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2 SINGLETON OF MINIMAL ARITHMETIC DEGREE

PETER M. GERDES

Abstract. In the study of the arithmetic degrees the �-REA sets play a role analogous to the role the
r.e. degrees play in the study of the Turing degrees. However, much less is known about the arithmetic
degrees and the role of the �-REA sets in that structure than about the Turing degrees. Indeed, even basic
questions such as the existence of an �-REA set of minimal arithmetic degree are open. This paper makes
progress on this question by demonstrating that some promising approaches inspired by the analogy with
the r.e. sets fail to show that no �-REA set is arithmetically minimal. Finally, it constructs a

∏0
2 singleton

of minimal arithmetic degree. Not only is this a result of considerable interest in its own right, constructions
of

∏0
2 singletons often pave the way for constructions of �-REA sets with similar properties. Along the

way, a number of interesting results relating arithmetic reducibility and rates of growth are established.

§1. Introduction. In the study of the arithmetic degrees (the degree structure
induced by relative arithmetic definability,≤a) the�-REA sets play a role analogous
to the role the r.e. degrees play in the study of the Turing degrees. This analogy holds
both as a matter of structure (e.g., the arithmetic jump is an �-REA operation and
the jump is an r.e. operation) and as a way to approach constructions. For instance,
just as the r.e. sets allow us to characterize the range of the Turing jump on D(0′)
(the Turing degrees less than or equal to 0′) via the Shoenfield jump inversion [13]
the �-REA sets allow us to similarly identify the range of the arithmetic jump on
Da(0a

′) with the degrees of the sets �-REA in 0a
′ [14].

However, while the Turing degrees generally and the degrees of the r.e. sets
specifically have been extensively studied much less is known about the arithmetic
degrees and even less about the role of the �-REA sets in that structure. Even
seemingly basic questions remain open. For instance, whether or not there are any
�-REA sets of minimal arithmetic degree remains an open question. The analogy
between the r.e. sets and the Turing degrees and the�-REA sets suggests that�-REA
sets of minimal arithmetic degree shouldn’t exist. However, it is already known that
the analogy is imperfect as there is a minimal pair (in the arithmetic degrees) of
�-REA sets which join to 0a

′ [14] in contrast to the non-diamond theorem in the
r.e. degrees [8].

While we don’t settle the existence of an�-REA set of minimal arithmetic degree in
this paper we make what we believe is an important step in that direction by proving
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2 PETER M. GERDES

the following result (and thereby presenting an alternate solution to Question 62 in
[2] by providing a

∏0
2 singleton not arithmetically equivalent to any 0(α)).

Corollary 4.3. There is a
∏0

2 singleton of minimal arithmetic degree.

While the degrees of �-REA sets are properly contained in the degrees of
singletons, results about

∏0
2 singletons have often paved the way for corresponding

results about �-REA sets, e.g., Harrington’s construction of an arithmetically
low

∏0
2 singleton [5] or arithmetically incomparable

∏0
2 singletons [4] both1

foreshadowed related constructions of �-REA sets with those properties [14]. As
the approach taken in this paper draws heavily on the ideas in [5] we hypothesize,
contra the analogy with r.e. sets, that there is an arithmetically minimal �-REA set
and hope the construction here points to a way to build such a set.

§2. Background. There is a fair amount of notation required for the results in this
paper; however, almost all of it is standard. Readers familiar with standard notation
may wish to skip most of the subsections below and return to them only as needed
for reference. However, Section 2.5 is worth looking at for all readers as it contains
some slightly less common definitions and results.

2.1. Computations, strings, and degrees. We largely adopt standard notation from
[9] which we briefly review. Set difference is denoted by X \ Y , powerset by P (X ),
the e-th set r.e. in X is WX

e , and the e-th computable functional applied to X
by Φi (X ). We denote convergence and divergence by Φi (X ; y) ↓ and Φi (X ; y) ↑
respectively. Convergence in s-steps is denoted by Φi (X ; y) ↓s ⇐⇒ Φi,s (X ; y) ↓
and its negation by Φi (X ; y) � s .

We write elements of 2<� and �<� (referred to as strings) like 〈x0, x1, ... , xn–1〉
with 〈〉 denoting the empty string. For elements in 2<�,�<�,��, 2� (identifying
sets with their characteristic functions) we denote that � is (non-strictly) extended
by � by � ≺ �, incompatibility by |, compatibility by 
 | and use <L to denote the
lexicographic ordering. For elements of 2<�,�<� we denote the length of � by |�|
and write �– to indicate the immediate predecessor of � under ≺ and write α̂�
to denote α concatenated with � and write 〈i〉n to denote 〈i〉 concatenated with
itself n ≤ � times. We let Φe (�) denote the longest string �, |�| ≤ |�| such that
�(n) = Φe,|�| (�; n) ↓ and relativize to define Φe (� ⊕ X ) in the obvious manner.

We let ⌜α⌝ denote the canonical bijection of �<� with � where α ≺ � =⇒
⌜α⌝ < ⌜�⌝, i < j =⇒ ⌜α̂〈i〉⌝ < ⌜α̂〈j〉⌝, and ⌜〈〉⌝ = 0. We regularly gloss over
the distinction between strings and their codes as that between sets and their
characteristic functions. We let 〈x, y〉 = 1

2 (x + y)(x + y + 1) + y (this is a bijection
of�2 with�) and we let (〈a, b〉)0 = a and (〈a, b〉)1 = b. We defineA⊕ B , ⊕n∈SXn,
X [n], and X [<n] standardly and extend these operations to strings in the obvious
fashion (preserving the identification of 2� with P (�)).

A set X is arithmetic in Y (written X ≤a Y ) just if there is a formula
in the language of arithmetic (with a designated set constant) �e such that
Y |= �e(z) ⇐⇒ z ∈ X (see [9] for details). In this case we write �e(Y ) = X .

1These are both unpublished notes that sketch the approach. See [15] or (draft work) [3] for more
rigorous write-ups of some of the results.
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Recall that an equivalent characterization of arithmetic reducibility is given by

X ≤a Y ⇐⇒ (∃n)
(
X ≤T Y

(n)
)

. We denote the arithmetic degree of ∅ by 0a and,

as the arithmetic jump of X is defined to be X� , that of 0(�) by 0a
′. An arithmetic

degree is minimal just if it has exactly one predecessor under ≤a.

2.2. Trees and forcing. A tree T is a ≺ closed set of strings and [T ] is the set of
paths through T. We define T 〈∞〉 = {� ∈ T | (∃f ∈ [T ])(� ≺ f)} and call a tree
pruned ifT = T 〈∞〉. A node � ∈ T is terminal if � has no extensions in T, branching
if it has more than one immediate extension, �-branching if it has infinitely many
immediate extensions and the root of T if it is the unique ≺ least branching node in
T. A tree is �-branching if every branching node is �-branching. A subtree of T is
a tree T̂ ⊂ T .

We abuse notation and write T �l for {� ∈ T | |�| ≤ l}. We write �∗T for
{�̂� | � ∈ T}, T /� for {� | �̂� ∈ T} (with � / � the unique element of {�} / �)
and T 〈�〉 = �∗T /� called the subtree of T above �. We recall that the standard
topology on �� is induced by basic open sets [�] = {f | f � �} for � ∈ �<� and
likewise for 2� . A set is perfect if it contains no isolated points and we call a tree T
perfect if [T ] is perfect.

When working with unpruned trees in �<� we can’t identify trees (≺ closed
sets) with ≺ respecting functions on strings as we’ll do over2 2<� . We use the
term f-tree for a ≺, <L respecting partial function T :�<� �→ �<� with a ≺ closed
domain that preserves longest common initial segments, i.e., T (�̂〈n〉)(|T (�)|) is
strictly monotonic in n (on its domain). A f-tree T̂ is a subtree of an f-tree T if
rngT̂ ⊂ rngT . An f-tree T is branching if every non-terminal element in domT has
multiple immediate successors, (weakly)�-branching if every non-terminal element
in domT has infinitely many immediate successors, and �-branching if whenever
� ∈ domT is non-terminal than �̂〈n〉 ∈ domT for all n. Unless otherwise stated,
we assume every f-tree is a branching f-tree and generalize the notions of being
pruned, T 〈∞〉, T / �, �∗T , and T 〈�〉 to f-trees in the obvious way.

We write � � � to denote forcing over 2<� or �<� and � �T � to denote local
forcing on the (pruned) tree T (see [9] for details). A set/function is κ-generic iff
it forces either � or ¬� for every Σ1

	 sentence with 	 < 1 + κ and weakly κ-generic
(note the application at limit ordinals) iff it meets every dense Σ1

	 set of strings. Recall
that a set of strings W is dense if every string is extended by an element of W.

2.3.
∏0
n classes and �-REA sets. A

∏0
n set class is the set of elements in P (�)

(identified with 2�) that satisfy some
∏0
n formula with a free set variable. A∏0

n function class is defined likewise for elements in �� . We will use the term∏0
n class without further specification to refer to a

∏0
n set class. We note that

if n > 0 then F ⊂ �� is a
∏0
n function class iff there is a computable relation

R and a quantifier block ∀x ... Qy containing n alternations such that f ∈ F iff
∀x ... QyR(f�y, x, ... , y) (and likewise for a

∏0
n set class).

2In 2<� we can, computably in T, find the least extension of � ∈ T which either has no extensions in
T or two extensions in T, provided we assume such an extension always exists.
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An immediate consequence of this fact is that
∏0

1 classes can be identified with
the set of paths through a computable tree. Interestingly, up to degree,

∏0
2 classes

and
∏0

1 function classes are equivalent in the following sense.

Lemma 2.1. Every
∏0

1 function class is homeomorphic with a
∏0

2 class via a
computable (hence degree preserving) homeomorphism and vice versa. This holds with
all possible uniformity.

Proof. For the first claim, it is enough to note that there is a computable
homeomorphism of �� with 2� \ {�̂〈1〉� | � ∈ 2<�} given by setting Γ(〈〉) = 〈〉
and Γ(�̂〈i〉) = Γ(�)̂〈1〉î〈0〉.

The other direction is slightly more tricky. Given a
∏0

2 class C such that
X ∈ C ⇐⇒ (∀z)(∃y)R(X �y, z, y) define Γ(X )(2z) to be the least y such that
R(X �y, z, y) and Γ(X )(2z + 1) = X (z). We now define a computable treeT ⊂ �<�
with F = [T ]. Given � ∈ �<� with |�| ≡ 0 (mod 2) let � = � ⊕ 
 and place � ∈ T
iff (∀l < |�|)R(
�l , �(l), l). If |�| ≡ 1 (mod 2) then place � ∈ T iff either �̂〈0〉 ∈ T
or �̂〈1〉 ∈ T . Clearly, T is a computable tree and Γ is a computable continuous
bijection of C with [T ] with a continuous inverse on [T ]. �

As the name would suggest, a
∏0
n singleton is a set/function that’s the only

element in a
∏0
n class. Recall that every �-REA set is a

∏0
2 singleton but not vice-

versa. For the interested reader unfamiliar with the �-REA sets we refer them to [6]
but as these sets will primarily play a motivating role in this paper it’s enough for
the reader to understand that they are the result of effectively iterating the operation
X �→ X ⊕W (X )i � many times (so the (n + 1)-st component must be uniformly
r.e. in the first n components).

2.4. Ordinal notations. We will generalize our main theorem past � to arbitrary
ordinal notations. The reader interested in only claims about arithmetic reductions
(such as the headline corollary) can assume that notations only range over � ∪ {�}
as the lemmas required for larger ordinal notations have been exiled to Appendix B.
However, some notational conventions, inspired by [12], are still necessary in either
case.

