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Abstract

For any bounded linear operator A in a Banach space, two generalized condition numbers ic(A) and k(A)
are denned in this paper. These condition numbers may be applied to the perturbation analysis for the
solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional
Banach spaces. Different expressions for the two generalized condition numbers are discussed in this
paper and applied to the perturbation analysis of the operator equation.
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1. Introduction

The condition number of a matrix or operator plays important role in solving the linear
equation and in computing the inverse of a matrix or operator. It also measures the
distance from the given matrix to the set of singular matrices.

Let X and Y be Banach spaces, and 5 be a closed subspace of X. Denote by
L{X, Y) the Banach space composed of all bounded linear operator from X onto Y;
R(A) the range of A; N(A) the null space of A; Sc a topological complement of S
(for example, X = S © Sc).

If N(A)C and R(A)C are topological complements of closed subspaces N(A) and
R(A) (the closure of R(A)) in X and Yrespectively, then N(A)c and R(A)C are closed
and

(1.1) X = N(A)@N(A)C, Y = R(A)®R(A)C.
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A well-known result is that N(A) (or R(A)) has a topological complement N(A)C

(or R(A)C) if and only if there exists a continuous projector P (or Q) mapping X onto
N(A) (or R(A)) (see [10]). Nashed proved that if R(A) is closed and the following
topological direct sums exists

(1.2) X = N{A)@N{A)C, Y=R(A)®R(A)C,

then there exists a unique generalized inverse A+ = A+
P Q e L(Y, X) of A (the

subscripts P and Q imply that A+ depends on the projection operators P and Q) such
that

AA+A=A, A+AA+=A + ,

A+A = PN(AY, AA+ = PRW,

where PRW and Psw are the continuous operators which project Y and X onto R(A)
along R(A)C and onto N(A)C along N(A), respectively.

In the case when A+ exists, the generalized condition number is defined by

(1.3) K + ( A ) = | | A | | | | A + | | .

Many mathematicians discussed new definitions and properties of various condition
numbers (see, for example, [1, 2, 4, 8, 9, 11]).

With recent advances in numerical analysis in infinite dimensional Banach spaces,
one needs to consider the condition number of a bounded linear operator. But in infinite
dimensional Banach spaces, the condition number of a bounded linear operator is not
always defined as in (1.3) because not all closed subspaces of a Banach space have
topological complements (see [6]). So for some ill-posed differential equations in
Banach spaces, there is no condition number (in the usual sense) associated with
them.

In this paper, we first give an equivalent description of the reduced minimum
modulus of bounded linear operators in Banach spaces. This description can be used
to define the reduced minimum modulus of any element in a Banach algebra (see [12]).
Then we will give two different definitions of the generalized condition numbers of
bounded linear operators in Banach spaces which are more general and applicable than
K+(A) defined by (1.3). Using our definitions, we will establish the error estimate
of the solution of the linear operator equation Ax = b via small perturbation r on
the right-hand side of the equation. We also give a comparison between two kinds of
condition numbers.

2. A generalized condition number

In this section A will be a bounded linear operator from X onto Y.
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DEFINITION 2.1. Let A e L(X, Y). The reduced minimum modulus r(A) of A is
defined by

(2.1) r(A) = inf{||Ax|| : dist(;t, N(A)) = 1, x € X},

where dist(x, N(A)) = inf>eAf(/1) \\x - y\\.

From (2.1), we get that for any A e L(X, Y),

\\Ax\\ > r(A) dist(.x, AT (A)), Vx € X.

Let X* and Y* be dual spaces of X and Y respectively, then for A e L(X, Y), we
have A* <= L(Y*, X*). Moreover, r(T) = r(T*) and R(A) is closed if and only if
r(A) > 0 (see, for example, [7, Theorem 5.13, Theorem 5.2]).

The following gives our definition of the generalized condition number.

DEFINITION 2.2. If A e L(X, Y) and R(A) is closed, then the generalized condition
number (or GCN) of A is defined by

(2.2) ic(A) = \\A\\r(A)-\

REMARK. We should notice the following special cases.

(1) If A e L{X, Y) with R(A) closed, then ic(A) = ic(A*).
(2) If A e L(X,X)isinvertible,then£(A) = HAHHA"1!! =K(A).

