~γ(p-l) p-

conjugate exceptional characters C, (ι = l, . . . , -κ-(p — 1)). The equation

(1) A(X) + εX(X) - εd(X) = 0

holds for every ^-regular element X of <§> and for every i = 1, . . . , -^-(p — 1),

where ε = ± 1 according as the degree of X is congruent to it 1 modulo p. Let

P be an element of order p. Then we have

(2) X(P) = ε

and

-y(p-l)

(3) Σ C,(P)= - e .

All the other irreducible characters Dy (/ = 1, 2, . . .) of (S belong to ^-blocks

of defect 0([3], §1).

We consider © as usual as a linear group consisting of permutation matrices.

Let a be the character of © in this sense. Then for every element X of (S

a(X) denotes the number of symbols of Ω fixed by X Since (S is transitive

on Ω, the decomposition of a into its irreducible components is as follows:

(4) α α ) = A ( I ) f ^ ( I ) + c Σ C i ( I ) + Y ( I ) }

where x and c are non-negative integers and Y is a linear combination of D/s

with non-negative integers. All the C/s have the same coefficient c, because

they are algebraically conjugate to one another (* = 1, . . . ,--«-(.£ —1)).

2. Now we want to show that

(5) e= - 1 , # = 1 and c = 0 in (4).

In order to show this, let us assume at first that p>5. Put X= P in (4).

Then from (2), (3) and (4) we have
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(6) C = #+ε,

because Y vanishes at P by a theorem of Brauer-Nesbitt ([8], Theorem 1).

Put JY"=l*in (4). Then from (1) and (6) we have

(7) 3^ = 1 + *X(1) + (* + e) -~ (j>- 1 )(X(1) + ε) + Y(l).

Now assume that ε = l. Then since (S is simple and hence X(l)>i>+1, we

obtain from (7)

which implies the contradiction p^5. Hence ε= - 1 . Next assume that x^

Then since (S is simple and hence X(l)^p — 1, we obtain from (7)

which implies the contradiction p ^ 5. Hence x = 1 and c = 0 by (6).

Now let us assume that p = 5. Though it is a little troublesome to handle

with this case from the beginning, all the primitive groups of degree lδ are

known. There are 6 types of such groups. Among them only the group, which

is isomorphic to 3ί6, appears here. Therefore it is easy to check the validity

of (δ) in this case.

Put X = B. Then (1), (2), (3) and (4) can be rewritten as follows:

(1.1) A(X)-4-C, U ) = B ( Z ) ( ί = l, 2, . . . , γ(p-

(2.1) B ( P ) = - 1 .

-f-(P-i)
(3.1) Σ C;(P) = 1.

i = l

(4.1) cc(X) •= A{X) +B{X) + Y(X).

3. Let / be an involution in the normalizer of the Sylow ^-subgroup <P>

of (§>. Let g and z denote the orders of (S and the centralizer of /. Then

applying the method of Brauer-Fowler ([7], (23)) we have

(R) * ^ v Z(/)2Z(P)
(8) / , = _ i J _ _ _ _ ,
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where Z ranges over all the irreducible characters of (§. Since all the characters

of defect 0 for p vanish at P by a theorem of Brauer-Nesbitt ([8], Theorem 1),

(8) can be written as follows:

(9) p-ί Σ
g Zefii(p)

Let vp — 1 be the degree of B. Then the following equation can be obtained

from (9) using (1.1), (2.1) and (3.1):

(10) (vp - l)(vp -2)pz2 = g(vp- 1 - B(/))2.

There is just one class of conjugate involutions in (§. In fact let K be an

involution which is not conjugate to /. Then the method of Brauer-Fowler

yields us B(K) = vp — 1, which contradicts the simplicity of (S.

Now since the centralizer of J contains a Sylow 2-subgrouρ of (S, the equa-

tion (10) tells us something about the order of a Sylow 2-subgroup of ®.

According to the degree of B we distinguish three cases, each of which is

handled separately, since we see from (4.1) that v equals either 3 or 2 or 1.

§ 2. The case in which the degree of B is 3p - 1 .

4. Let us assume that the degree of B equals 3p — l. Then the equations

(4.1) and (10) take the following forms:

(4.2)

(10.1)

The equation (4.2) tells us in particular that © is doubly transitive on Ω.

By a theorem of Brauer ([3], Lemma 3) we have

B(jΓ) = - 2 or 0 or 2.

Since α ( / ) ^ 0 the case B(/)= - 2 does not occur by (4.2). Now assume that

B(/) =2. Then by (4.2) we have

(11) α(/ )=3,

and (10.1) can be read as follows:

(10.2) (3p-l)(3p-2)pz2 = 9(p-l)2g.

Since (S is doubly transitive, © contains an involution / with the cycle
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structure (12) . . . . Let $ denote the subgroup of ® consisting of all the

permutations of (S each of which fixes each of the symbols 1 and 2. Then I

is contained in the normalizer of &. Hence there exists a Sylow 2-subgroup %

of $, whose normalizer contains /. © = £</> is a Sylow 2-subgroup of <§. In

fact otherwise we must have 3p Ξ=1 (mod. 4). Then the equality (10.2) shows

that g must be odd, which is a contradiction. Since / and / are conjugate

with each other, / fixes by (11) just three symbols different from 1 and 2, say

3, 4 and 5 of Ω. Let X be an element of %, which is commutative with /. Then

since a(X) 5Ξ3 and is odd, X must fix just one symbol, for instance 5, of the

symbols 3, 4 and 5, and the cycle structure of X is of the form (34) (5) . . . .

Since every involution fixes just three symbols of Ω, X must be an involution.

Let Y*X> Y be an element of ϊ , which is commutative with I. Then Ymust

fix, like X, just one symbol of 3, 4 and 5. If it is 3, Y has the cycle structure

(3)(45) . . . . Then XY belongs to % and has the cycle structure (354). . . ,

which is a contradicition. The same holds for 4, too. Hence Y must fix 5,

and has the cycle structure (34)(5) . . . . Then XY belongs to % and fixes

the symbols 1, 2, 3, 4 and 5. This implies that XY= 1, and since X is an in-

volution, X= Y, which contradicts our assumption on Y. Therefore the centra-

lizer of / in © has order 4. Thus by a theorem of Suzuki ([18], Lemma 4) ©

contains an element L such that © = </, JL> and /L/= L""1H2α"2ε, where 2a is the

order of © and ε equals either 1 or 0. Let / be the exact exponent of 2 divid-

ing p-l. Then we obtain from (10.2) the following equality:

(12) 0 = 2 / ~ l .

The simplicity of % implies that a is greater than 1. This implies by (12)

that the order of L is greater than 2. Now it is easy to see that the cycle

structure of L is of the form either L = (l)(2)(i)R or L = (12)(i)Rf where i#1, 2

is a symbol of Ω and R consists of cycles of order 2β~1. In any case this shows

that p-l is divisible by 2α~1, that is, / j > α - l . Hence we obtain from (12)

that a = 3 and © is a dihedral group of order 8.

Let us consider the principal 2-block Bι(2) of irreducible characters of ®.

By a theorem of Brauer-Tuan ([10], Corollary of Lemma 3) By (2) contains at

least either B or all of the (Ys(ι = l, . . . , ^ ~ ( ^ > - l ) ) , because there is no

element of order 2p from our assumptions. Assume that Bχ{2) does not contain
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any C, . Then by a theorem of Brauer-Tuan ([10], Lemma 3) we have the

congruence

(13) Σ Z ( l ) Z ( P ) s O (mod 2"),

where Z ranges over all the irreducible characters of ® belonging simultaneously

to Bι(p) and £i(2). But the left hand side of (13) equals l + ( 3 ί - l ) ( - l )

= - (3p-2), which is a contradicition. Hence Bt(2) contains all the C, 's. On

the other hand BΛ2) consists of five characters ([5], [17] and for a detailed

presentation see [13]). Thus we have obtained the inequality -^-(^ + 1)^5,

which implies that p = 5. Now again we have only to check six primitive groups

of degree 15 and we see that there is no group with required properties. There-

fore we must have that B(/) =0 and by (4.2) that

(14) α(/) = l.