Kleene’s set of ordinal notations isOwith ordering<O. The height ofκ is ‖κ‖O.
−→O

is the set of limit notations, +O the set of successor notations. For 	 a limit notation
we denote the n-th element of the effectively given increasing sequence defining 	 by
{	}O(n). We elide the differences between finite notations and elements of � as well
as that between � and some canonical notation for it.

2.5. Rates of growth. We say that g ∈ �� is C-escaping if g isn’t dominated by any
f ∈ C , X -escaping for X ⊂ � if it escapes from {f | f ≡T X} and arithmetically
escaping if it escapes from the set of arithmetic functions. Recall that f majorizes
(dominates) g iff f(x) ≥ g(x) for all x (all but finitely many x). Following [9]
we draw on the fact that a Turing degree is hyperimmune just if it contains a
0-escaping function and say that an arithmetic degree is arithmetically hyperimmune
just if it contains an arithmetically escaping function. As there is no notion of a set
being arithmetically hyperimmune to cause confusion, we call X arithmetically
hyperimmune just if it is of arithmetically hyperimmune degree.
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It’s a well-known fact that if A is an r.e. set then A is uniformly computable in any
g majorizing mA(x) = min {s | A�x = As�x}. Thus, the degree of an r.e. set can be
characterized in terms of the rate of growth of a function computable in that degree.
However, it’s slightly less well-known that this isn’t just true of r.e. sets but of all

∏0
2

singletons.

Lemma 2.2. If f is a
∏0

1 function singleton then every g majorizing f uniformly
computes f. If X is a

∏0
2 singleton then there is some f ≡T X such that every

g majorizing f uniformly computes X. Moreover, if X isn’t arithmetic then it is
arithmetically hyperimmune.

Proof. By Lemma 2.1 the second and third claims follow from the first.
Now suppose that f is the unique path through [T ] and that f is majorized
by some arithmetic function g. Now let T̂ consist of all � ∈ T majorized by g
(on dom�). To compute f�l from g, search for some �, k such that |�| = l and(
∀� ∈ T̂

)
(|�| = k =⇒ � � �). As T̂ is finitely branching and [T̂ ] = {f} König’s

lemma guarantees that such a k exists. �

§3. Fast growing functions and minimality. Before we prove Corollary 4.3 we first
consider a seemingly promising, but ultimately futile, approach to proving that no
�-REA set can be of minimal arithmetic degree. This failure provides an interesting
result about the arithmetic degrees in its own right and illustrates both some of the
similarities and differences between the role of the r.e. sets in the Turing degrees
and the �-REA sets in the arithmetic degrees. As an added bonus it will preview
some issues that will arise later and remind readers of the standard construction of
a minimal arithmetic degree [11].

3.1. Motivation. One of the most powerful methods to prove results about r.e.
sets is to threaten to code one set into another (see, e.g., Sack’s proof of the Density
theorem [10]). However, translating this approach to the�-REA sets under ≤a faces
two serious barriers. First, the fact we can only place elements into the (n + 1)-th
component of an �-REA set if they are enumerated in an r.e. fashion from the
n-th component. This makes it very difficult to threaten to code X into Y without
following through. Second, the coding would somehow have to control/react to
facts about arbitrarily many jumps of Y.

One potential way to avoid these difficulties with coding is to ignore the details
about what elements enter a set and just focus on rate of growth/domination. Every
non-arithmetic

∏0
2 singleton (and hence �-REA set) computes an arithmetically

escaping function and we know that non-domination strength is often a good way
to build sets of smaller degree, e.g., Kurtz’s proof that every hyperimmune degree
computes a weak 1-generic [7].

Also, [1] showed that every 0′-escaping function computes a weak 2-generic (and
is thus not of minimal Turing degree). While further non-domination strength won’t
ensure we can compute a weak 3-generic an examination of the proof of this claim
[1] suggests that this is more about the ease of avoiding genericity not necessarily
a limitation on the computational power of non-domination strength. This leaves
open the possibility that arithmetically escaping functions compute�-generics under
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some local forcing3 or other forcing notion. Besides, it simply seems intuitively
unlikely that a minimal arithmetic degree, a degree which should have the very least
amount of computational power, could include an arithmetically escaping function.

This possibility is rendered more plausible by the fact that the standard
construction of a minimal arithmetic degree [11] naturally produces a set which
doesn’t compute any arithmetically escaping functions.

Proposition 3.1. Suppose that for every n there is an arithmetic tree Tn ⊂ 2<�

such that X ∈ [Tn] and every path through Tn is n-generic with respect to �Tn then X
is arithmetically hyperimmune-free.

Proof. Supposef ∈ �� andX |= �(x, y) ⇐⇒ f(x) = y for some Σ1
n sentence

�. We now construct an arithmetic g majorizing f as follows.
Let m = n + 2 and consider the sentence that asserts �(x, y) defines a total

function

ϕ
def= (∀x)(∃y)

(
�(x, y)) ∧ (∀x)(∀y)(∀y′)

(
�(x, y) ∧ �(x, y′) =⇒ y = y′) .

By assumption, X |= ϕ and therefore there is some � ≺ X, � ∈ Tm with � �Tm ϕ.
Let T̂ be the strings in Tm compatible with �.

We compute g(x) by searching for a finite set of pairs yi , �i with �i �Tm �(x, yi)
such that every path through [T̂ ] extends some �i . Since all Y ∈ [T̂ ] are m locally
generic every such Y |= ϕ. Thus, for all Y ∈ [T̂ ] there are x, y such that Y �Tm
�(x, y). Thus, there is an set of pairs yi , �i as described and the �i may be taken to
be incompatible. As Tm is finitely branching by König’s lemma, there can only be
finitely many elements in T̂ extending no �i ensuring that we can always find a finite
collection of such pairs. Now let g(x) be larger than all the yi in our set of pairs.

If Y ∈ [T̂ ] then g majorizes the function fY where fY (x) = y ⇐⇒ Y |=
�(x, y) and as X ∈ [T̂ ] it follows that g majorizes f. As Tm ≥T T̂ is arithmetic
it follows that g is an arithmetic function majorizing f. �

The trees Tn in the above proposition track the trees used in the construction of
a minimal arithmetic degree. Thus, the usual construction of a minimal arithmetic
degree produces an arithmetically hyperimmune-free degree.

3.2. An arithmetically hyperimmune minimal degree. Unfortunately, despite the
reasons to conjecture that arithmetically hyperimmune functions couldn’t be of
minimal arithmetic degree, it turns out not to be the case. Indeed, it turns out
that any amount of non-domination strength is compatible with being of minimal
arithmetic degree. This contrasts with the situation in the Turing degrees where no
0′ escaping function can be of minimal Turing degree.

Theorem 3.2. There is a pruned perfect �-branching f-tree T ≤T 0(�) such that
every f ∈ [T ] is of minimal arithmetic degree.

3However, a modification of the same argument will allow one to show that no amount of non-
domination is enough to compute a generic with respect to local forcing on some sufficiently definable
pruned perfect tree Te . The construction is as before, except now we compute a pair Te, Xe from each
path on T. We proceed much as before but with the addition that we achieve immediate victory if we
can force Xe to leave Te . However, this leaves open the possibility we compute some �-generic relative
to local forcing on some more complicated tree.
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We will break the proof of this theorem up into a sequence of lemmas. However,
before we do that let’s first verify that the theorem actually provides the desired
(arguably undesired) arithmetically minimal, arithmetically hyperimmune degree.

Corollary 3.3. There is an arithmetically minimal degree a that is of arithmeti-
cally hyperimmune degree. Indeed, for any countable C ⊂ �� there is a minimal
arithmetic degree a containing a C escaping member.

Proof. The first claim follows from the second by taking C to be the collection of
arithmetic f ∈ �� . For the second claim, fix a function h dominating every element
of C and then build a path f through the tree in Theorem 3.2 by always extending
� to �̂〈m〉 such that T (�̂〈m〉) ↓ and escapes h one more time. �

Recall from the construction of a minimal Turing degree that

Definition 3.4. The strings �0, �1 e-split if Φe (�0) | Φe (�1)

and that in that construction we built a sequence of computable trees Te ⊂ 2<�

with Te+1 a subtree of Te such that one of the following obtains (here we identify
pruned, perfect binary trees and the corresponding f-trees).

1. (Partiality) (∀f ∈ [Te])(Φe (f) ↑) .
2. (Non e-splitting) For all �, �′ ∈ Te , �, �′ don’t e-split.
3. (e-splitting) For all � ∈ Te , Te(�̂〈0〉) and Te(�̂〈1〉) e-split.

We then buildf ∈
⋂
e∈�[Te ] ensuring that either Φe (f) is partial (1), computable

(2), or computes f (3). We adopt the same general approach, but, to handle
arithmetic reductions rather than Turing reductions we’ll replace the notion of
e-splitting with an analogue based on local forcing (as in the construction of a
minimal arithmetic degree from [11]). We’ll then adjust this construction to allow
us to build �-branching trees. First, however, we introduce notation to represent an
analogue of partial application of a functional for forcing.

Definition 3.5. Given a notion of forcing � a condition � and a sentence� with
a single free (number) variable let �� (�) denote the longest string � ∈ 2<� such
that n ∈ dom� implies � � �(n) ∧ �(n) = 1 or � � ¬�(n) ∧ �(n) = 0. We extend
this in the obvious way to infinite paths.

In other words, ��(�) represents the initial segment of �(A) whose values have
been determined for A � � (assuming A is sufficiently generic).

Definition 3.6. If �e is a Σ1
n or

∏0
n formula with a single free variable then:

1. A pair of strings �, �′ e-fsplits on T just if ��T
e (�) | ��T

e (�).
2. A pruned f-tree T is totally non-e-fsplitting if there are no �, �′ in the image of

T that e-fsplit.
3. A pruned f-tree is totally e-fsplitting if whenever � ∈ �<�, n 
= n′ then
T (�̂〈n〉), T (�̂〈n′〉) e-fsplits whenever both are defined.

4. A pruned f-tree T is e-deciding if it is either totally non-e-fsplitting or totally
e-fsplitting and every path through T is n generic with respect to �T .

Lemma 3.7. If T : �<� �→ �<� is a pruned e-deciding f-tree, f ∈ [T ], and
X = �e(f) then X is either arithmetic in T or f is arithmetic in X ⊕ T .
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Proof. As every path through T is n-generic with respect to �T if f �T �e(x)
then x ∈ �e(f). Hence, if T is totally non-e-fsplitting then (the characteristic
function for) X is the union of ��T

e (�) for � in the image of T. If T is totally
e-fsplitting and X = �e(f) then f is the union of � in the image of T with ��T

e (�)
compatible with X. As forcing for arithmetic sentences is arithmetic the conclusion
follows. �

We now prove the key lemma we’ll use to establish Theorem 3.2.

Lemma 3.8. Given e and a pruned�-branching perfect f-treeT : �<� �→ �<� there
is a pruned �-branching perfect e-deciding subtree T̂ uniformly arithmetic in T.

Proof. We first observe that given a pruned perfect f-tree T there is a pruned
perfect subtree T̃ where every path through T̃ is n-generic with respect to �T .
Moreover, we note that since � �T � =⇒ � �T̃ � every path is also n-generic with
respect to T̃ and if T was either totally non-e-fsplitting or totally e-fsplitting and
�e ∈ Σ1

n ∪
∏0
n than T̃ is e-deciding. As we can take T̃ to be arithmetic in T, it is

enough to demonstrate that there is pruned �-branching perfect subtree of T , T̂
arithmetic in T that is either totally non-e-fsplitting or totally e-fsplitting.