(3) Let A e L(X, Y) with a generalized inverse A+. Then by [3, Lemma 2.1],

1A+AJJAA+

so that

||A+A||||AA + 11 -

This indicates that if X, Y are Hilbert spaces and A+ is the Moore-Penrose inverse of
A, then ic(A) = K+(A).

(4) Let A be an m-by-n matrix, which can be regarded as a linear transformation
from C to Cm. Suppose further that C and Cm have norms, both of which are
denoted by || • ||. We denote the dual norms by || • \\D- Then the condition number

(2.3) K(A) = | |A| |a(A)- '

defined in [4], where a(A) = min{||A*jc||D : ||JC||D = l,x e R{A)}, coincides with
ic(A) defined by (2.2). Because N (A*)1 = R(A)andanyx e Cm can be decomposed
as x =x\ +x2, where *i 6 N(A*),x2 € R(A), wehaveot(A) = r(A*) = r(A).
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Now we present an equivalent description of r(A) as follows:

THEOREM 2.3. If A e L(X, Y) and R(A) is closed, then

r(A) = inf{||A - B|| : R(B) c * R(A), N(B) D N(A), B e L(X, Y)}.

PROOF. We will use some concepts and theorems from Taylor's book (see [10])
while proving this theorem. The proof is divided into two parts: (i) N(A) = 0, and
(ii) W04)^0 .

(i) Suppose that N(A) = 0, then N(B)D N(A). From

R(B) c^ R(A), N(A*) = /?(A)X, and N(B*) = R(B)1,

where fl(A)x = {/ € Y* : f (y) = 0,Vy e R(A)}, we have N(A*) C^ N(B*).
* e N(B') such that dist(x*, N(A*)) = 1. Then, for y* 6 N(A*), we have

< ||A* - B*|| II*' - y*\\ = \\A - B\\ \\x* - y*\\,

which implies that r(A) < \\A — B\\, that is,

r(A) < inf{||A - B\\ : R(B) c * R(A), N(B) D N(A), B e

holds. Conversely, let xn e X be such that ||xB|| = 1 and ||Ajcn|| -> r(A). Then
by the Hahn-Banach theorem, there exist xn e X* such that JC*(;C) = ||jcn|| = 1 and
\K\\ = i.

Let [Bn} be a sequence of operators which are defined by flnjc = Ax — (Axn)x*(x)
(for x e X); then we can prove that Bn e L(X, Y) and R(Bn) c^ R(A). In fact,
|| BB || < 21| A ||. Since N (A) = 0, it follows that /?(A*) = X* and then for an arbitrary
integer n there exists v* e K* such that A*v* = x*. Since

we have y* € N(B*), y* £ N(A*), which implies that N(A') C? N(B*). So we
have R(Bn) C^ R(A). From

||(A - Bn)x\\ = ||A*,,*;tt)|| < IIAxJUkll,

for each x € X, we obtain

1/ R(A)} < \\A - Bn\\ < \\Axn\\ - • r(A).

https://doi.org/10.1017/S1446788700008958 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008958


[5] The generalized condition numbers 285

(ii) Suppose that N (A) ^ 0. We define a bounded linear operator A from X/N(A)
to Y by Ax = Ax, where x is the equivalent class of x relative to A'(A).

From N(A) D N(B), we define B e L(X/N(A), Y) by Bx = Bx. Since

R(B) c* R(A), we have R(B) c ^ R(A). Then by the definition of B, we obtain

N(B) D N(A), R(B) C* R(A).

In order to prove (ii), we first prove that || A — B || = || A — fi ||. For each y e N(A)

\\Ax - Bx\\ = \\Ax -Bx\\< \\A(x - y) - B(x - y ) \ \ < \\A - B\\\\x - y \ \ .

Meanwhile, from \\x\\ = inf>eW(/4) ||JC — y\\ < \\x\\, we have

\\Ax - Bx\\ < \\A - B\\ i n f \\x - y \ \ = \\A - B\\\\x\\,
yeN(A)

which leads to \\A - B\\ < \\A - B\\.
Conversely, since

\\Ax - Bx\\ = WAx - Bx\\ < \\A -

wehave||A - S|| < ||A - B||. So we obtain ||A - B\\ = \\A - B\\.
Since N(A) = 0, by the result of (i) we have

r(A) = r(A)

= inf 11|A - B\\ : R(B) C* R(A), N(B) D N(A), B e L(X/N(A),

= inf | | |A-B|| :R7B)<Z*R(A),N(B)DN(A),B e L(X,

COROLLARY2.4. //A e Cm", r/ien

r(A) = inf{||A - B|| : rank(A) > rank(fl), B e Cmn).