Furthermore (10.1) becomes the following form:

(10.3) (3p-2)pz2=(3p-l)g.

(10.3) tells us in particular that the order of a Sylow 2-subgroup of © equals

the power of 2 dividing 3p — l. Hence B is a character of defect 0 for 2* In

particular by a theorem of Brauer-Nesbitt ([8], Theorem 1) we have

(15) «(X)=1

for every 2-singular element X of ©.

5. Let © denote the symmetric group on Ω. LetX : andX.. be irreducible

characters of @ corresponding to the diagrams

o o . o and ° ° * °
o o

By a theorem of Frobenius (12) we have the formulae

/a{X)-l
(16) X U ) =

v 2

and

where X ia an element of @ and β(X) denotes the number of transpositions
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in the cycle structure of X.

Now since (S is doubly transitive, we have ((11), p. 1.64)

(18) Σ «(*)=#, Σ

Using (18) we obtain from (16) and (17)

Hence by the reciprocity theorem of Frobenius A does not appear as an ir-

reducible component of X : and X.. restricted to ®. Let

(19) X : = '

and

(20) X.. ̂

be the decompositions of X : and X.. into irreducible characters of (S.

We want to show that

(21) b = b> = cl = c.-1^1.

To this end, we first compare the values of both sides of (19) and (20) at

R Then using (2.1), (3.1) and a theorem of Brauer-Nesbitt ([8], Theorem 1)

we obtain from (16) and (17) the equalities 1= ~b-\-c and 0= — δ'-f c'.

Next let us observe the generalized character (X :. -X..)B. Then we have

Σ (X.(X)-X.AX))B(X)
xe©

Σ (l-2β(X))(a(X)-l) (by (4.2), (16), (17))

Σ C- l + « W ) = 0 (by (15)).
e©

This implies ^ = b'.

Let us .assume that b>l. Then we have that b^2 and c>3. Comparing

the degrees of the characters on both sides of (19) we have that

l ) + S . ( ί

which implies the contradiction 0 > A Therefore we must have that
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Now we distinguish two subcases b — 0 and b = 1, though they can be treated

rather similarly. In any case, we can use, roughly speaking, the same routine

as in the previous paper [15].

6. At first we handle the subcase b = 0. Then the equations (19) and (20)

are read as follows:

(19.1) X :

and

(20.1) X.. = t y ,

Since B is orthogonal to X : + X . . in this case, using (18) we obtain

(22)

In particular © is triply transitive on Ω [21].

Using (15), (18) and (22) we can calculate the norm of X : and X.. from

(16), (17) and (19.1), (20.1) as follows:

(23) Σ(4-(αU)-l)(«m-2)-0U))2

Σ j9(X)2-3

(24) Σ(iαU)UW)-3)

1

Eliminating the expression Σ ~a(X)4 + Σ β(X)2 from (23) and (24) we have

(25) Σ ĵ = γ(^-3)+Σαy.

7. Let e be the principal character of ί¥ and e* be the character of ©

induced by e. Since © is doubly transitive, by a theorem of Frobenius [12]

we have the following equation
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Substituting (19.1) and (20.1) into this equation, we have

(26) e* = A + 2B Σ

Let Ω2 denote the set of vectors (x, y), where x^y and x, y belong to Ω.

The basis of our proof rests on the following theorem ([22], 28.4, 29.2): the

norm of e* equals the number of domains of transitivity of ^ on fe.

By (26) the norm of e* equals

1 + 4+ - | - ( ί - l ) *

Put T= Ω- {1, 2}. T2 is the set of vectors (xty), where x*y, and x,y e T.

The vectors (1, 2) and (2, 1) themselves constitute domains of transitivity of

$ and furthermore the vectors of forms (i, T) and (T, i) (ί =1, 2) each con-

stitute domains of transitivitity of $. Therefore we see that the vectors of T2

are divided into

domains of transitivity of St. By (25) this number will be transformed into

(27) ί

Since ® is triply transitive on Ω and hence $ is transitive on Tt every

domain of transitivity of $ from T2 contains a vector of the form (3, x) with

8. Let 2 denote the subgroup of © consisting of all the permutations of

© each of which fixes each of the symbols 1, 2, 3. At first assume that 2 fixes

no symbol from Ω other than 1, 2 and 3. Then since the order of 2 is by (15)

odd, every domain of transitivity of $ from T2 contains at least three different

vectors of the form (3, x) with ΛΓG T. Then we see at once that there exist

at most p — l domains of transitivity of $ from T2. Then from (27) we have

the following inequality

(28) l ^ Σ β i + Σβifc.

If all the a/s are zero, comparing the values at the identity element of both

§ide$ of (19.1) we have the contradiction
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Y {Sp - l)(3p - 2) = jf (p - 1)(3p - 2).

Hence (28) turns out to be an equality. This means that there exist just p - 1

domains of transitivity of $ from T2 and every domain of transitivity of 2 from

T-{3) has length 3. The latter fact implies that 2 is an elementary abelian

3-group. It is easy to check that the normalizer of 2 in $ coincides with 2

Therefore by the splitting theorem of Burnside ® contains the normal 3-comple-

ment 9ft of order 3^-2 . Every element =*F1 of 2ft fixes just two symbols of

Ω, 1 and 2. Now let / be an involution of (3 with the cycle structure (12) (3)

. . . . Then / normalizes $ and therefore 9ft. By (15) / fixes only the symbol

3 from Ω. Hence / centralizes only the identity element of 9ft. Therefore 9ft

must be abelian. Under this circumstances we want to show that the order of

2 is smaller than 3p - 2.

Let O be a Sylow q- subgroup of 2ft and let 2α be the centralizer of O in

2. Then the factor group 2/2& is isomorphic to an automorphism group of

O. Let q vary over all the prime divisors of 3p-2. Then obviously 2 is

isomorphic to a subgroup of the direct product of all the 2/2o's. Therefore

we have only to show that for every prime divisor q of 3 ^ - 2 the order of

2/2α is smaller than that of Q. Then the ordinary Frattini argument allows

us to assume that D is elementary abelian (of order qn). So we can assume

that 2 is a subgroup of the general linear group GL(u, q). Moreover we can

assume that 2 is irreducible in the prime field of characteristic q. This implies

that 2 is cyclic (of order 3). There remains nothing to prove.

Let / be the order of 2. Then there holds

g=3p(3p-l)(3p-2)L

Substituting this value of g into (10.3) we have

Hence we can put

(29) 3!=m2.

On the other hand by the theorem of Sylow (for p) we have that m2 = 1 (mod

p), which implies m = ± 1 (mod p). Since m is odd>l by (29), we obtain that

—1, So we have the following inequality
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which implies the contradiction p^2.

9. Therefore 2 must fix at least one symbol from Ω, say 4 different from

1, 2 and 3. Now we can assume, without loss of generality, that 2 fixes just

i symbols, 1, 2, . . . , * U>4) of Ω. Let Ns2 denote the normalizer of 2 in ®.

Put Φ = {1, 2, . . . , i). Then the factor group Ns2/2 is a triply transitive

permutation group on Φ ([22], 9.4). Clearly every permutation = 1̂ of iVs2/2

fixes at most two symbols of Φ. Hence the order of Ns2/2 equals /(z — l)(ί — 2).

The degree i must be odd by (15). Therefore using a theorem of Zassenhaus

[24] we obtain that iVs2/2 is isomorphic to LF(2, 2m) with 2m + l = ι.