We consider two cases.

Case 1: Suppose some � ∈ rngT isn’t extended by any e-fsplit �0, �1 ∈ rngT . Let
T̂ = T 〈�〉, the subtree of T above �. Clearly, T̂ is totally non-e-fsplitting.

Case 2: Suppose Case 1 doesn’t hold. We now seek to build a perfect pruned
�-branching totally e-fsplitting subtree T̂ of T. Absent the need to be � branching
we could simply search for an e-fsplitting pair extending T̂ (�) on T to define
T̂ (�̂〈0〉), T̂ (�̂〈1〉). However, if we then later tried to define T̂ (�̂〈i〉) we might
be unable to choose a value for T̂ (�̂〈i〉) which e-fsplits with T̂ (�̂〈0〉). We could
further extend T (�̂〈0〉) to find a splitting but we risk having to do this infinitely
often. Instead, we make sure that when we pick a value for T̂ (�̂〈0〉) it e-fsplits with
extensions of infinitely many other strings of the form T̂ (�)̂〈i〉.

To define T̂ (�̂〈1〉) we essentially repeat the above process and choose one of
the infinitely many extensions which e-fsplits with T̂ (�̂〈0〉) that can be extended
to e-fsplit with (extensions of) an infinite subset of those allowed extensions. The
seemingly daunting details spelled out below are just the bookkeeping needed to
allow us to repeatedly select a value for T̂ (�̂〈i〉) and ensure that we have an infinite
set of options that e-fsplit with T̂ (�̂〈i ′〉), i ′ ≤ i to use for T̂ (�̂〈i ′〉), i ′ > i (and
to do this for every �).

We build an f-tree V : �<� �→ �<� and define T̂ = T ◦ V . Our construction of
V will proceed in stages. At stage s we will define V (�) where s = ⌜�⌝ (remember,
that � ≺ � =⇒ ⌜�⌝ < ⌜�⌝). At stage 0 = ⌜〈〉⌝we begin by definingV (〈〉) = 〈〉. Note
that, since i < j =⇒ ⌜�̂〈i〉⌝ < ⌜�̂〈j〉⌝ if ⌜�̂〈n〉⌝ = s then we’ve already defined
V (�̂〈m〉), m < n.

Once we’ve defined V (�) we maintain a set S�s of extensions of � representing
possible initial segments of V (�̂〈i〉) for V (�̂〈i〉) not yet defined at s. To ensure
that T̂ remains � -branching we ensure that all elements in S�s extend incompatible
immediate extensions of �. Unless otherwise specified, S�s+1 = S�s .
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Suppose that at stage s we are working to define V (�̂〈n〉), i.e., ⌜�̂〈n〉⌝ = s .
Let � be the lexicographically least element of S�s and U = S�s \ {�}. Let �0, �1 � �
be such that T (�0), T (�1) e-fsplit. Such strings must exist or Case 1 would have
obtained. Let Ui , i ∈ {0, 1} be the set of ≺ minimal � extending some element in U
such that T (�) and T (�i) e-fsplit. Let i ∈ {0, 1} by the least such that Ui is infinite.
Since the ‘images’ of T (�0) and T (�1) under �e disagree such an i must exist.

Set V (�̂〈n〉) = �i and S�s+1 = Ui , initialize S�̂〈n〉 to {�î〈m〉 | m ∈ �}, and
proceed to stage s + 1. This completes our definition of V and clearly defines a
pruned f-tree T̂ = T ◦ V arithmetically in T.

We claim that T̂ is a totally e-fsplitting perfect �-branching subtree of T. Our
definition of S�s ensures that T̂ is�-branching and that T̂ is perfect. Since whenever
we define V (�̂〈n〉) we limit T (V (�̂〈n′〉)), n′ > n to extensions of strings which
e-fsplit with T (V (�̂〈n〉)) it follows that T̂ is totally e-fsplitting.

As these cases are exhaustive, this suffices to complete the proof. �
We can now complete the proof of the theorem.

Theorem 3.2. There is a pruned perfect �-branching f-tree T ≤T 0(�) such that
every f ∈ [T ] is of minimal arithmetic degree.

Proof. Iteratively applying Lemma 3.8 would immediately suffice to produce a
minimal arithmetic degree. However, we wish to end up with an �-branching tree
of such degrees. To that end, we set T0 to be the identity function on �<� and
inductively define Tn+1�n = Tn�n (i.e., equal when applied to strings of length at
most n) and if |�| = n and T�n+1 is the n -deciding subtree of T 〈Tn(�)〉

n produced by
Lemma 3.8 then Tn+1(�̂�) = Tn(�)∗T�n+1.

Now let T be the limit of this process, i.e., T (�) = T|�|(�). T is a perfect pruned
�-branching f-tree. Since we defined Tn+1 in a uniform arithmetic fashion from
Tn we have T ≤T 0(�). Finally, if f ∈ [T ] and X = �e(f) and � = f�e+1 then
f /� ∈ [T�e+1] and thus, as T�e+1 is arithmetic, by Lemma 3.7 either X is arithmetic
or f /� ≡T f is arithmetic in X. �

3.3. Fast growth and definability. In retrospect, perhaps we shouldn’t be too
surprised by the result in the last section. After all, there are minimal Turing degrees
of hyperimmune degree (e.g., any minimal degree below 0′). And maybe we don’t
have to completely give up the idea of using non-domination strength to show that
no�-REA set can be of minimal arithmetic degree. While, surprisingly, unlike a true
1-generic, a weak 1-generic can be of minimal Turing degree (a minimal degree below
0′ can’t be hyperimmune-free and thus computes a weak 1-generic which, by virtue
of being non-computable, must be of that very minimal degree), we were still able
to use non-domination strength to demonstrate the non-existence of minimal r.e.
degrees by identifying a property (weak 1-genericity) that enough non-domination
strength would let us satisfy (compute) but which couldn’t hold of any set of r.e.
degree. Perhaps we could similarly show that every arithmetically escaping function
computes a non-arithmetic set with a property that guarantees it’s not of �-REA
degree.

What might play the role of this property in the arithmetic degrees? The result in
[1] tells us that it can’t be �-genericity but the following lemma suggests a different
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way of generalizing the idea that more non-domination strength should somehow
allow us to compute less definable sets.

Lemma 3.9. IfX ⊂ � is n-generic with respect to local forcing on some perfect tree
(or weakly n-generic) then X isn’t a

∏0
n singleton. Similarly, no n-generic f ∈ �� is a∏0

n function singleton.

Proof. Suppose that X is the unique set such that X |= � for some
∏0
n formula

(with a set constant) �. By n-genericity we must have X �l �T � for some l. As T is
perfect there is some n-generic pathY � X �l , Y 
= X through T. But, by n-genericity
Y |= � contradicting the fact that X was the unique solution.

To show the claim holds for weakly n-generic sets suppose that � = (∀x)Ψ(x).
Now let S =

{
� | (∃x)

(
� � ¬Ψ(x))

}
. S is a Σ1

n set and if no element in S extended �
then � �w � and, as above, would contradict the uniqueness of X. Hence, S is a Σ1

n

dense set of strings and, as every weak n generic is (n – 1)-generic and ¬Ψ ∈
∏0
n–1,

if X is a weak n-generic meeting S then X |= ¬�.
The argument for function singletons proceeds identically. �
In this light, we can think of the results from [1] as showing us that any 0-escaping

function computes a set that’s not a
∏0

1 singleton and any 0′-escaping function
computes a set that’s not a

∏0
2 singleton.4 We leave it as an exercise to demonstrate

that the techniques in [1] show that sufficient non-domination strength allows us
to compute a set that’s not a

∏0
3 singleton. Thus, a plausible conjecture is that an

arithmetically escaping function computes a set that’s not an arithmetic singleton
(i.e., not a

∏0
n singleton for any n). If true, this would prove that no �-REA set is

on minimal arithmetic degree.

Proposition 3.10. If every arithmetically escaping function f can arithmetically
define a set that’s not an arithmetic singleton then no

∏0
2 singleton, and hence no

�-REA set, is of minimal arithmetic degree.

Proof. Suppose, for contradiction, X is a
∏0

2 singleton of minimal arithmetic
degree. By Lemma 2.2 X computes an arithmetically escaping f. Let Y ≤a f such
that Y isn’t an arithmetic singleton as per the proposition. If Y were arithmetic
then Y would be a Σ1

n set for some n and thus an arithmetic singleton. Therefore,
we must have Y ≡a X . Thus, for some arithmetic formulas �,Ψ we have �(X ) =
Y ∧ Ψ(Y ) = X and thus Y is the unique solution of the arithmetic formula which
asserts that Ψ(Y ) satisfies the

∏0
2 formula defining X and that �(Ψ(Y )) = Y .

Contradiction. �

§4. An arithmetically minimal
∏0

2 singleton. We will now prove that our seemingly
plausible conjectures (once again) fail and that there is a

∏0
2 singleton of minimal

arithmetic degree. Our approach to proving this borrows substantially from
Harrington’s proof of McLaughlin’s conjecture [5]. As it’s easier to work with
computable trees than

∏0
2 classes we’ll work in�<� . By Lemma 2.1 it will be enough

to build a computable tree T ⊂ �<� with a single path f of minimal arithmetic

4Since
∏0

2 singletons are closed under Turing equivalence, we could say not of
∏0

2 singleton degree.
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degree. However, doing this in a single step would be dauntingly difficult, so we
instead break up our construction into steps.

Specifically, the primary task will be to prove the following proposition.

Proposition 4.1. Given a (potentially partial ) tree S ⊂ �<� computable in X ′′

there is a (total ) computable tree T ⊂ �<� and an X ′′ computable partial f-tree T̂
such that:

1. rngT̂ ⊂ T and [T̂ ] = [T ].
2. T̂ (·) is a homeomorphism of [S] with [T ].
3. If f ∈ [T ] then f �T X .
4. If g ∈ [S] then g ⊕ X ′′ ≡T

(
T̂ (g) ⊕ X

)′′ ≡T T̂ (g) ⊕ X ′′.
5. If f ∈ [T ] and Y ≤T f ⊕ X then either Y ≤T X or f ≤T Y ⊕ X ′′.
6. For all � ∈ 2<� ,

∣∣T̂ (�)
∣∣ ≥ |�| (when defined ).

Moreover, this holds with all possible uniformity. In particular, given a computable func-
tional Υ2 we can effectively produce functionals Υ, Υ̂ so that whenever Υ2(X ′′) = S
then Υ(X ) = T and Υ̂(X ′′) = T̂ with the properties described above.

We will then leverage this proposition to prove the main theorem below by using
it repeatedly to pull down a tree Tα ≤T 0(α) to a homeomorphic image T ≤T 0.

Theorem 4.2. Given a limit ordinal α < �CK
1 and a tree Tα ⊂ �<�, Tα ≤T 0(α)

there is a computable tree T and an f-tree Γ ≤T 0(α) such that Γ is a homeomorphism
of [Tα] with [T ] satisfying the following for all f ∈ [T ] and ordinals � < α:

• f(�) ≡T f ⊕ 0(�) and, indeed, f(α) ≡T f ⊕ 0(α).
• f �T 0(�).
• If Y ≤T f

(�) then either Y ≤T 0(�) or f ≤T Y ⊕ 0(�+2).
Moreover, this holds with all possibility uniformity.

Note that the final point above immediately entails that if there is some � < α such
that Y ≤T f

(�) then there is some 
 < α such that either Y ≤T 0(
) or f ≤T Y
(
).

We now catalogue a number of interesting corollaries, such as the existence of a
∏0

2
singleton of minimal arithmetic degree.