PROOF. By Theorem 2.3,

r(A) = inf{||A - B|| : R(B) C^ J?(A), A (̂B) D N(A), B € L(X, Y)}

> inf{||A - B|| : rank(A) > rank(fi), B e Cmn}.

On the other hand, by the proof of [3, Lemma 2.3] we have

r(A) sup{dist(«, R(B)) : u e R(A), \\u\\ = 1} < ||A - B||.

But from [7, IV-Corollary 3.2], sup{dist(M, R(B)) : u e R(A), \\u\\ = 1} = 1 when
rank A > rank B. Thus we obtain the assertion. •
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The following corollary gives another expression of the GCN of a bounded linear
operator.

COROLLARY 2.5. Let A e L(X, Y), then

IIA ||
ii(A) = sup " " : R(B) c * R(A), N(B) D N(A), B e L(X, Y) .

I \\A — D\\ J

COROLLARY 2.6. Let A e Cmn, then

K(A) = supl I|A|1 : rank(A) > rank(fl), B e CmA .
[ \\A — o || J

Set Ax = y be a linear system, and consider the solution of the perturbed problem

Ax = y + r.

If A is invertible or there exists a generalized inverse A+ of A, then we know that
the upper and lower error bounds between the accurate solution x and the perturbed
solutions are relative to the condition number K(A) = HAHHA"1!! (if A is invertible)
or K+(A) = \\A || ||A + || (if A+ exists). The following theorem is the natural extension
of the classical error analysis problem to the case with a more general assumption.

THEOREM 2.7. Let A e L(X, Y), and R(A) be closed. Let y e R(A), and S =
{x : Ax = y, y ^ 0}. Ifx is a solution of the perturbed problem Ax = y + r, then

\\y\\

where m = infxe5 \\x ||, K(A) is the GCN defined by (2.2).

PROOF. Let {xn}f c S such that ||i -xn\\ -> dist(x, S) as n -+ oo. If zn = x -xn,
then Azn = Ax — Axn = y + r — y = r. From ||Ax|| > r(A) dist(j:, N(A)), we have
||r|| > r(A)dist(2n, N(A)). Thus

llrll
> inf \\Zn-w\\= inf \\x -xn - w\\ > dist(i, 5),r(A)

since xn + w e S. For each x e S, Ax = y, we have ||y|| < ||A||||x|| < ||y||m. So we
obtain

dist(i, 5) , . , _ , l l r | | ^-(AA\r\\
< r(A) < K(A) — .

m m \\y\\
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Now, we prove the reverse inequality. If x e S, and z e iV(A), we have x — z 6 S.
Then m < \\x — z\\, which leads to m < dist(;c, N(A)). Thus, we have

> r(A) dist(*, N(A)) > r(A)m.

Since r = A(x — xn) and

dist(i, 5) h m \\x-xn\\ > ||r|| > ||

m n->°
so we obtain

1 m\\r\\
<dis t (x ,S) < / c ( A ) - ^ ^ - . D

3. The generalized inverse and the GCN

In this section, we introduce another form of GCN, which is related to an inner
inverse (or {l}-inverse) of A. If A 6 L(X, Y), an operator B e L(Y,X) which
satisfies ABA = A is called an inner inverse (or {l]-inverse) of A. We denote an
inner inverse of A by A".

LEMMA 3.1. If A e L(X, Y), then A~ exists if and only ifR(A) is closed and both
N(A) and R(A) have complementary subspaces in X and Y, respectively.

PROOF. Only if: Let B € L(Y, X) be such that ABA = A. If xn e R(A) are such
that xn —> x0, then there exists yn 6 X such that xn = Ayn. So we have

ABxn = Ayn -*• ABx0, that is, xo = ABxo,

which implies that R(A) is closed. Let P = AB and Q = BA. Then P2 = P and
Q2 = Q. It is easily seen that P and Q are projections from Y and X onto R{A) and
N(A) respectively. Thus we conclude that complementary subspaces of N(A) and
R(A) exist.