In these circumstances let us assume at first that 2 has at least one domain

of transitivity from T whose length is greater than 3. Now we can show that

(30) i<>/~p.

To this end let Ψ be a domain of transitivity of 2 from T with length / > 3 .

Let 5Ϊ/2 be a Sylow 2-subgrouρ of Λfeδ/iH. Then for any involution X of Ή ^

have Ψ Π Ψx = 0. In fact Ψx is again a domain of transitivity of 2 from T. If

Sf rnyY#0, then we have Ψ=ΨX. But this means that X fixes at least one

symbol in ψ, because the length of Ψ is odd. This contradicts (15). Let Ψ*

be the set of all the different Ψx with any element X from JVsS. Then we can

consider Ns2l2 as a transitive permutation group on Ψ*. Let §78 be the sub-

group of Λfr2/2 consisting of all the elements of Ns2/2 each of which fixes Ψ.

Then the order of §72 * s ' a s * s shown above, odd. Then we see from a pro-

perty of LF(2, 2m) that §72 i s cyclic of order at most 2 m + l . Therefore Ψ*

contains at least f2m(2m- 1) symbols of T. Thus we have obtained the follow-

ing inequality

2m + 1 + 5.2m(2™ - 1) ^ 2m + 1 +/2m(2™ - 1) ^ 3p.

Let assume that i*^\J p . Then we obtain from above the following in-

equality :

which implies that
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So we obtain that p^ 37. Since p = - 1 (mod 4) by (15) we have only the

following possibilities p = 7 11; 19; 31. Furthermore 3/>~l must be divisible

by 32, because m is odd and bigger than 3. The last fact follows from the

fact that any Sylow 3-subgroup of 2 has index 3 in a Sylow 3-subgroup of ©.

Then we see that only the case p = 11 is possible. But if p - 11, we must have

that S = 1, which contradicts our assumption on 2.

Let j be the number of domains of transitivity of 2 with length 3 from T.

Then by a theorem of Bochert [1] we have that

(31)

Now there exist at most

domains of transitivity of $ from T2. Here we notice that the number in (27)

is not smaller than p - 1, because it is shown to be impossible in 8 that all the

a/s are zero. Then we have the following inequality

which implies

So by (30) and (31) we obtain the following inequality

which implies that p ^ 37. This has already been shown above to be impossible.

Thus we can assume that all the domains of transitivity of 2 from T - Φ

have length 3. Then we want to show that we are essentially in the same

situation as in 8. At any rate 2 is an elementary abelian 3-group. Let / be

an involution with the cycle structure (12) . . . . Let q be a prime divisor of

3 £ - 2 and D be a Sylow ^-subgroup of $ such that the normalizer of O

contains 7. Then we see as in 8 that O is abelian. Hence ff is an A-group of

odd order. Therefore by a theorem of Thompson [181 $ is soluble. Let Wl be

a Sylow 3-complement of ® such that the normalizer of 531 contains /. Then

we see again that 9ft is abelian. Let 9M be the largest normal subgroup of $

contained in 9Jί. We want to see that Tl = ΊR. Assume that 2JΪ#3K. Then let
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us consider the centralizer of ψί in $. Since 3JΪ is abelian, this has the form

9JΪ2' with S' § 2. If 2' * 1, then 2' becomes a normal 3-subgroup * 1 of H. This

is a contradiction. So we have that 331 = $ft. The rest is just the same as in

8. Therefore the subcase b = 0 cannot occur.

10. Next we consider the subcase £ = 1. In this case the equations (19)

and (20) take the following forms:

(19.2) X :

and

(20.2) X.. =

Corresponding to (22), (23), (24) and (25) we have now

(22.1)

(23.1) J](~(a(.X) -l)(a(X) -2) -

ΛΈΞ© *

1

i + 4 -2-(ί-:

(24.1) g

h Σ βU)2~7

(25.1) Σ*} = Y ( 3 ^ " 5 )

Furthermore corresponding to (26) we have now

(26.1) e*

Hence the norm of e* equals

Let ξ) denote the subgroup of © consisting of all the permutations of ©

each of which fixes the symbol 1, and let h be the order of £). Let us consider
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the norm of B restricted to ξ> and put

(32) Σ B ( X ) 2 = Σ

The same equality holds for any conjugate subgroup of ξ> in (§. Adding up

(32) over all the conjugate subgroups of ξ> in ©, we have

(33)

By (18) and (22.1) we see that the left hand side of (33) equals Ag. Thus

we have proved that Λ = 4. Therefore by ([22], 28.4, 29.2) Ω- {1, 2} is divided

into three domains of transitivity of $, say 7X0 (* = 1, 2, 3). Let U be the

length of T(i). Then we have

(34) fc + fc+ίβ=3/>-2.

By T(i)2 is meant the set of vectors (x, y), with x*y, x, y e T{i). Now

the vectors (1, 2) and (2.1) themselves constitute domains of transitivity of $

and furthermore the vectors of (*, TO')) and (T(j), i) (i = 1, 2; y = l , 2, 3)

each constitute domains of transitivity of $ from Ώ2. Therefore we see that

the vectors or T(ι)2 and (Tit), T(j)) (/, i = l, 2, 3; / ^ ) are divided into

domains of transitivity of ® from &. By (25.1) this number will be trans-

formed into

(27.1) 6 ^ - 4 + 2 Σ ay + 2 Σ ajbj.

Let nk be a symbol of T(k) and Ŝ  be the subgroup of $ consisting of all

the permutations of ^ each of which fixes the symbol nk(k = l, 2, 3). Let in

and jk denote the numbers of domains of transitivity of 2fc from Til) + T(2)

+ T(3) having lengths 1 and 3, reβpetively (A = l, 2, 3). Let us assume at

first that for every k = 1, 2, 3, Sit has a domain of transitivity of length greater

than 3 from Q. Then since © is doubly transitve, we have, by a theorem of

Bochert [2], the following inequalities:

(35) 2p + 2 V | ^ ^ 2 -f- & + 3 jk ik = 1, 2, 3)

Every domain of transitivity of it from T(l)2, (7X1), 7X2>) and (7X1Λ 7X3))
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contains a vector of the form (nu *). Hence there exist at most

(36) , ίL^-i-3A

domains of transitivity from Γ(l)2, (Γ(l), T(2)) and (7X1), Γ(3)). The same

holds also for T(2)2, (Γ(2), 7XΌ), (Γ(2), 7X3)) and Γ(3)2, (T(3), Π D ) , (T(3),

T(2)). Adding up three numbers of type (36) we see that there exist at most

(37) *£rJλ'+ ̂ (i^iz + Q + ^ij^jz+j,)

domains of transitivity of Se from T(k)2 and (T(k), 7XD) (*, 1 = 1 , 2 , 3 ; * * 1 ) .

Let J be an involution whose cycle structure has the form (12) . . . . By

(14) / fixes just one symbol, say ocJf of Ω. Without loss of generality we can

assume that ocj belongs to T(3) and OCJ = αr3. Since / belongs to the normalizer

of K, J transfers T(l) into one of TUTs. ( ί = 1, 2, 3). If it is Γ( l ) , then since

/ does not fix any symbol of T3 the length of T(l) must be even, which is a

contradiction. Moreover since / fixes the symbol a3t J fixes 7\3). Hence /

interchanges T(l) with 7X2). In particular we see that Lx and Z^ are conjugate

in the normalizer of K. and that iι = *2, j \ - J2 and tι = f2.

Let Φz be the set of all the symbols of T(l) + 7X2) + T(3), each of which

is fixed by all the permutations of S3.

In the first place, let us assume that Φ% is contained in 7X3). We consider

the normalizer Ns%3 of 2s in ©. Then by a theorem of Witt ([22], 9.4) Ns23/v5

is doubly transitive on Φ3 U {1, 2}. Furthermore since $ is transitive on 7X3),

we see by a theorem of Jordan ([22], 3.6) that Λ'sSaΠ^ is transitive on Φ o.