Corollary 4.3. There is a
∏0

2 singleton of minimal arithmetic degree.

Proof. Taking T� = {〈0n〉 | n ∈ �} immediately produces a
∏0

1 function single-
ton of minimal arithmetic degree and applying Lemma 2.1 transforms this into a∏0

2 singleton of minimal arithmetic degree. �
Our work from the previous section isn’t wasted as it allows us to prove the

following interesting corollary.

Corollary 4.4. There is an arithmetically escaping function f ≤T 0(�) such that
every X ≤a f is an arithmetic singleton.

Proof. By Corollary 4.3 and Lemma 2.1 let f be a
∏0

1 singleton of minimal
arithmetic degree. By Lemma 2.2 f must be arithmetically escaping and by
Proposition 3.10 every Y ≤a f is an arithmetic singleton. �

We can also derive some interesting consequences about perfect sets of minimal
arithmetic degree.
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Corollary 4.5. There is a perfect
∏0

2 class C all of whose members are of minimal
arithmetic degree and which contains elements of arbitrarily large non-domination
strength.

By containing elements of arbitrarily large non-domination strength, we mean
that for any countable C ⊂ �� there is an X ∈ C and f ∈ �� such that X ≡T f
and f isn’t dominated by any g ∈ C .

Proof. Take T� = �<� . Since Γ is an f-tree and a homeomorphism at each
� ∈ T� we can pick i large which ensures that Γ(�̂〈i〉) is large at n =

∣∣Γ�0 (�)
∣∣.

Thus, we can apply the same approach as in Corollary 3.3 to show that there is an
element of [T ] that avoids domination by any element in C. By applying Lemma 2.1
we get a

∏0
2 class whose members are Turing equivalent to the elements in [T ]. �

Before we move on to providing proofs of Theorem 4.2 and Proposition 4.1, we
end this section by asking a few questions. While the existence of a

∏0
2 singleton

of minimal arithmetic degree is suggestive, it isn’t quite enough to demonstrate that
the project of using the properties of fast growing functions to show �-REA sets
can’t be of minimal degree fails. This gives rise to the following question.

Question 4.6. If f is arithmetically escaping, must there be some X ≤a f where X
isn’t of �-REA arithmetic degree.

At first glance, one might think that this question stands or falls with the existence
of an �-REA set of minimal arithmetic degree. After all, the question must have
a negative answer if there is such an �-REA set and if the question has a positive
answer then no such set can exist. However, there is still the possibility that the
question has a negative answer and no �-REA set is of minimal arithmetic degree.
This would require that there is some non-arithmetic �-REA set A such that every
B ≤a A is arithmetically equivalent to an �-REA set, but that doesn’t seem beyond
the realm of possibility.

Next, inspired by the methods in [5], we ask if this approach offers any utility if
extended up through all ordinals below �CK

1 .

Question 4.7. Do results that create a unique path through O via ‘non-standard’
notations offer a means to extend Theorem 4.2 to prove interesting results about
hyperdegrees?

Such a generalization isn’t as simple as merely applying the construction used
in Theorem 4.2 to some non-standard notation. That can’t work as we could then
build a

∏0
1 function singleton that isn’t of hyperarithmetic degree which contradicts

the fact that if f is the unique path through a computable tree [T ] then f ∈ HYP.
However, the methods in [5] might allow the definition of a perfect

∏0
1 class of

elements all of which satisfy the conclusion of Theorem 4.2 with respect to all α in
some linearly ordered path through O.

Question 4.8. Is there a perfect
∏0

1 function class all of whose elements are both
arithmetically minimal and arithmetically escaping?

The difficulty here is that modifying T� also results in modification to T.
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Question 4.9. What kind of ability do we have to control the join of pairs of
minimal degrees? Are there

∏0
2 singletons A,B of minimal arithmetic degree such that

A⊕ B ≡a 0(�) (or even ≡T 0(�) for arbitrary � ∈ O). Could we combine this with the
idea in Question 4.7 to create a perfect

∏0
2 class whose elements join to compute O?

§5. Towers of trees. Before we get into the weeds of proving Proposition 4.1 we
first show that it suffices to establish the main theorem. As not all readers may wish
to delve into the details involved in manipulating ordinal notations we segregate the
results needed to prove the claim for α above � into an appendix. If you are only
interested in the case α = � you may simply take �� = � and l�(n) = n for all
n ∈ � and {�}O(n) = 2n and replace the following definition of an even notation
with that of an even number.

Definition 5.1. The ordinal notation � is an even notation if � = 	+ 2k where
	 is either 0 or a limit notation and k ∈ �.

We break our proof of Theorem 4.2 into a construction of a uniform sequence
of trees T� and a verification that this uniform sequence of trees has the desired
properties.

Proposition 5.2. Given a limit notation α and a tree Tα computable in 0(α) the
following hold:

1. For each even notation � <O α there is a tree T� uniformly computable in 0(�).
2. For all 
 <O � ≤O α, there is a uniformly given f-tree Γ�
 ≤T 0(�) that’s a

homeomorphism of [T� ] with [T
 ].
3. For each even notation � <O α there is some l�(�) ∈ � such that if � ∈ T�,

|�| = l�(�) then applying Proposition 4.1 with S = T�+2 / � and X = 0(�)

produces T = T� / � and T̂ where �̂T̂ (�) = Γ�+2
� (�̂�) for all �.

For 2 we understand the uniformity claim to mean that Γ�
 (�) is given by
Γ(�, 
, 0(�), �) for a single computable functional Γ. Similarly, for 1 we understand
the uniformity claim to mean that there is a single computable functional such that
Υ(�, 0(�), ·) gives the characteristic function for T� for all even notations � ≤O α,
Moreover, that indexes for both functionals are given by a computable function of
α and an index for Tα .

5.1. Verifying the main theorem. We now prove a utility lemma which will let us
show that Theorem 4.2 follows from the claim above.

Lemma 5.3. Givenα,T�,Γ as in Proposition 5.2 andf ∈ [T0] for all even notations
� ≤O α:

1. There is a unique g� ∈ [T� ] such that Γ�0 (g�) = f.
2. g� is uniformly computable from f ⊕ 0(�).
3. f(�) ≡T f ⊕ 0(�) ≡T g� ⊕ 0(�). Moreover, this equivalence holds uniformly in � .
4. � <O α implies g� �T 0(�).
5. If � <O α and Y ≤T g� ⊕ 0(�) then either Y ≤T 0(�) or g� ≤T Y ⊕ 0(�+2).

Proof. By point 2 of Proposition 5.2 there is a unique g� whose image under
Γ�0 is f. We can compute g� in 0(�) ⊕ f as Γ�0 ≤T 0(�) and as it’s an f-tree it sends
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incompatible elements in the domain to incompatible elements in the range. This
verifies points 1 and 2.

For point 4 let � = g��l�(�) and note that by 3 of Proposition 5.2 for � <O α
the tree T� / � is the result of Proposition 4.1 applied to T�+2 / � and by 3 of
Proposition 4.1 we know that g� �T 0(�). By part 5 of Proposition 4.1 we have that
5 holds. This leaves us only 3 to verify.

Suppose that 3 holds for all notations 
 <O � (where we regard the claim as
trivially true for odd notations). We prove the claim holds for � . First, suppose that
� = 
 + 2.

Now let � = g
�l�(
). By 3 of Proposition 5.2 the tree T
 / � is the result of
Proposition 4.1 applied to T
+2 / �. Thus, by point 4 of Proposition 4.1 we have(
g
 ⊕ 0(
)

)′′
≡T g
 ⊕ 0(
+2) ≡T g
+2 ⊕ 0(
+2). The inductive assumption transforms

this equivalence into the one asserted in 3.
Now, suppose that � is a limit notation. Note that as Proposition 5.2

guarantees that T
 is uniformly computable from 0(
) (for 
 an even notation)
and Proposition 4.1 holds uniformly therefore claim 3 holds uniformly below � . But
0(�) can uniformly compute 0(
) and thus f ⊕ 0(�) can compute f(
) for notations

 <O � . Hence f ⊕ 0(�) can compute f(�) which is automatically an equivalence.
Using Γ�0 ≤T 0(�) to translate between g� and f we see f ⊕ 0(�) ≡T g ⊕ 0(�)

completing the verification. �

We can now show that Theorem 4.2 follows from Proposition 5.2.

Proof. Take α′ to be a notation for the desired ordinal in Theorem 4.2 and apply
Proposition 5.2 to get the notation α, the sequence T� and Γ. We now apply Lemma
5.3. The equivalence f(�) ≡T f ⊕ 0(�) ≡T g� ⊕ 0(�) from part 3 of Lemma 5.3 gives
the first claim in Theorem 4.2 on its own. Applying it to part 5 of Lemma 5.3
is enough to give the final claim in Theorem 4.2. Finally, if f ≤T 0(�) then that
equivalence implies that g� ⊕ 0(�) ≤T 0(�) contradicting part 4 of Lemma 5.3. �

5.2. Constructing the tower. We now prove Proposition 5.2 follows from Propo-
sition 4.1. To deal with notations for ordinals above � we use some results proved
in Appendices A and B. We start by defining l�(�), �� via Definition B.3. As
mentioned above, readers only interested in the case α = � can skip the material
on ordinal notations in Appendices A and B. They will, however, still need to know
that we can replace T� with a tree T ′

� with [T ′
�] = [T�] in which the membership

of � ∈ T ′
� for |�| = 2n can be computed uniformly in 0(2n) (a special case of the

general result proved in Lemma B.6).
We construct a computable functional Υ such that for all even notations � with

� ≤O α, Υ(�, 0(�), ·) gives the characteristic function for T� . Regarding functionals
as r.e-sets of axioms we can define a functional Υ assuming that we already have
access to some partial functional Υ̂ and then use the recursion theorem to yield a
single functional satisfying Υ = Υ̃. Formally speaking, Υ and Υ̃ are defined to be
sets of axioms; however, we will only specify those sets implicitly by instead defining
the trees T� in terms of the trees T̃� where we understand that T̃� represents the set
defined by Υ̃(�,X, ·) on the guess that X = 0(�).
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Specifically, we define Tα to be Tα . That is, regardless of the behaviour of Υ̃,
Υ(α,X, ·) gives the computation that yields the characteristic function for Tα when
X = 0(α). Given � an even notation with � <O α we define the tree T� as follows
(once Υ has verified the Σ1

1 fact that � <O α is an even notation).
Let 	 = ��. If |�| ≤ l�(�) then � ∈ T� iff � ∈ T̃ ′

	 where if 	 is a limit notation, T̃ ′
	

is the result of applying Lemma B.6 to T̃	 so that T̃ ′
	�l�(�) has membership uniformly

computable in 0(�) and [T̃ ′
	] = [T̃	]. If 	 is a successor notation then T̃ ′

	 = T̃	.
For �′ with |�′| > l�(�) let �′ = �̂� where |�| = l�(�). Set �′ /∈ T� if � /∈ T̃ ′

	.

If � ∈ T̃ ′
	 then apply Proposition 4.1 to T̃ ��+2

def= T̃�+2 / � to yield some T�� and place

�′ ∈ T� just if � ∈ T�� . Note that, we can enforce the fact that T̃ ��+2 is always a tree
by only allowing strings into this set when all their predecessors have been seen to
be in the set.

We now define Υ to be the fixed point rendering Υ̃ = Υ. Thus, for an even notation
� ≤O α we define T� = Υ(�, 0(�)). Note that, by part 3 of Proposition B.5 we can
be sure that our fixed point will satisfy T��l�(�) ⊂ T�+2�l�(�) so that T̃ ��+2 will be
defined for � ∈ T�, |�| = l�(�).