If: Let P and Q be projections from Y and X onto R(A) and N(A), respectively.
Then A |(/_Q)x is an invertible operator from (/ —<2)X to P K WedefineB G L(Y, X)
by

[By = 0 if y € (/ - P)Y;

then ABA = A. •
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DEFINITION 3.2. If an inner inverse A~ e L(Y, X) of A e L(X, Y) exist, then

k{A) = ||A||inf{||B|| : ABA =A,B eL(Y,X)}

is called the intrinsic condition number (or ICN).

REMARK. (1) If A is invertible, then £ (A) = || A || || A ~' || = *: (A);
(2) Let X = Hi and Y = H2 be Hilbert spaces, then we have that k(A) =

Now, we present the relation between the generalized condition number and the
intrinsic condition number.

THEOREM 3.3. Suppose that the inner inverse A" of A € L(X, Y) exists. Then

(3.1) k(A)<k(A).

PROOF. From ABA = A, we have ||Ax|| = ||A5A;c|| < ||A||||B||||A;c||. For each
x eX,\\x\\> dist(jc, N(A)), we have

< I I * I I I I * H H •dist(x,N(A))

Then ||A|| < | |A| | | |5| |r(A), which implies k (A) <k{A). D

DEFINITION 3.4. Let X be a Banach space, and V be a complemented subspace
in X. Then n( V, || • ||) = inf{|| P\\ : P is the projection operator from X onto V) is
called the projection constant of V with respect to the norm || • ||.

THEOREM 3.5. If an inner inverse A" of A e L(X, Y) exists, then

max{*(A), n(N(AY, || • ||*)} < k(A) < k(A)n{R{A), || • | | , )^(^(A) C , || • \\x),

where N{A)C is a complementary subspace ofN(A) in X.

PROOF. Suppose that B is an inner inverse of A, that is, ABA = A. Define
Q = BA, which is the projection operator from X onto N(A)C along N(A). Now,
I Q\\ < 11**11 5 11*11 11*11- Hence, taking the infimum over all inner inverses of A,

we get

Jr(N(A)':, || • \\x) < it{A).

From (3.1), we establish the lower bound.
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Now, we prove the reverse inequality. Define P = AB, which is a projection
operator from Y onto R(A). Then, PA \ QX is an invertible operator from QX onto P Y.
Define B{ = {PA\QX)^P, then we obtain BXP = QBX = Bu BXA = Q, and
ABX = P. So we have

\\P\\ \\x\\ > \\Px\\ = \\ABlX\\ > r(A)dist(B,jc, JV(A))

that is, | |fi | | < | | P | | | | Q | | / r ( A ) , or | |A|| | |B , | | < | | A | | r ( A ) - ' | | P | | II QII, which yields

K(A) < K(A)7t(R(A), || • || y)7T(N(Ay, || • \\x). D

COROLLARY 3.6. If A e Cm-n, then

xmx{K{A), n(R(A*), || • ||D)} < ic(A) < ic(A)n(R(A*), || • ||

where || • ||D is the dual norm of\\ • ||.

The above corollary presents a more general result than that of Proposition 3 in [4].
At the end, we consider when ic(A) = ic(A). First, we have the following lemma

(see [5]).

LEMMA 3.7. Let /x, v be measures, and T : Lp(v) —> Lp{fx) (p > 1 and p ^ 2)
be an isometric embedding. Then there exists a projection operator P from Lp (/z)
onto R{T) such that \\P\\ < 1.

By Lemma 3.7 and Theorem 3.5, we have

PROPOSITION 3.8. Let /x, v be measures, and A : Lp{v) -> Lp(/x) be a bounded
linear operator. Let also R(A) be closed, and N(A)=0.Ifp>l and p ^ 2, and

= \\x\\ for each x 6 Lp(y), thenkp{A) = kp{A).

COROLLARY 3.9. Let A e CmxnandN(A) = 0. //||AJC|| = \\x\\ for each x e Cn,
then icp(A) = kp(A), where 1 < p < oo andp ^ 2.
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