Hence iVsSa/Ss is triply transitive on 03U{1, 2} and has the order (ί3 + 2)(i3

4-l)ί3. Since i3 is odd, we obtain by a theorem of Zassenhaus ([24]) that

iVs£3/2.3-LF(2, 2m), where 2m = ι3 + l."

Now if .ί3̂ V"jf>~! then we obtain as in 9. that p^37. Hence again by (14)

we have only the following possibilities p = 7; 11; 19; 23; 31. Here 3/>-2

cannot be a prime number. In fact, otherwise, since the degree of d equals

3p-2, the order of ® must be divisible by 3 ί ~ 2 by a well known theorem

and this implies the triple transitivity of © contradicting our assumption b = 1.

So it remains only the following two possibilities p = 19 31. Furthermore if

£ 3 has the domain of transitivity of length >δ, the same method as in 9 assures

us that ^ < 1 9 . Hence we can assume that & does not possess any domain of
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transitivity of length > 5. The order of S3 is therefore of the form 3μ5\ If

p = 31, then since the order of $ is, as is noticed above, divisible by 91, we

have that h = Q (mod 91). This contradicts (34), because ti = t2>l. So we

must have that p = 19. Let fe denote the number of domains of transitivity of

S3 with length 5. Then we have the following equality: 2 + 6 + 3.73 + 5fe = 57.

The same method as in 9 shows us that £3^*3 ( 6 + D Hence we have that

U + 513U3 4-1) ^ 55, whence follows that iό ^ 3. This contradicts our assumption

that ί 3 ^ 1 9 > 4 .

Therefore we can assume that U<jp . Then using this inequality we have

from (27.1), (35) and (37) that

Then we have easily that p< 19. This is, as is already shown above, a con-

tradiction.

Next let us assume that Φz is not contained in TV Then without loss of

generality we can assume that Φz contains a symbol of T(l ) and namely ecu

Then S3 is contained in Si. Since we can choose the symbol a% in such a way

that the cycle structure of / has the form / = (12)(az)(aicc2) . . - , we can

assume that S3 is also contained in S2. In particular we have that h==0 (mod

*i( =» fe)). In this case Φu (Φ%) the sets of all the symbols of Γ( l ) + Γ(2) + T(3),

each of which is fixed by all the permutations of 81(82), must be contained in

T(l) + T(2). Otherwise, for instance, if Φx is not contained in T(l) + T(2),

we obtain that Si^Sβ and tι-U = U. The latter fact contradicts (34). In

particular we have that ft>fc. K U:U>Zt then we have from (34) that

γ Now using the fact Φx U Φ2£ T(l) + Γ(2) we obtain from

(27.1), (35) and (37) the following inequality

*¥•)+ U
This implies a contradiction that p<5. Hence we must have that U=*Ztχ

3 2
Then we have from (34) that U = -ς-p— ~c~ Finally using again Φ1U
< T ( 1 ) + T(2) we obtain from (27.1), (35) and (37) the following inequality
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This implies a contrudiction that p<7.

Hence we can assume that at least one of 2k (* = 1, 2, 3), say 2i, has only

domains of transitivity with length either 1 or 3 from Ω. Then Si must be an

elementary abelian 3-group. On the other hand, © qossesses an irreducible

character of degree 3p — 2, for instance, Ci. Therefore by a famous theorem

g and hence the order of $ must be divisible by 3/>-2. Hence finally U must

be divisible by 3 ^ - 2 . By (34) this is a contradiction.

Therefore the case in which the degree of B is 3p — 1 cannot occur.

§ 3. The case in which the degree of B is 2p - 1 .

11. Now let us assume that the degree of B equals 2p-l. Then the

equations (4.1) and (10) read as follows:

(4.3) oc(X) = A(X) + B(X) + Όι(X),

where X is any element of © and the degree of Όι equals p

(10.4) 2(p-l){2p-l)pz2 = g(2p-l-B(J))2.

By a theorem of Brauer ([3], Lemma 3) we have

B(/) = 1 or - 1.

If B(/) =• - 1 , then from (10.4) we obtain the following equality

which shows that z is divisible by p. This is a contradiction. Hence we must

have

(38) B(7) = 1,

and (10.4) takes the following form:

(10.5)

(10.5) tells us in particular that the order of a Sylow 2-subgroup of © equals

the power of 2 dividing 2(p - 1), say 2α + 1. Therefore every character C; becomes

by (1.1) a character of 2-defect 0 (* = 1, . . . , ~-(p - 1 ) )

We consider the representation ©i corresponding to Di and the matrix ©!</)

corresponding to /. Let us assume that Φi(/) possesses the eigenvalues 1 and

- 1 in the multiplicities m and n respectively. Then we have that
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(39)

On the other hand, again by a theorem of Brauer ([3], Lemma 3) we have

(40) D1(/) = w~w = e,

where ε is either 1 or - 1 . From (39) and (40) we obtain that

(41) tf=-~(£-ε).

Now since © is simple, the determinant of ©i(/), ( - 1)Λ, must be the unity,

and hence n must be even. Here it may be convenient to distinguish two

subcases, (I) p = 1 (mod 4) and (II) p = - 1 (mod 4), though the second subcase

will be eliminated rather promtly later. Then in the subcase (I) (41) and (40)

imply that e = l and D^/) =1. Hence by (38) and (4.3) we have that

(42) ar(/)=3.

In the subcase (II) (41) and (40) imply that e= - 1 and Ό}(J) = - 1 . Hence

by (38) and (4.3) we have that

(43) α(J) = l.

12. Now we are in a position to apply a method of Wielandt [21]. By

(4.3), Ω — {1} is divided into two domains of transitivity of £>, say T(i) (ι = l,

2) ([22], 28.4, 29.2). Let U be the length of T(i) and assume that ti^U.

Then we have

(44)

and

(45) tχ^\

We define matrices V(T(i)) as follows : put V(T(i)) = (vk,ι). Then Vk,ι = 1,

if there exist an element X of © and a symbol n of Tit) such that X(l) = 1

and X(n) =k hold, and Vkj-0 otherwise. V(T(i)) is commutative with every

matrix of G, which is as usual considered as a linear group consisting of per-

mutation matrices. By the definition of V(T{i)) we have

1 1,

(46) E +
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where E is the unit matrix of degree 3 p. Let us bring @ into the completely

reduced form. Then by the lemma of Schur V\Tu)) and W become diagonal

matrice's. Without loss of generality we can assume that the diagonal form of

V(T(i)) is

Mi, ^

Now as in [21] we obtain the following:

(47) (i) z(i, j) is a rational integer ( i = l , 2; 7 = 1, 2, 3),

and zii, l ) = f, , z(i, 2)*U and z(i, 3 ) ^ ί , ( ί = l , 2).

(ii) 2(ι, l)+jpz(t, 2) + ( 2 i > - l ) 2 ( ί , 3 ) = 0 .

(iii) 2(1, l ) 2 + ί2(ι, 2) 2 +(2i>~l)2( ί , 3)2 = 3 ^ , .

Furthermore since W possesses the eigenvalues 3p and 0 in the multiplicities

1 and 3p — l respectively, by (46) we have the following equalities:

(48) 2(1, ι) + 2(2, f )= - 1 U = 2, 3).

From (i) and (ii) we derive at once that

(49) 2(1, 3 ) Ξ ί , ( m o d i ) .

Moreover we obtain from (iii) that

In fact assume that

But we have that ^

Hence we have that

l ^

(2p-l)p

for ^?^5, which contradicts (44).
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(50) -p<z(i, 3)<p.

From (47) (i), (49), (50) and (45) we have that

-p<ti-z(l, 3)<γ(5p-l)<3p

and

Therefore we have

(51) ti - 2(1, 3) = either p or 2p,

and

(52) U - 2(2, 3) = either p or 2p or 3p.