We define the functional Γ in a similar fashion assuming we have some Γ̃ and
applying the recursion theorem. Note that, the argument above produces two indexes
i and q(i) for the functional Υ where q is the computable functional implicitly defined
by the construction above and i is the index given by the recursion theorem applied
to q. While i and q(i) result in the same set of axioms, we can’t guarantee that the
application of Proposition 4.1 produces the same T, T̂ for different indexes for the
same tree S. To handle this issue, we use T̃�+2 to indicate the definition in terms of
i and apply Proposition 4.1 to T̃�+2 / � not T�+2 / � to ensure we get the f-tree T̂
associated with the construction of T� / �.

With this in mind, we define Γ�+2
� for � ≤O α an even notation as follows. If

|�| ≤ l�(�) then Γ�+2
� (�) = � if � ∈ T̃�+2 and undefined otherwise. If |�′| > l�(�)

then let � = �′�l�(�) and if � /∈ T̃�+2 then Γ�+2
� (�′) ↑. Otherwise, we define

Γ�+2
� (�′) = �̂T̂ (�) where, �′ = �̂� and T̂ is the f-tree produced by Proposition

4.1 as applied to T̃�+2 / �. For � ′ <O � we define Γ�+2
�′ to be Γ�+2

� ◦ Γ̃�
�′ .

Finally, for 	 a limit and � <O 	 ≤O α, � an even notation we define Γ	�(�) as
follows. Let �n be the sequence of notations given by part 4 of Proposition B.5. Let
m be the least with |�| ≤ m and � ≤O �m and define Γ	�(�) to be equal to Γ̃�m� (�).

Finally, we define Γ via the recursion theorem so that Γ = Γ̃.
To verify this construction produces the desired result, we suppose that �, 
 is

the lexicographically least pair of even notations 
 <O � ≤O α such that Γ�
 isn’t an
f-tree that’s a homeomorphism of [T� ] with [T
 ] and then observe that if � = � ′ + 2

then since Γ�
′+2
�′ is a homeomorphism we get a contradiction. Similarly, if 	 = � is

a limit then by Proposition B.5, 6 of Proposition 4.1, and the inductive assumption
regarding Γ�n� we can derive that Γ	� is an f-tree that’s a homeomorphism of [T	]
with its image contained in [T� ]. Now suppose that some f ∈ [T� ] isn’t equal to
Γ	�(g) for any g ∈ [T	]. Then, for some n we have that f � Γ�n� (�) for no � ∈ T ′
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with |�| = l�(�n) and thus by the inductive assumption f /∈ [T� ]. Thus, the claim
holds for Γ	� as well. This suffices to prove Proposition 5.2.

§6. Minimality and double jump inversion. In this section, we finally present the
proof of Proposition 4.1. However, before we do this we answer an obvious question
raised by our construction. Why do we use double jump inversion and not single
jump inversion as Harrington did in [5]? The answer is that it’s not possible. We can’t
satisfy the minimality style requirements while also using �-branching to encode
the copy of T�+1. Specifically, we now show that no 0′ �-branching tree T lets us
achieve the kind of minimality required by part 5 of Proposition 4.1.

Proposition 6.1. Given a perfect weakly �-branching pruned f-tree T ≤T 0′ one
can uniformly construct a computable functional Φ such that e-splitting pairs in T
occur above every node in T and for every � ∈ rngT there are paths f 
= g extending
� through T with Φe (f) = Φe (g).

Indeed, the result is actually slightly stronger in that we show that even if T
is unpruned we can start building such f, g above every node in T and always
extend to preserve agreement under Φe until we hit a terminal node. Even without
this improvement, this rules out the possibility of building T̂ to be computable in
X ′. While we aren’t guaranteed that T̂ itself is pruned it will be pruned whenever
S is pruned. Thus, the above result rules out the possibility of performing the
construction using only single jump inversion. Since the proof of this proposition
takes some work and would interrupt the flow of the paper we relegate it to
Appendix A.

6.1. Machinery. The construction will build T via a stagewise approximation
Ts with Ts+1 ⊃ Ts and � ∈ T iff � ∈ T

⌜�⌝. We will also maintain a stagewise
approximation T̂s to T̂ . We will organize the construction of by drawing on ideas
from

∏0
2 constructions in the r.e. sets. In particularly, we will arrange modules on a

priority tree, denoted T ⊂ �<� , but the differences between constructing a set and
a tree require we make some modifications.

Usually, in a
∏0

2 tree construction we assign modules to elements of�<� , denoting
an arbitrary module assigned to α by Mα (for a module of type R, Rα) and use
only the outcome of that module at stage s to determine where next to visit at
stage s. However, rather than working on meeting a requirement globally for the
entire tree T we will assign modules to work on meeting a requirement for the path
extending T̂ (�) for some �. Thus, rather than working on T ⊂ �<� we work on
T ⊂ �<� × �<� . More specifically, we identify modules in our construction with
pairs (α, �) where α is the string built up out of the outcomes of prior modules
and � indicates the element in domT̂ we are working to define. The idea is that
at certain points in our construction, rather than following a single outcome of a
module, we will simultaneously work both above (our approximation to) T̂ (�̂〈m〉)
and above/to define T̂ (�̂〈m′〉).

When we specify a module M� we also specify a set O(�) of pairs of potential
successors (o, �) where o is a potential outcome of the module (identified with
elements in � but written more suggestively) and � ∈ �<� . As usual, at each stage
any module we visit will have a single outcome o but as there may be multiple pairs
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(o, �) ∈ O(�) there may be multiple immediate successors of this module which both
get visited at this stage. In our construction most modules will only allow � = 〈〉
but some modules will have successors both of the form (o, 〈〉) and (o, 〈n〉) (for
some particular value n). Thus, we will only work on finitely many modules at any
stage. With this in mind, we define our priority tree T inductively as follows. In what
follows, keep in mind that (〈a, b〉)0 = a and (〈a, b〉)1 = b.

Definition 6.2. T is the smallest set of pairs 〈α, �〉 closed under the following
conditions:

• 〈〈〉, 〈〉〉 ∈ T.
• If � = 〈α, �〉 ∈ T ∧ (o, �) ∈ O(�) then � = 〈α̂〈o〉, �̂�〉 ∈ T. In this case we

write �– = � and call � the predecessor of �.

We define |�| ∈ T =
∣∣(�)0

∣∣ and say � ≺ �′ if ≺ holds on both components (i.e.,
(�)i ≺ (�′)i , i ∈ {0, 1}). Finally, �– is defined to be the unique ≺ maximal element
in T with �– ≺ �.

The careful reader might note the possibility that �– could fail to be unique if we
aren’t careful. To avoid this, we assume that the outcomes of � = 〈α, �〉 are modified
to be of the form 〈o, �〉. This ensures that �– is uniquely defined and ≺ is always
a linear order when restricted to the predecessors of � on T. As it won’t cause any
confusion, we will assume this happens in the background and will present our
outcomes untransformed.

We now define what it means for a node on this tree to be to the left of another
node (we retain the terminology ‘left of’ even though its not longer visually accurate)
and extend this to a set of nodes as follows.

Definition 6.3. We define � <L �′ on T just if there are � ≺ �, � ′ ≺ � with
�– = � ′–, (�)0 = α̂〈o〉, (� ′)0 = α̂〈o′〉 and o < o′. We extend this relation to sets by
setting Q <L � (read left of) for Q ⊂ T, � ∈ T just if Q contains an element � <L �.

Our truepath, and its approximations, will no longer be single paths but sets
of nodes. Informally speaking, we define fs to be the set of nodes visited at stage
s following the rules described above but not visiting any extensions of a node �
being visited for the first time at stage s. Formally speaking, we give the following
definition.

Definition 6.4. We define fs as the largest set satisfying the following closure
conditions:

• 〈〉 ∈ fs .
• If � ∈ T, � ∈ fs , s� > 0 and at stage s, o is the outcome of � at stage s and
� ∈ T, �– = � with (�)0 = (�)0̂〈o〉 then � ∈ T.

Where s� is defined to be |{t | � ∈ ft ∧ t < s}|.
We define � ∈ f iff (∃s)(∀s ′ > s)(¬fs <L �) ∧ (∃∞s)(� ∈ fs).

Note that our priority construction will never reinitialize any nodes. That is, our
construction will satisfy the following condition.

Condition 1. If s ′ > s and � ∈ fs , fs′ <L � then for all t ≥ s ′ � /∈ ft .
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With the action of the priority tree defined we need to specify how the modules are
able to control the construction. As described above, modules will directly enumerate
elements into T =

⋃
s∈� Ts with a deadline of stage s = ⌜�⌝ to place � into T. We

use a bit more machinery to specify our approximation to T̂ . Each module M�

receives a string �� and specifies a string �� for each successor to �. If � = 〈α, �〉
then we understand the module � to be executing on the guess that �� ≺ T̂ (�).

This is sufficient for modules that only need to manipulate a single path but some
modules will need to manipulate the collection of potential branches of T̂ (�). To
this end, some modules will also define an infinite set Θ� of branches with the n-th
element (ordered lexicographically) indicated by ��n . In our construction, we will
ensure that our definition of �� and Θ� satisfy the following condition.

Condition 2. For each � ∈ T:

1. If � ∈ fs ∧ s� = 0 then M�– must set �� during stage s and ensure �� ∈ Ts+1.
2. � � � =⇒ �� � �� .

If � ∈ T and M�– defines Θ� then:

1. ��n enumerates Θ� with ��n � ��̂〈kn〉 with n �→ kn monotonic, injective function
of n.

2. If � ∈ fs ∧ s� = n then M�– must set ��n by the end of stage s and ensure
��n ∈ Ts+1.

These are mostly straightforward demands that what the module at � does is
compatible with what �– does and defines its output promptly. However, a few points
deserve mentioning. The requirement that �� ∈ Ts+1 will ensure that rngT̂ ⊂ T .
The final condition will enable multiple modules who all want to ensure the leftmost
branch extending T̂ (�) has some property to cooperate. Without this condition, a
module that only ensured ��0 has some property might find their work erased by the
next module leaving all extensions of ��0 out of the set of branches it specifies.

We also impose the following condition on the construction to (help) ensure
that if � ∈ f then the modules above � get to control whether �� extends to a path
through T.

Condition 3. If �� = � and the module M� enumerates � into T then � � �.

6.2. Requirements. With an understanding of how our T operates we are now
in a position to present the requirements our construction will meet and arrange
the modules we will use to meet them on the tree. Recall that we seek to prove the
following result.

Proposition 4.1. Given a (potentially partial ) tree S ⊂ �<� computable in X ′′

there is a (total ) computable tree T ⊂ �<� and an X ′′ computable partial f-tree T̂
such that:

1. rngT̂ ⊂ T and [T̂ ] = [T ].
2. T̂ (·) is a homeomorphism of [S] with [T ].
3. If f ∈ [T ] then f �T X .
4. If g ∈ [S] then g ⊕ X ′′ ≡T

(
T̂ (g) ⊕ X

)′′ ≡T T̂ (g) ⊕ X ′′.
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5. If f ∈ [T ] and Y ≤T f ⊕ X then either Y ≤T X or f ≤T Y ⊕ X ′′.
6. For all � ∈ 2<� ,

∣∣T̂ (�)
∣∣ ≥ |�| (when defined ).

Moreover, this holds with all possible uniformity. In particular, given a computable func-
tional Υ2 we can effectively produce functionals Υ, Υ̂ so that whenever Υ2(X ′′) = S
then Υ(X ) = T and Υ̂(X ′′) = T̂ with the properties described above.