Among different combinations of (51) and (52) only the following two cases

are possible by (48): Case (A) f i - * ( l f 3)=p and U~z(2, 3)=2p; Case (B)

ί i - 2 ( l , 3)=2p and f 8 -2(2, 3) =/>.

At first let us consider Case (A). Then we have from (47) (ii) the follow-

ing equalities >

(53) 2(1, 2) = 2 £ - l ~ 2 U and z(2, 2) = 2 ( 2 ^ - 1 ) - 2 ί2.

Substituting (51), (52) and (53) into (47) (iii) we obtain

154) 6tf-3(4ί--l)fi+(2£-l)(3ί--l) =0

and

(55) 6f22-3(8ί~3)f2 + 4(2^-l)(3£--l)=:0.

Similarly in Case (B) we have the following equations -

(56) 61\ - 3(8/> - 3)tt + 4(2p - 1)(3^ - 1) = 0

and

(57) 6tl-3Up-ϊ)h+(2p-l)(3p-l) -0.

Now we can show that Case (B) cannot occur. To this end let us consider

the quadratic form Q(T) in T, which is the left hand side of (57). Q(T)

takes its minimum value at -^-(4^-1). By (45) we have that
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But a simple calculation shows that (?(-rr(3j£>~ 1)J

= - |-(3ί>-l)( j f>-2)>0. This contradicts (57).

The equation (55) tells us that U is divisible by 8. Since U is the length

of a domain of transitivity of £>, U is a divisor of the order of §, and hence

of g. Therefore g must be divisible by 8.

Now let us assume that the subcase (II) in 11 does occur. Then we have

from (43) that -o-(3/> —1) must be even, because ® is simple and contains no

odd permutation. This implies, however, by (10.5) that g cannot be divisible

by 8. This is a contradiction.

Now by (42) we see that 3p-l=£θ (mod 4). Hence the equations (54)

and (55) tells us that the exact powers of 2 dividing tx and t2 are 2 and 8

respectively.

13. Let © be a Sylow 2-subgrouρ of ©, which is contained in £>. Since

-ψti is odd, 7X1) contains a domain of transitivity T@ of © with length 2.

Without loss of generality we can put T@ = {2, 3}. Let &3 denote the subgroup

of © consisting of all the permutations of © each of which fixes each of the

symbols 2 and 3. Then %i has index 2 with respect to ©. Let us consider %i

as a permutation group on T{2). Then by (42) %ι must be semi-regular on

T(2). In particular we have that £> = 0 (mod 2a). This implies, together with

the fact remarked at the end of 12, that 8 = 0 (mod 2a). Therefore the order

of iS equals either 8 or 16.

Now we want to show that © contains a cyclic normal subgroup of index

2. At any rate © contains an element X with the cycle structure (1)(23) . . . .

Assume that there exists such an element X with order greater than 2, say

2b (b>2). Let (1)(23)Y be the cycle structure of X Then by (42) Γ consists

of cycles of order 2b. Since © contains no odd permutation, the number

3(p-l)l2h must be odd. This implies that b-a. So we can assume that

every element X with the cycle structure (1)(23) . . . is an involution. At

any rate we have the decomposition © = %i<X> with %i Π OΓ> = 1. By (42) X

fixes just two symbols of Ω, which are different from 1, 2 and 3, say 4 and 5.

Let us consider the centralizer Zs&X of X in ©. Then since by (42) every

element Y=¥l of %χ fixes no symbol of £, which is different from 1, 2 and 3,

we see that the order of Zs® X equals four. Hence by a theorem of Suzuki
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([16], Lemma 4) © contains an element of order 2a.

Moreover an ordinary transfer argument (see for example [193) assures

us that £ cannot be abelian. Therefore if © is of order 8, we see, using a

theorem of Brauer-Suzuki [9], that © is a dihedral group.

Our next aim is to show that the order of © cannot be 16. Let us assume

that the order of © is 16. Let us consider © on T{2). Then © cannot be

semi-regular on T(2). In fact, otherwise, we have the congruence f2 = 0 (mod

16), which implies the contradiction 8 = 0 (mod 16). Hence there exists a

symbol of T(2), say 4, and an element B^l of © such that B fixes 4. Let %2

denote the subgroup of © consisting of all the permutations of © each of which

fixes the symbol 4. Then since t2 is even, %2 fixes at least, and by (42) just,

one more symbol of T(2), say 5. Moreover by (42) we have %x Π £ 2 = 1, which

implies that the order of % equals 2. Hence B generates %2. B has the cycle

structure (1)(23)(4)(5) . . . . Let A be an element of © of order 8. Then

the cycle structure of A must have the form (1)(23)A*, where A* consists

of cycles of order 8. In fact, otherwise, it must have the form (1)(2)(3)A*,

which contradicts the simplicity of ©, because (^~l)/8 is odd. Let us assume

that © is not a dihedral group. Then by a theorem of Suzuki ([16], Lemma

4) we have that BAB-A3. Then £> contains just two classes of involutions,

namely the class of A4 and that of B. Let zx and z2 denote the orders of

centralizers of A4 and B in ξ> respectively. Let #(2) and M2) denote the

numbers of involutions in © and in £> respectively. Then by (42) we have

the following equality

g/z=g(2) =i>M2) =p{h/zί + biz*),

which implies the equality

(58) 3/2 = 1/21+1/22.

If the centralizer ZsA* of A4 in © contains an element with the cycle structure

(123) . . . , we have z~3zι. Then (58) implies that l/z 2=0, which is a con-

tradiction. ZsA4 contains B. Hence if ZsA* contains no element with the

cycle structure (123) . . . , then we have z =21. Then (58) implies that 21 = 2 z2.

But the indices of the centralizers of involutions in © with respect to © are

either 1 or 4. This contradicts that zi-2z2. Thus © must be a dihedral

group of order 16.
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Let us consider £> on T(2). Then since B (or A) is odd on Γ(2), § contains

a normal subgroup £>* of index 2, which consists of even permutations of §

on T(2), A Sylow 2-subgroup ® Π ©* of £>* is generated by A2 and AB. A1

and ΛB are not conjugate in £>*. Then since © Π £>* is a dihedral group of

order 8, an ordinary transfer argument assures us that £>* contains a normal

subgroup of index 2. Then since ξ> contains a normal subgroup of index 4, 0

contains the normal Sylow 2-complement Π (for instance see [13], Lemma 8 .̂

Let $i denote the subgroup of ξ> consisting of all the permutations of ξ> each

of which fixes the symbol 2. Similarly let $2 denote the subgroup of £> cor-

responding to 4 instead of 2. Moreover let £>'(2) denote the 2-commutator

subgroup of ξ>. Then since £> is 2-nilρotent, the index of ©'(2) in ξ) equals 4.

It is easy to see that the indices of §'(2)ft with respect to £> are equal to 2

(i = 1, 2). Therefore i2 is divided into δ domains of transitivity of £>'(2). Then

we have the following equation: Σ #(i7)=5/z2> where // ranges over all
τ/eξ>'(2)

the elements of ξ>'(2) and ft{ is the order of §'(2). Obviously Σ A(£f) =h'2.
//e^'(2)

Furthermore since C, is a character of 2-defect 0 (ϊ = l , 2, . . . , —«—J we

have by (1.1) B(S) = 1 for every 2-singular element S of @. Then since every

element H outside §'(2) is 2-singular, we have that Σ B(ξ>) = hi. Therefore

using (4.3) we obtain the following equation

(59) Σ Di(JΪ)=3Λ5.
7i&(Q'(2)

Let e and /i be the principal characters of £>;(2) and ξ) respectively. Let

fiϋ = 2, 3, 4) be the linear characters of ξ> containing §f(^) in their kernels

and different from/i. They can be indexed so that the following character

table hold.

ί

ft \

h

n

A"

1

1

1

B

1

- i

AB j

1 - i ί
i l

! - l i

A

- 1

- i

1

Let e* and /f be the characters of (S induced by e and // (i = 1, 2, 3, 4). Then

we have the equations:
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£ — /I +/2 -Γ/3 +/4

and

/ * = α = A -f B + Di.

Furthermore by the reciprocity theorem of Frobenius we have from (59) the

following equation:

where D λ ranges some irreducible characters of (S of pάeίect 0. (We assume

that dλ>0). From these equations we have the following equation:

ft + /•* + /ί = 2 D, + Σ ADλ.
λ>l

No ft (k = 2, 3, 4) has the form : /f = 2 Dj + . In fact, otherwise, we

have that ft = 2Di-f D2, where the degree of D2 equals p. Then we must

have, as is shown in 11, that D2(/) - 1 for every involution J of (S, and there-

fore that /*(/ ) = 3 . Let Xi be a permutation of © which transfers the symbol

1 to ι ( ΐ = l , 2, . . . , 3^). Then we have a decomposition of © into the cosets

of ί>: © = Σ&X*. Now from the definition of induced characters we have

that fUj) = fk(B) =fk(B) -hfkiXI1 BX*) + fύXVBX-O), which is less than 3 if

& = 3 or 4, and that fk(J)=fk(ΛB) =fk(AB)+ , whch is less than 3 if

k = 2. Anyway this is a contradiction.

Therefore either / * or / * takes the form: / * = Di+ (/ = 2 or 3).

Since //* cannot be decomposed into characters of degree p from the same

reason as above, we have that //* = Di-j-D2, where the degree of D2 equals

2p. Using again a theorem of Brauer Γ3], Lemma 3, we have that D2(J) = 2

or - 2 for every involution / of (§. The case Dz(J) = 0 can be eliminated from

the simplicity of (§. Since / ? ( / ) < 3 we must have here that D%(J) = — 2, and

thetefore that //*(/) = — 1. Now from the definition of induced characters and

from the fact that A4, B and AB are conjugate with each other, we have that

//*</)=/*( AA) =//(A4) +//(B)+ , which is not less than 1 if / = 2 and

that /?(/) =//*(A4) = / / U 4 ) + / / ( A B ) + f which is not less than 1 if / = 3.

This is a contradiction.

14. Since S is a dihedral group of order 8, there exists an involution B

of 8 such that the cycle structure of B has the form (1), (23) . . . . Let A
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be an element of 3 with order 4. Then since ~ 3(^-1) is odd, the cycle

structure of A has the form (1), (23)A*, where A* consists of cycles of order 4.

Now we are in a position to use in full some excellent results of Brauer

and Suzuki concerning the groups which satisfy the following two conditions:

(i) Their Sylow 2-subgroups are dihedral groups of order either 8 or 4. (ii)

They contain no normal subgroup of index 2 (C4], [17] and [13]).

Our group (S with a dihedral Sylow 2-subgroup of order 8 certainly satisfies

these two conditions. Hence the principal 2-block of irreducible characters of

© consists of five characters A and X, (ι = l f 2. 3, 4), whose degrees satisfy

the following equalities:

(60)

where e and e' equal either 1 or — 1. Since every C/ is a character of defect

0 for 2, we have C, #X, . Then it is easy to see from (60) that Xi = B, ε = l

and ε' = 1.

Put z = 8y. Let ZsA, ZsA2, ZsB, ZsAB and ZsB be the centralizers of A,

A2, B, AB and @ in ®. Furthermore we denote by 2/, 4/w, 4/wi and 4/«2

the orders of ZsΈ, ZsA Π ZsA2, ZsB!Π ZsA2 and ZsAB 0 ZsA2. Then the first

formula of Suzuki concerning the order of (S is as follows:

Now we want to show by means of a contradiction that ξ> contains a

normal subgroup of index 2. So let us assume that £> contains no normal

subgroup of index 2. Then since £> also satisfies the above two conditions, we

have the equality analogous to (61). It is clear from our choice of the elements

A and B that ZsΈ, ZsA Π ZsA2, ZsB Π ZsA2 and ZsAB Π ZsA2 are contained in

0 Let 8 v' be the order of ZsA2Γιξ> and let X{ be the irreducible character of

£> corresponding to Xi = B of (S. Then the first formula of Suzuki for © is as

follows:

2 ) 2 x!α)(Xί(l)4 ε')

where ε' equals ± 1 . Furthermore all the involutions in ξ> are conjugate to

one another. Hence corresponding to (5$) we have here that y = 3y'. Then
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we obtain from (61) and (62) the following equality:

Xί(l)(Xί(l) + ε') _ 2p-l
(Xί(l)-e') 8 "" 2 ( 0 - 1 ? '

(63) implies at once that e' = — 1. Furthermore it is easy to check that the

right-hand side of (63) is smaller than -~ and that the left-hand side of (63)

is greater than -g-. In the latter case we use the congruence X{(1). = e' (mod

8) due to Brauer and Suzuki. This is a required contradiction. Hence £>

contains a normal subgroup ξ>* of index 2.

Then we want to show that £>* contains no normal subgroup of index 2.

Assume that £>* contains a normal subgroup of index 2. Then £> is 2-nilpotent.

Let £>'(2) denote the 2-commutator subgroup of €>. Then the index of £>'(2)

in £> equals 4. It is eaŝ  to see that Ω is divided into either 5 or 7 domains of

transitivity of €>'(2). But if Ω is divided into 5 domains of transitivity of H\2),

we obtain the same contradiction as at the end of 13. So let us assume that

Ω is divided into 7 domains of transitivity of §'(2). Then it follows that ©

is semi-regular on T(2). Anyway we can use the same notation as in 13.

(Instead of A4 there we must consider here A2). Then we have the equations *.

(64) e* =

and

Then some fϊ (k = 2, 3, 4) must have the form : ft = 3 \*i or /? = 2 Di + ,

which gives us a contradiction as in 13. Thus ξ>* contains no normal subgroup

of index 2.

Now the group φ* with an elementary abelian Sylow 2-subgroup of order

4 satisfies the two conditions at the beginning of this section. The principal

2-block of irreducible characters of £>* consists of four characters X* U = 0, 1,

2, 3), where Xo* is the principal character of £>*. Let 4/* be the order of the

centralizer Zs§( © Π ©*) of © Π £* in §* and let u* be the index of Zs^(B Π ©*)

in ZsA2 Π ξ>*. Then we have the following formula of Brauer concerning the

order of £>*:
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where 0/ equals ± 1.

Further we need the second formula of Suzuki concerning the order of (S,

which is, "using the facts Xj = B, ε = 1 and ε; = 1 in (60), stated as follows:

g~ ϊ(p-l)2

From (61) and (66) we obtain the equality

(67) j y = ^

On the other hand, it is easy to see that ZsA2 contains a normal Sylow 2-

complement 11. Let us consider e/<A2> as usual as an operator group of 11.

Then among the orders of subgrops which consist of all the elements of 11 each

of which is fixed by A<A2>, B<A2>, Λ£<A2> and ®/<A2> respectively, there

holds the following identity of Brauer-Wielandt ('[23]), (1.1)):

(68) y-luu\U2.

From (67) and (68) we obtain at once that

(69) «i = «2.

Since £> contains a normal subgroup of index 2, there are more than one

class of involutions in £>. Therefore the same considerations which led us to

(58) yield here that ZsA2 is contained in £>. Now since every 2-regular element

of £) is contained in £>*, we have together with (69) the following

(70) Z* = /«i,

and

(71) y = luiu*.

Now using (68)y (69), (70) and (71) we obtain from (65) and (66) the

following equality:

(72) m^- =
(XΓ(l)-f δί

Obviously the right-hand side of (72) is not smaller than 3/8. Therefore we

have the following inequality

380+19.
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This implies that p ̂  11. Since β = l (mod 4), we can conclude that p = 5.