We work to meet the following requirements during the construction. We state
the requirements in unrelativized form. Unlike requirements in the construction of
a single set, we work to ensure that the requirement of the form Re is satisfied for
all e and all � ∈ S〈∞〉 with |�| = e. For the purposes of stating the requirements,
we use T̂ –(�) to denote an extension of T̂ (�–) that would be extended by T̂ (�) if
the later were defined. We won’t actually define this function but just use it in the
requirements to stand in for some string to be defined later.5

Pe : T̂ (�) | Φe (X ) ∨ Φe (X ) ↑
Le :

(
∀f∈ [T ], f� T̂ (�)

)
(Φe (f⊕X ) ↑) ∨

(
∀f∈ [T ], f� T̂ (�)

)
(Φe (f⊕X ) ↓)

H� : S(�) ↓= 0 =⇒ T̂ (�) ↓ ∧ (∀m)
(
T̂ (�)̂〈m〉 /∈ T )

S(�) ↓= 1 =⇒ T̂ (�) ↓∈ T 〈∞〉 ⇐⇒ � ∈ S〈∞〉

S(�) ↑ =⇒ T̂ (�) ↑ ∧T̂ –(�) /∈ T 〈∞〉

S n
e : T 〈T̂ (�̂〈n〉)〉 is totally non-e-splitting ∨m > n =⇒

T̂ –(�̂〈n〉) and T̂ –(�̂〈m〉)e – split

Note that Φe (f) ↓ means (∀n)(Φe (f; n) ↓) (and similarly for Φe (f) ↑) and that,
when we speak of e-splittings we mean the notion relativized to X. The statement
of H� is a bit odd in the case where � ∈ S since in that we do nothing except don’t
try to stop T̂ (�) from potentially extending to a full path should � extend to a full
path through S.

Each requirement gets its own module to assist in meeting it; however, some
modules get helper modules. For instance, we break up meeting the requirement
H� into a module H+

�– responsible for creating an �-branching above T̂ (�–) and
a module H� responsible for ensuring T̂ (�) doesn’t extend to a path through T if
� /∈ S. Similarly, we supplement Le with submodules Lne responsible for checking if
we can extend Φe (f) to converge on Φe (f; n). Finally, we use the module Sn–1 as a
helper to split off those modules who will work above T̂ (�̂〈n〉) from those modules
working to define T̂ (�̂〈m〉), m > n.

Definition 6.5. Modules are be assigned to nodes on T as follows:

1. If � = (〈〉, 〈〉) then � implements H+
〈〉. Also, if �– implements some module H�

and has an outcome guessing � ∈ S then � implements H+
� .

2. If �– implements H+
� with |�| = e then � implements S0

e .
3. If �– implements Sne with e ≥ 0 then � implements Sne–1.

5We could define T̂ –(�) to be �� for the unique � along the truepath of the form (α, �) such that
� implements H� but, as it’s unnecessary for the proof, we feel doing so would unnecessarily multiply
notation.
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4. If �– implements Sn–1 and (�)1 = (�–)1 = � then � implements Sn+1
e where

|�| = e.
5. If �– implements Sn–1 and (�)1 
= (�–)1 then � implements Pe for the least e such

that no module of this form is assigned to any � ≺ �.
6. If �– implements Pi then � implements Le for the least e such that no � ≺ �

implements Le .
7. If �– implements a module of the form Le or Lne then let i < e (if it exists) be

the largest value such that � extends the outcome ⌜↓⌝ of Li and m be the least
such that no predecessor of � implements Lmi then � implements Lmi .

8. If �– implements a module of the form Le or Lne and either e = 0 or for all
i < e �– doesn’t extend the ⌜↓⌝ outcome of Li and � = (�)1 then � implements
the module H�

Before we get into any further details, we give a high-level overview of how this is
all supposed to work. If we suppose that we’ve just defined T̂ (�) and wish to define
T̂ (�̂〈m〉) we start with the module H+

� which will specify a bunch of immediate
extensions of T̂ (�) (placing them in T). We start by executing S0

e , |�| = e then S0
e–1

and so forth all of which work to ensure the leftmost potential extension of T̂ (�)
e-split or e – 1 split or so on with all the remaining potential extensions. When we
finally get to the module S0

–1 it specifies that T̂ (�̂〈0〉) extends the leftmost branch
as extended by all the modules S0

e′ , e
′ ≤ e and the construction now splits into one

part which works on the next module Pe along that path specified as an initial
segment of T̂ (�̂〈0〉) and another part where S1

e starts working to define the node
which will be extended by T̂ (�̂〈1〉). After the module of the form Pe we work
on the next module of the form Le and then, if we are above the total outcome
any Le′ , e′ ≤ e we implement the next helper module of the form Lm

e′ . Finally, after
those modules, comes the module H�̂〈m〉 (assuming we took the path working on
T̂ (�̂〈m〉)) which guesses whether or not �̂〈m〉 ∈ S. If it determines �̂〈m〉 is in
S then we go on to H+

�̂〈m〉. If it determines that �̂〈m〉 is not in S then no module
is assigned above that outcome preventing any path from being constructed.

With this in mind, we can now give a formal definition of T̂ and its stagewise
approximation.

Definition 6.6. We define T̂s(�) = �� where � = (α, �) ∈ fs and �– implements
the module H� . If no such � ∈ fs then it is undefined. We define T̂ (�)) in a similar
manner except we require that � ∈ f.

6.3. Modules. We now describe the operation of the modules. For this subsection,
we describe the operation of the module assuming it is located at the node � ∈ T, � =
(α, �) and executing at stage s. As we only define the outcome of the module at �
when s� > 0 we understand the previous outcome of the module to be undefined
when s� ≤ 1.

6.3.1. Module Pe . The module Pe has outcomes ⌜
=⌝ <L ⌜↑⌝ and (o, �) ∈ O(�)
iff � = 〈〉 and o is one of the above two outcomes.

If the previous outcome was ⌜
=⌝ we retain that outcome. Otherwise, the module
acts as follows.
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Check if there is any � ∈ Ts, � � �� with Φe,s (X ) | �. If found set the outcome
to ⌜
=⌝ and �〈α̂〈⌜�=⌝〉,�〉 to be a ≺ maximal extension of � in Ts . Otherwise, set the
outcome to ⌜↑⌝ and, if this is the first stage at which that outcome is visited, set
�〈α̂〈⌜↑⌝〉,�〉 = �� .

6.3.2. Module Le . The module Le has outcomes ⌜↓⌝ = 0 and ⌜�⌝ where � � �
and some module of the form Lne is assigned to � (hence ⌜�⌝ > 0). O(�) consists
of all pairs (o, �) where o is one of the allowed outcomes and � = 〈〉. The outcome
⌜↓⌝ corresponds to the state where Φe (X ⊕ f) is total for all paths f ∈ [T ], f � ��
and the outcome ⌜�⌝ where � implements Lne corresponds to the state where all
f ∈ [T ], f � �〈α̂〈⌜�⌝〉,�〉 satisfy Φe (X ⊕ f; n) ↑.

Intuitively, we can think of the operation of Lne as creating something of a link
with Le as in a 0′′′ construction. When we visit Lne we effectively pause the operation
of all the intervening modules between Le and Lne and start meeting the modules
extending Le again until we find an extension which causes the e-th functional to
converge on argument n at which point we return to Le . Luckily, however, we don’t
need the full machinery of links and can achieve this effect merely by letting the
module Lne manipulate the internal state of the unique visiting module Le as defined
here.

If s� = 0 we initialize � =↑, � =↑. If s� > 0 and � ↑ then we visit the outcome ⌜↓⌝
with �〈α̂〈⌜↓⌝〉,�〉 = �� . We leave it to the submodules of the form Lne to define �, �
when necessary.

If s� > 0 and � ↓ with Lne assigned to � then we check if there is a (maximal)
extension � � �, � ∈ Ts such that Φe (�; n) ↓. If there is, then set ��

+
= � where �+

is the unique successor of � on T, set �, � to be undefined, and visit the outcome ⌜↓⌝
as above. Otherwise, visit the outcome ⌜�⌝ with �〈α̂〈⌜�⌝〉,�〉 = �.

6.3.3. Module Lne . This node only has a single outcome 0 and O(�) = {(0, 〈〉)}.
Let � ≺ � be the unique ancestor node implementing Le . If s� = 0 then set the

variables �, � for the module at node � to be equal to � and �� respectively. If we are
ever visited again, we visit our single outcome and rely on the node implementing
Le to have set �〈α̂〈0〉,�〉.

6.3.4. Module H+
� . This node only has a single outcome 0 and O(�) = {(0, 〈〉)}.

Let � = (α̂〈0〉, �) and if s� = 1 then set �� to be a maximal element inTs extending
�� . If s� = n + 1 (hence s� = n) then let k be large and � = ��̂〈k〉 (in particular,
large enough that if ⌜�⌝ > s). Enumerate � into Ts+1 and set ��n = �.

6.3.5. Module Sn–1. This node only has a single outcome 0, but O(�) =
{(0, 〈n〉), (0, 〈〉)}. This module doesn’t take any actions, merely split up input it gets
between the two successor nodes as follows. Specifically, it sets �〈α̂〈0〉,�̂〈n〉〉 = ��0 ,

�〈α̂〈0〉,�〉 = �� , and �〈α̂〈0〉,�〉
n = ��n+1.

6.3.6. Module Sne . This node has outcomes ⌜ 
 | ⌝ = 0, ⌜|0⌝ = 1, ⌜(|1, n)⌝ = 2 +
〈n, 0〉, and ⌜(↑, n,m)⌝ = 〈n,m + 1〉. O(�) consists of all pairs (o, �) where o is one of
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the allowed outcomes and � = 〈〉. Remember that in what follows e-splitting refers
to the notion relativized to X.

The outcome ⌜ 
 | ⌝ corresponds to the case where ��0 isn’t extended by an e-splitting
in T (as 
 | indicates the strings are compatible). The other outcomes presume we
do find some e-splitting �0, �1 extending ��0 . The outcome o = ⌜|0⌝ corresponds to
the case where we find infinitely many elements in Θ� that extend to an e-splitting
with �0. Outcomes of the form ⌜(|1, n)⌝ correspond to the case where we only find n
elements in Θ� that extend to an e-splitting with �0 but infinitely many which extend
to an e-splitting with �1. Finally, the outcomes of the form ⌜(↑, n,m)⌝ correspond to
the case where we find n elements in Θ� extending to e-splittings with �0 after which
we find another m elements extending to an e-splitting with �1 but infinitely many
elements don’t extend to an e-splitting with either.

Let � = 〈α̂〈o〉, �〉 for whatever value we specify for the outcome o. We’ll
ensure that ��0 e-splits with ��n+1, n ∈ � in all cases except when o = ⌜ 
 | ⌝ or
o = ⌜(↑, n,m)⌝. In the latter case, we’ll ensure that neither �0 or �1 e-split with
any extension of ��n+1, n ∈ � (ensuring that if f � ��n+1 then Φe (f ⊕ X ) ↑). Since

we don’t want to accidentally extend �〈α̂〈o′〉,�〉0 to an infinite path if o′ isn’t the true
outcome we’ll ensure that every outcome except ⌜ 
 | ⌝ corresponds to an incompatible

value for �〈α̂〈o′〉,�〉0 of length at most 1 + max |�0| , |�1| while always ensuring that
��0 � ��0 .

We define �� = �� for all potential outcomes o. When s� = 0 we start by setting
�0, �1 to be undefined and n̂ = m̂ = 0. For s� > 0 we consider the following cases.