Thus again we have only to check six primitive groups of degree 15 and will

find that only the group isomorphic to % satisfies our requirements. It may

be convenient to refer to some data: p - 5 ti = 6, t% = 8; 2(1, 2) = - 3, z(2, 2)

= 2, 2(1, 3) = 1 , 2(2, 3 ) = - 2 ; ^ = M = I#I = « 2 = 1 = 1 ; X*(l) = 3 , Xa*U) = Xs*(l)

§ 4. The case in which the degree of B is p - 1.

15. Now let us consider the case in which the degree of B equals p — 1.

Then (4.1) takes one of the following forms:

(4.4) αr(Z)=A(X) + B(Z)-hD1(X),

where Di is an irreducible character of ® with degree 2p;

(4.5) ociX) = A{X) + B{X) + ΌΛX) + D2U),

where Di and D2 are different irreducible characters of © with degree p

(4.6) a(X) = A(X) + h{X) + 2 Di(X),

where Di is an irreducible character of ® with degree p. Moreover (10)

becomes the following form:

(10.6) {p-2)(p-l)pz2 = g(p -l-B{J))\

By a theorem of Brauer ([31 Lemma 3) we have that B(/) = 0. Therefore

we obtain from (10.6) the following

(10.7) ιp

(10.7) tells us in particular that the order of a Sylow 2-subgroup of (S equals

the power of 2 dividing p — 1, say 2a. Therefore B becomes a character of

defect 0 for 2. Hence as in 4 by a theorem of Brauer-Tuan ([10], Corollary

of Lemma 3) we see that every C; belongs to the principal 2-block BΛ2) of

irreducible characters of © (/ = 1, . . . , -Λ- (p- 1)).

Assume that a-2. Then by a theorem of Brauer-Feit ([6], Theorem 1)

Bχ{2) contains at most 5 characters. Therefore we have the inequality

5 = -o~ (p + 1), which implies that p = 5. So we have only to consider again 6

types of primitive groups of degree 15. It is easy to check that there is no

group among them with required properties. Therefore we can assume that
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Since p = l (mod 4), we obtain, as in (39)-(41), that Di(/)=2 in Case

(4.4); Dit/-) = 1 (t = l, 2) in Case (4.5) and D i ( / ) = 1 in Case (4.6Ϊ. Hence

we have

(73) α ( / ) = 3 .

16. First of all we want to deal with Case (4.4). Then by (4.4) Ω- {1}

is divided into two domains of transitivity of £), say T(i) (a = 1, 2) ([22], 28.4,

29.2). Let ti be the length of ΊXi) U = 1, 2). Then we have

(44.1) fi + fe = 3j£>-l.

We see at once from (44.1) that t\ and fe are simultaneously even or simul-

taneously odd. Assume that U and U are odd. Let x^l be any symbol of Ω

and let ® denote the subgroup of ® consisting of all the permutations of ©

each of which fixes each of the symbols 1 and x of Ω. Then it follows from

our assumption that $ contains a Sylow 2-subgroup of ©. Hence © cannot

contain an involution whose cycle structure has the form (lx) . . . . Since

x^ψl is an arbitrary symbol of Ω, every involution must fix the symbol 1 of Ω,

which contradicts the simplicity of ®. Therefore U and fe are even.

Since /> = 1 (mod 4>, we see by (44.1) that either ίL or U is semi-odd, say

h. Let © be a Sylow 2-subgroup of ®, which is contained in £>. Let. us

consider @. as a permutation group on Γ(l). Then T(l) contains a domain of

transitivity of ® with length 2, say {2, 3}. Let X be any element of © whose

cycle structure has the form (1), (23) . . . . Assume that the order of X is

2b with 6 > 1 . Then we see by (73) that the cycle structure of X has the form

(l)(23)y, where Y consists of cycles of order 26. Since © is simple and

hench X must be even, 3ip-l)/2b must be odd. This implies that b-a and

hence that <S is cyclic. This is a contradiction. Thus X must be an involution.

By (73) X fixes just two symbols of Ω — {1}, say 4 and δ. Now let % denote

the subgroup of © consisting of all the permutations of © each of which fixes

the symbol 2. Then the index of % in © equals 2. Let us consider the cen-

tralizer of X in %. Then since by (73) every element # 1 of % does not fix

the symbol 4, the centralizer of X in S has order 2. Therefore by a theorem

of Suzuki ([16], Lemma 4) © contains an element Z such that © = </O<Z>.

Since XZ is an involution, we have XZX=Z~{. Therefore S is a dihedral

https://doi.org/10.1017/S0027763000023801 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023801


152 NOBORU ITO

group of order 2a with

Let Bχ{2) be the principal 2-block of irreducible characters of ©. Then

using a method of Suzuki ([13], (42)-(43)) we see that Bi(2) contains two

irreducible characters Xi and X4 whose degrees satisfy the equality

(74) 1 + 5 I X I ( 1 ) = 5 I X 1 ( 1 ) ,

where di equals ±1. We see at once from (74) that either Xi or X4 must be

equal to some C, . But since B is a character of defect 0 for 2, (74) gives us

a contradiction. This contradiction shows that Case (4.4) does not occur.

17. Next let us consider Case (4.6). Then by (4.6) Ω - {1} is divided into

five domains of transitivity of £>, say T(i) (i = 1, . . . , 5) ([22], 28.4, 29.2). Let

ti be the length of T(i) (i = l 5). Then we have

(44.2) ti + U + U + U+U = 3p-l.

We see ,from (44.2) and (73) that either every U is even or just two of them,

say tι and t2, are odd. Assume that the former case occurs. Then the method

in 16 can be applied and we obtain a contradiction. Therefore we can assume

that the latter case occurs.

Then 3 fixes at least one symbol, say 2, of Til) and at least one symbol,

say 3, of T(2). By (73) every element # 1 of ® fixes only the symbols 1, 2

and 3. Let X be an element of © whose cycle structure has the form (21 . . .)

. . . . Then X~1&X fixes the symbol 1 and is contained in £>. Therefore by

Sylow's theorem there exists an element Y of © such that Y~l(S>Y=- X~ι<5X.

Then YX~ι = Z is contained in the normalizer NsB of © in (3 and has the

cycle structure (12 . . . ) . . . . Since © fixes only the symbols 1, 2 and 3, the

cycle structure of Z must have the form ( 1 2 3 ) . . . . Assume that there exists

an involution W in © which is commutative with Z. Then since the cycle

structure of WZ has the form (123). . . , we have by (73) that a(WZ) = 0.

Moreover since WZ is 2-singular, we have by a theorem of Brauer-Nesbitt ([8],

Theorem 1) that B(WZ)=0. Therefore we obtain from (4.6) that ΏX(WZ)

= —2~# ^ u t since Όι(WZ) must be an integer, this is a contradiction. Thus

there is no such an involution.

Let V be a central involution in (B. Then the above argument implies that

V and Z~ιVZ are not conjugate in ξ>. Thus there exist more than one class
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of involutions in £>. Assume that h = 1. Then the normalizer Ns$ of ξ) in ©

contains an element whose cycle structure has the farm (21 . . . ) . . . and is

bigger than £>. Then by the primitivity of (S we must have © = Nsξ>, which

implies by the simplicity of @ that €> = 1. Then the order of © equals 3p,

which contradicts the simplicity of ©. Thus we have that h>l. Now Γ(l)

contains at least one symbol, say 4, different from 2. Since 7XD is a domain

of transitivity of ξ), there exists a Sylow 2-subgroup ©* of φ such that ®*

fixes the symbols 1, 4 and x, where x is a symbol of T(2). Let U be an in-

volution in ©*, which is not conjugate to V. Then by a theorem of Brauer-

Fowler ([71 Lemma (3 A)) there must exist an involution / of £> which is

commutative with U and V. Since every permutation # 1 of a Sylow 2-sub-

group of €> fixes the same symbols, this implies that / must fix at least four

symbols 1, 2, 3 and 4 contradicting (73). This contradiction shows that Case

(4.6) does not occur.

18. Finally let us consider Case (4.5). Then by (4.5) 42-{1} is divided

into three domains of transitivity of £, say T(i) ( ί - 1 , 2, 3) ([25], 28.4, 29.2).

Let U be the length of T(i) (i = 1, 2, 3). Then we have

(44.3) ίr+ f2 + fc = 3/>-l.

We see from (44.3) that either every f; is even or just two of them, say ti

and ?2, are odd. Assume that the former case occurs. Then the method in 16

can be applied and we obtain a contradiction. Therefore we can assume that

the latter case occurs.

If there exist more than one class of involutions in ξ>, then the method in

17 can be applied and we obtain a contradiction. Therefore we can assume

that all the involutions in § are conjugate one another in §.

Now it follows from the argument in 17 that there exist in © an involution

W and a 3-element Zt which satisfy the following two conditions: (i) W and

Z are commutative with each other. (ii) W and Z have the cycle structures

(1)(2)(3). ... and (123). . . respectively.

Next let us consider the matrices V{T(i)) {i = 1, 2, 3) as in 12. Without

loss of generality we can assume that the diagonal form of V{T(i)) is
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z(t, 2)
z(i, 3)

Then as in [21] we obtain the following:

(47.1)

(i) zii, j) is an algebraic integer (i = l, 2, 3; 7 = 1, 2, 3, 4). In particular,

2(1, 1) and z(i,2) are rational integers ( ί = l , 2, 3). Furthermore we have that

2(1, 1) = ft- and 2(1, y) * fc (i = 1, 2, 3 j = 2, 3, 4).

(ii) 2(1, l) + (^-1)2(1, 2)+ί*(f, 3)+ίε(*» 4)=0.

(iii) z{i, D V ί ί - I W i 2)I + ίU(i , 3)|2+i>UU 4)lt = 3ίfc.

Let us assume that Di and D2 are rational characters. Then using a method

of Wielandt ([22], p. 82) we see that every z(i, j) is a rational integer. We

consider (47.1) for ι = l. Then since from our assumptions U is odd, we have

from (ii) that 2(1, 3) + 2(1, 4) Ξ 1 (mod 2) and from (iii) that 2(1, 3)2-f 2(1, 4)2

= 0 (mod.2). This is a contradiction. Now by (4.5) we see that D2 (and only

D2) is an algebraically conjugate character of Dj.

Here let us consider the element WZ. Assume that ΏX{WZ) is rational.

Then since Dx and D2 are algebraically conjugate, we have that Ώι(WZ)

= ϊh(WZ). On the other hand, since the cycle structure of WZ has the form

(123).. . we have by (73) that α( WZ) = 0. Moreover since WZ is 2-singular

and B has 2-defect 0, we have by a theorem of Brauer-Nesbitt ([8], Theorem

1) that B(WZ)=Q. Therefore by (4.5) we have that Ό^WZ) = - ~ . Since

Ώi(WZ) must be an integer, this is a contradiction.

Let the order of Z be 3Z. Then Dx( WZ) belongs to the field of the 3z-th

roots of unity over the rational number field Q. But this field is a cyclic field
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over Q and Ώi(WZ) has degree two over Q, ΌΛWZ) belongs to the field of

the cubic roots of unity over Q: Q(α>) with ω8 = l, ω*l. Furthermore since

Di and D2 are algebraically conjugate only with each other, we see that the

field of D, over Q, namely the field generated by all the numbers ΌiiX), where

X ranges over all the elements of ©, is Q(ω) (ί = l, 2). Then again using the

method of Wielandt ([25], p. 82) we See that all the z(i, jYs belong to QU)

and that z(if 3) and zHy 4) are complex-conjugate numbers U = l , 2, 3). The

latter fact follows from the complex conjugacy of Di and D2.

Now the numbers 1 and -o-(l + V3t) constitute an integral basis of Q(ω).

Therefore we cai put

(75) z(i, 3) = i ( Λ , + ιw,V3"i ) and z(i, 4) = ~ (m - my/Si),

where m and πn are rational integers (f = l, 2, 3).

Choose a Sylow 2-subgroup @ of © as in 17. Then by (73) © is semi-

regular on Γ ( l ) - { 2 } , T ( 2 ) - { 3 } and T(3). Hence we have the congruences:

(76) ti = l (mod 2a) U = l , 2) and h = Q (mod 2a).

Furthermore we see as in 17 that

(77) ti>l ( f = l , 2, 3).

Now we obtain from (47.1) (ii) and (75) the following congruences:

Λ/ΞΞ - 1 (mod 2a) (ι = l, 2) and W 3 Ξ 0 (mod 2a).

Therefore we can put

(78) Λ, = i l / 2 β - l ( ί = l , 2) and Λ8 = Λ32
α,

where A, is a rational integer U = l, 2, 3).

At any rate we heve by a theorem of Brauer-Feit ([6], Theorem 1) the

following inequality:

which implies in particular that

(79) 2

Now we want to show that (1) ti^p + 2 ( ί = l , 2) and (2) h^p-1, which
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yield us a contradiction U + U + U S 3^ + 3 to (44.3). We deal only (1), because

(2) can be dealt with quite similarly as (1). At first let us assume that \Ai\

> 3 or Λ = - 2 . Then we have from (78) and (79) that

>8p.

Assume that At = 2. Then we have similarly that

>A-.7 2

>7P.

Hence if |A;|;>2, then we have from (47.1) (iii), "(75) and (78) that

ft X U U 3)|2+U(ι, 4)|2)/3

Now we can assume that If Ai = Q, then we have by (47.1) (ii)

i, 2),

that

which implies by (77) that U>p. But U cannot be equal to pf because U is a

divisor of the order of £>. Since U is odd, thus we have that U ^p + 2. If

Aι = l, then we have by (47.1) (ii) that

Let us consider a linear form L(Z) = (p — l)X—p{2a - I) in X on the domain

of rational integers. L(X) attains its least positive value p - 2a at X = 2a. The

next least positive value of L(X) is certainly not smaller than p. So let us

assume that ti=p-2a and z(i, 2) =2α. Then we have by {76) and (77) that

/>>2β+1. But since 2a is an exact power of 2 dividing p — 1, we have that

i>^3.2α. Then we have further that (2a - l ) 2 >4^/3. Then finally we have by

(47.1) (iii) and (79) that
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ti>((t\+(p - l ) 2 2 α + 1

2-p{2a-l

>28i?/27-2/3

The case of Ai = - 1 can be handled quite similarly.

§ 5. Proof of Theorem 2.

Let § denote the subgroup of © consisting of all the permutations of ($5

each of which fixes the symbol 1 of Ω. Since (§ is imprimitive on Ω and since

(S is simple, @ contains a subgroup 9Jΐ of index p containing £>. Hence by a

previous result [14] (§ is isomorphic to a linear fractional group LF{2, 2n1) with

>̂ = 2m-f 1 (m^2), and 9ft becomes the normalizer of a Sylow 2-subgroup of (S.

Conversely let us consider any LF(2, 2m) such that.£ = 2 m + 1 is a prime number

greater than 3. Let 5ft be the normslizer of a Sylow 2-subgroup of LFX2, 2m).

Then since w is even, the order of 9ft is divisible by 3. Hence 9ft contains a

(uniquely determined) subgroup of index 3, because the factor group of 9ft by

its Sylow 2-subgroup is cyclic. Therefore such an LF(2, 2m) can always be

represented (uniquely) as an imprimitive permutation group of degree 3p.
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