Case �0 ↑: Check if there are �0, �1 ∈ Ts with �0, �1 e-splitting extensions of ��0 .
If no such values are found, then visit outcome o = ⌜ 
 | ⌝ and define Θ� = Θ� .
If such values are found, let �0, �1 be ≺ maximal extensions in Ts of these
e-splitting extensions of ��0 , let m̂ = n̂ = n and visit outcome o = ⌜|0⌝ setting
��0 = �0.

Case �0 ↓: We break this up into a number of subcases. We search for some n ≤ s�
and �′ � ��n , �′ ∈ Ts that satisfy the following (picking the first case satisfied):

Case �′, �0 e-split with n̂ < n ≤ s� : In this case, we let o = ⌜|0⌝ and set ��s�
to be a ≺ maximal extension of �′ in Ts . Finally, we set n̂ = m̂ = n.

Case �′, �1 e-split with m̂ < n ≤ s� : In this case, we let o = ⌜(|1, n̂)⌝ and set
m̂ = n and ��s�+1 be a ≺ maximal extension of �′ in Ts .

If this is the first time we’ve visited this outcome s� = 0. We pick k to
be larger than any number mentioned so far in this construction, and set
��0 = �1̂〈k〉 placing ��0 into Ts+1.

Case Otherwise: In this case, we visit outcome o = ⌜(↑, n̂, m̂)⌝. If this is
the first time we’ve visited this outcome, set ��0 = �1̂〈k〉. Let �′ be a ≺
maximal element of Ts extending ��m̂+s�+1 and set ��s�+1 = �′.

6.3.7. Module H� . We note that we can assume (see Lemma B.7) we have a uni-
formly given total computable binary valued function (indeed functional) �(�, s1, s0)
such that �1(�, s1) = lims0→∞ �(�, s1, s0) is total, S(�) = lims1→∞ �1(�, s1) (both
diverging if either does).
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Morally speaking, this module has the outcomes ⌜(i, n̂)⌝ ordered lexicographically
where i ∈ {0, 1} indicates whether the module guesses that � /∈ S or � ∈ S and n̂
indicates the value at which �1 achieves its limit. However, to ensure that we never
reinitialize any node as required by Condition 1 we also record a value m giving the
number of times an outcome to the left of (i, n̂) has been visited. Thus, the actual
outcomes will be of the form ⌜(i, n̂, m)⌝ = 2〈n̂, m〉 + i . As our pairing function is
strictly monotonic in both arguments this functions just as if we’d used outcomes of
the form ⌜(i, n̂)⌝ and reinitialized outcomes after passing to their left. O(�) consists
of all pairs (o, �) where o is one of the allowed outcomes and � = 〈〉.

If s� = 0 set � to be a ≺ maximal extension of �� in Ts . If s� > 0 we define k to
be the number of times before stage s at which an outcome of the form ⌜(i, n̂, m)⌝
has been visited. Choose the lexicographically least pair (i, n̂) such that for all n ∈
[n̂, n̂ + k] there are k + 1 distinct values xnj ≤ s, j < k + 1 such that i = �(�, n, xnj ).
Note that, such a pair is always found since for large enough n̂ we have k = 0
and �(�, n̂, 0) ∈ {0, 1}. We now visit the outcome o = ⌜(i, n̂, m)⌝ where m is the
number of times that we’ve visited an outcome of the form ⌜(i ′, n,m)⌝ with (i ′, n)
lexicographically before (i, n̂) before stage s.

If this is the first time we’ve visited outcome o then pick c to be large, enumerate
�̂〈c〉 into Ts+1, and set �〈α̂〈o〉,�〉 = �̂〈c〉.

6.4. Verification. Before we verify the individual requirements, we verify that the
construction controls the paths through T in the manner desired.

Lemma 6.7. Suppose that � ∈ f implements a module of the form Pe ,Le ,Lne ,H�
and that for some � with �– = � we have |�| = |�� | but � � ��̂ for �̂ ∈ f, �̂– = �. Then
there are only finitely many stages at which any module at �̂ � � enumerates an element
�′ � � into T.

Note that this covers the case where H� doesn’t have any extension � in the
truepath because S doesn’t converge on �.

Proof. By Condition 3 and Condition 2 (and the fact that no single module ever
adds a full path) it is enough to show that there are only finitely many stages at
which we visit a node �̂ with �̂ � � and ��̂ compatible with �.

For the module Lne this is trivial as this module only has a single outcome. For
the module H� we note that each time visit to an outcome ⌜i, n̂, m⌝ ensures that all
outcomes to the right visit strings that have never been visited before. As Pe can act
at most once this case is also straightforward.

This leaves only the case Le . If this module takes any of the finite outcomes the
claim is evident and if this module takes the outcome ⌜↓⌝ then the claim follows
because �� � ��̂ for all � with �– = � when �̂ corresponds to the infinitary outcome.

�
Lemma 6.8. Suppose that � ∈ f and �– implements a module of the form H+

� or
Sne , e ≥ 0 then for each k there is some l such that if � � ��̂〈k〉, |�| ≥ l but � � ��n
for any n then there are only finitely many stages at which some � � �– enumerates an
extension of �.

Proof. This is trivial if �– implements a module of the form H+
� . Also, if there

is no ��n � ��̂〈k〉 then there is some last stage at which we visit any � with �– = �–
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with Θ� containing an extension of ��̂〈k〉. So suppose that ��n � ��̂〈k〉. If n > 0
then, once we set ��n we never visit any � 
= � with �– = �– with ��m � ��̂〈k〉.

This leaves only the case where ��0 � ��̂〈k〉. If � corresponds to an outcome
⌜(↑, n,m)⌝ or ⌜ 
 | ⌝ then we never again visit another extension of �– after visiting
� so the bound can be deduced by looking at the finitely many stages before that
happens. Thus, we can assume � corresponds either to ⌜|0⌝ or ⌜(|1, n)⌝. In this case,
we can take l = 1 + max |�0| , |�1| by the remark in Section 6.3.6. �

Lemma 6.9. For all f ∈ �� , f ∈ [T ] iff (∃g ∈ ��)
(
T̂ (g) = f

)
.

Proof. For the if direction suppose that T̂ (g) = f. Since any moduleM�– which
sets �� = � guarantees that � ∈ T (and we always have �– ∈ T ) and we have that
T̂ (g) ∈ T . For the other direction, supposef 
= T̂ (g) for any g. Let � be a≺minimal
element such that ��

– ≺ f and, if Θ�
–

defined, with f extending some element in Θ�
–

but one of those conditions failing for �. We then argue using Lemmas 6.7 and 6.8
that there is some � ≺ f such that only finitely many extensions of � are enumerated
into T.

The only other real difficulty occurs with nodes of the form Le since those are
the only modules that might be assigned to some � ≺ �– where the above lemmas
(or, for Le , fact that we only visit incorrect outcomes finitely many times) don’t
directly exclude the possibility that some module extending an outcome to the right
of the true outcome of � could contribute infinitely many elements compatible with
f. Unless the outcome of � is ⌜↓⌝ this clearly can’t happen as in those cases we settle
on the true outcome after finitely many stages. However, there will only be finitely
many stages at which � visits an outcome of the form ⌜�⌝ where �� ≺ f ensuring
that the false outcomes of � don’t cause a problem.

Note that, all modules excepting those of the form H� clearly have a well-defined
leftmost outcome that’s visited infinitely often and by Lemma 6.7, in the case where
� implements H� and � has no successor along the truepath is also a case where ��

can’t be extended to any path through T. �

With this result in hand, we can now verify the properties claimed in
Proposition 4.1.

Lemma 6.10. rngT̂ ⊂ T and [T̂ ] = [T ], that is, claim 1 of Proposition 4.1 holds.

Proof. By Condition 2 anytime a module sets �� = �; it ensures that � ∈ T .
This ensures the first part of the claim holds. The second half of the claim is just
Lemma 6.9. �

Lemma 6.11. If � ∈ f and � implements H� then � has a well-defined outcome iff
S(�) ↓ and that outcome is always correct about the membership of � in S.

By well-defined outcome we mean a leftmost outcome that is visited infinitely
often.

Proof. Suppose that the module at � has the true outcome ⌜(i, n̂, m)⌝. If
S(�) 
= i (including divergence) then, since �1(�, s1) (first limit), can be taken to be
always defined, then for some n > n̂ we have �1(�, n) = 1 – i . Thus, for some k we
have �(�, n, k′) = 1 – i for all k′ ≥ k contradicting the assumption that we visit this
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outcome more than n + k + 1 times. Thus, H� is never incorrect and thus must not
have an outcome whenever S(�) ↑.

Now suppose that S(�) ↓= i . For some minimal n̂ we have �1(�, s1) = i for all
s1 ≥ n̂. By minimality, there is some last stage at which any outcome of the form
⌜(i, n,m)⌝ with n < n̂ is visited and as �1(�, n̂) = i there is some last stage at which
any outcome of the form ⌜(1 – i, n̂, m)⌝ is visited. Thus, after some point we never
visit an outcome of the form ⌜(i ′, n,m)⌝ with (i ′, n) lexicographically before (i, n̂)
and thus there is some m for which ⌜(i, n̂, m)⌝ is the true outcome. �

Lemma 6.12. For all g ∈ �� , T̂ (g) is total iff g ∈ [S] iff T̂ (g) ∈ [T ]. Moreover,
T̂ (�) ↓ iff S(�) ↓ and all �′ ≺ � are in S.

Proof. We first verify the moreover claim. Note that, for any module besides
H� there is always a well-defined true outcome. Thus, by an examination of the
construction, we can see that the only way for T̂ (�) to be undefined is either if
for some �′ ≺ � the module of the form H�′ on the truepath doesn’t have a true
outcome guessing �′ ∈ S or if the module H� on the truepath doesn’t have any true
outcome. Clearly, if either of those cases obtain then we actually do have T̂ (�) ↑, so
this result follows from Lemma 6.11.

The main claim follows trivially since g ∈ [S] iff all � ≺ g are elements in S. �

Lemma 6.13. T̂ is an f-tree.

Proof. As T̂ is clearly ≺ respecting it is enough to show that whenever T̂ (�)
isn’t terminal then i < j implies that T̂ (�̂〈i〉) and T̂ (�̂〈j〉) extend incompatible
immediate extensions of T̂ (�) and T̂ (�̂〈i〉) is lexicographically below T̂ (�̂〈j〉).
However, this is immediate from the operation of H+

� and the fact that nodes of the
form Sne maintain these properties. �

We can use this to prove the homeomorphism claim from Proposition 4.1.

Lemma 6.14. T̂ is a homeomorphism of [S] with [T ]. That is claim 2 of Proposition
4.1 holds.

Proof. By Lemma 6.12 we know that [T ] is the image of [S] under T̂ . Evidently,
both T̂ and its inverse are continuous, so it remains only to show that T̂ is injective.
However, this follows from Lemma 6.13. �

Lemma 6.15. If Υ2 is a computable functional then we can uniformly find
computable functionals Υ, Υ̂ such that if Υ2(X ′′) = S then Υ(X ) = T and Υ̂(X ′′) =
T̂ where T, T̂ are as constructed above.

Proof. To compute T̂ (�) from X ′′ we simply (iteratively) identify the leftmost
outcome of nodes on T to identify elements in f and search for a node � ∈ f and �–

implementing H� and return �� . It’s possible that when working to compute T̂ (�)
we next discover such a node �. However, this can only happen when S fails to
converge on some �′ ≺ � in which case T̂ (�) is properly undefined anyway. The
uniformity can be read off the construction (note the only use of S is via Lemma
B.7 which is fully uniform). �

Lemma 6.16. If f ∈ [T ] then f �T X . That is claim 3 of Proposition 4.1 holds.
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Proof. Suppose the claim fails and for some f ∈ [T ], f = Φe (X ) for some
total Φe (X ). By Lemma 6.9 we have f = T̂ (g). Thus, for some � ∈ f with �–

implementing Pe we have f � �� . As f = T̂ (g) we know that f extends to a node
implementing some H+

� and thus T contains incompatible �0, �1 � ��–
. Thus, by the

operation of Pe we know that �� | Φe (X ) contradicting the supposition. �
Lemma 6.17. Suppose � ∈ f, f ∈ [T ], f � �� and �– implements Le then

Φe (f ⊕ X ) is total iff the true outcome of �– is ⌜↓⌝.
Proof. Suppose �– has true outcome ⌜↓⌝ but that Φe (f ⊕ X ; n) ↑. For some

� ∈ f, � = �� with �– � � implementing Lne we have f � � and by operation of Le
and Lne we can only have true outcome ⌜↓⌝ if Φe (� ⊕ X ; n) ↓. This contradicts our
assumption.

On the other hand, if �– has true outcome ⌜�⌝ then � � �– implements some
Lne . The operation of Le guarantees that if we ever saw some � � ��, � ∈ T with
Φe (� ⊕ X ; n) ↓ then we wouldn’t have true outcome ⌜�⌝. Hence, we must have
Φe (f ⊕ X ; n) ↑. As the operation of Le ensures that one of our outcomes is true,
this establishes the claim. �

Lemma 6.18. If g ∈ [S] then g ⊕ X ′′ ≡T
(
T̂ (g) ⊕ X

)′′ ≡T T̂ (g) ⊕ X ′′. That is
claim 4 of Proposition 4.1 holds.

Note that, as [T ] is the image of [S] under T̂ every f ∈ [T ] has this property
relative to some g.

Proof. Let g ∈ [S]. By Lemma 6.14, T̂ (g) = f for some total f. Since whenever
T̂ (�) ↓ by Lemma 6.15 we can find T̂ (�) computably in X ′′ it follows that f ≤T
g ⊕ X ′′. To see that g ≤T f ⊕ X ′′ note that, by Lemmas 6.15 and 6.13 we can
inductively recover the unique path g with T̂ (g) = f computably in f ⊕ X ′′.

Clearly (f ⊕ X )′′ ≥T f ⊕ X ′′. Thus, to complete the proof, it is sufficient to show
that (f ⊕ X )′′ ≤T g ⊕ X ′′. By a well-known result, it is enough to show that g ⊕ X ′′

can computably decide whether e is an index for a total computable function in
f ⊕ X . However, by Lemma 6.17 we can decide this question by searching for � ∈ f
with � implementing Le and � = 〈α, �〉 with � ≺ g and determining the outcome
of �. By Lemma 6.15 this can be done computably in g ⊕ X ′′. �

Lemma 6.19. If f ∈ [T ], Y = Φe (f ⊕ X ) and there is some � ≺ f with no
e-splitting �0, �1 � � with �0, �1 ∈ T then Y ≤T X .

As remarked above, we mean e-splitting relativized to X.

Proof. We can compute Y �n from X by returning Φe (�′ ⊕ X ) �n for the first
�′ � � in T we can find for which this is a string of length n. AsY = Φe (f ⊕ X ) and
f � �, f ∈ [T ] there must be some such �′ and by the lack of e-splitting extensions
there is no possibility of an incompatible value. �

Lemma 6.20. If f ∈ [T ] and Y ≤T f ⊕ X then either Y ≤T X or f ≤T Y ⊕ X ′′.
That is claim 5 of Proposition 4.1 holds.

Proof. Suppose thatY = Φe (f ⊕ X ) and, by Lemma 6.14, that f = T̂ (g). Let
r(�, n) where |�| > e be the outcome of the module Sne assigned to some (α, �) ∈ f
andm(�, n) = � ∈ f where �– = (α, �). Note that, for all n, � ∈ domT̂ with |�| > e,
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T̂ (�̂〈n〉) � �m(�,n)
0 . This is because all modules of the form Sne , e ≥ 0 always output

a leftmost branch extending the leftmost branch they receive as input.
If there is some � ≺ f not extended by any e-splitting extensions then by Lemma

6.19 we are done. So we may suppose this isn’t the case and show that this implies
g ≤T Y ⊕ X ′′ which, by Lemma 6.18 is equivalent to showing f ≤T Y ⊕ X ′′.

Suppose we know �, n′ and that �̂〈n〉 ≺ g for some n ≥ n′ (where |�| > e) we
demonstrate how to check if n = n′ or n > n′ computably in Y ⊕ X ′′. This will
suffice since, applying this repeatedly, we can compute g from Y ⊕ X ′′.

UsingX ′′ we can compute � = m(�, n′) and r(�, n′). If n = n′ then we would have
f � ��0 while if n > n′ then f � ��k , k > 0.

If we have r(�, n′) = ⌜ 
 | ⌝ then that entails ��
–

0 has no e-splitting extensions. Thus,
by our supposition f can’t extend ��

–

0 , so we can conclude n 
= n′.
Suppose instead that r(�, n′) = ⌜(↑, n̂, m̂)⌝. In this case, the module Sn′e at �– must

have identified some e-splitting �0, �1 of ��
–

0 and that no ��k , k > 0 has an extension
in T which e-splits with either �0 or �1. However, as Φe (f ⊕ X ) is total, if f doesn’t
extend either �0 or �1 then some initial segment of f must e-split with either �0
or �1 (Φe (f ⊕ X ) can’t agree with incompatible strings). Hence, we can’t have
f � ��k , k > 0 so we must have n = n′.

This leaves only the case in which r(�, n′) gives one of the incompatible (i.e., e-

splitting) outcomes. In this case, we simply test if Y is compatible with Φe
(
��0 ⊕ X

)
.

If so, then n = n′. If not, then n > n′. �

These lemmas, taken together, verify all parts of Proposition 4.1 except 6 which
is evident from the construction.

Appendix A. Minimality requires double jump Here we present the promised result
about the need for double, rather than single, jump inversion from Section 6.

Proposition 6.1. Given a perfect weakly �-branching pruned f-tree T ≤T 0′ one
can uniformly construct a computable functional Φ such that e-splitting pairs in T
occur above every node in T and for every � ∈ rngT there are paths f 
= g extending
� through T with Φe (f) = Φe (g).

Indeed, as remarked in that section, we actually prove a slightly stronger result
and show that even if T is unpruned we can start building such paths f, g above any
node � ∈ T and maintain agreement under Φe with the only potential for failure
being the possibility of hitting a terminal node in T.

Proof. The basic idea of this proof is to use the fact that T (�) has infinitely
many immediate extensions on T to define a limiting behaviour for Φe (�) for
� � T (�̂〈m〉) for sufficiently large m.

Let Ts be a stagewise approximation to T that’s correct in the limit and which
doesn’t converge on elements outside the domain. WLOG we may assume that if
Ts(�) = � then ⌜�⌝ , ⌜�⌝ < s and Ts(�′) ↓ for all �′ ≺ �. We say that T (�) was
defined at s ′ (relative to s) if s ′ = �t(∀t′ ∈ [t, s])

(
Tt′(�) = Ts(�)) and that � is

senior to �′ at stage s if T (�) was defined at an earlier stage than T (�′) or the
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same stage and � <L �′. We’ll also talk about T (�) being senior to T (�′) when �
is senior to �′.

We first ensure that every non-terminal T (�) = � is extended by an e-splitting.
The idea here is that if �′ � � we define Φe (�′) to extend Φe (�) with a guess at the
first prior stage that some extension of � is permanently seen to be T (�̂〈m〉) for
some m. Eventually, this guess stabilizes and will differ from the guess that was made
along the most senior extension of �.

Given Ts(�) = �, define qs(�) = t where �̂〈m〉 is the most senior immediate
extension of � relative to s and t the stage it was defined or 0 if no such t exists.
We let q(�) = lims→∞ qs(�). If s = ⌜�⌝ we define Φe (�) = Φe (�–)̂〈qs(�–)〉 l̂s(�–)
where ls(�) is a computable function that will be defined for the second part of the
proof.

Note that, regardless of the behaviour of ls(�) this guarantees that every non-
terminal T (�) is extended by an e-splitting. Given � with T (�) = �– and �̂〈m〉, t
witnessing that q(�–) = t we must have t > ⌜�̂〈m〉⌝. Thus, if � ≺ T (�̂〈m〉) we
have that Φe (�) � Φe (�–)̂〈qs(�–)〉 for s = ⌜�̂〈m〉⌝ and thus qs(�–) < q(�–). As T
is weakly �-branching for some sufficiently large m′ > m we have T (�̂〈m′〉) = �′

and Φe (�′) � Φe (�–)̂〈q(�–)〉.
We now abstract away from the construction we just performed by noting that

we can effectively define a subtree of T consisting of the restriction of T to those
nodes of the form �̂〈m〉 with ⌜�̂〈m′〉⌝ ≥ q(T (�)). On this subtree qs(�–) has
achieved its limit anytime it is used to define Φe (�). For the remainder of this
proof we therefore work on this subtree and (by redefinition) assume that Ts(�) = �
doesn’t permanently settle on a value until qs(�–) reaches its limit. This allows us
to use Φe′ (�–) to refer to the value Φe (�–)̂〈q(�)〉 and assume that it’s correct
at any stage at which �– has permanently entered rngT . We can also assume that
if Ts(�) ↓
= Ts+1(�) then Ts+1(�) ↑ and Ts(�) isn’t extended by any element in
rngTs+1.

The idea now is still to pick a limiting behaviour of Φe′ (�′) on extensions �′ �
T (�̂〈m〉) for large enough values of m. If we’ve defined some initial segment fn+1

�

of some path through T whose image under Φe′ extends that of gn� we can control
the limiting behaviour of extensions of gn� to ensure that we can eventually find some
extension gn+1

� whose image under Φe′ extends that of fn+1
� . By iterating this, we

can build f�, g� whose images under Φe′ agree.
We now define (stagewise approximations to) fn� ≺ fn+1

� , g
n
�
≺ fn+1

� and specify
a computation for ls to ensure that f� =

⋃
n∈� f

n
� , g� =

⋃
n∈� g

n
� are paths whose

images agree. Given any � ∈ domT with T (�) not extended by any f�, g� , we’ll
define f0

� , g
0
� � T (�) with common initial segment T (�). When Ts(�) ↓
= Ts+1(�)

we stipulate that any �′ = Ts(�′) for �′ less senior than � or �′ = � are injured.
If � is injured then we set any fn� , g

n
� � � to be undefined and reset ls+1(�) = 〈〉.

Whenever fn� (gn� ) is set to be undefined we also injure gn
′
� and fn

′
� for n′ ≥ n

(fn
′
� and gn

′
� for n′ > n, note the strict inequality here). If we undefine f0

� at stage
s + 1 then we also injure Ts(�) (the plus one ensuring that we injure the node f0

�

is extending). Finally, we also injure � immediately before defining fn� or gn� to be
equal to �.

At stage s we start with Ts(〈〉) and act on nodes in rngTs in order of seniority
(which respects ≺). Suppose that at stage s we’re taking action on � = Ts(�) after
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having dealt with all more senior and try the following cases in order. Note that, at
any time there will only be finitely many (n, �) with either fn� or gn� defined, so we
can computably check whether a case is satisfied for some (n, �).

Case fn� = � ∧ fn+1
� ↑: If gn� is undefined then finish acting for � and all

extensions of �. Otherwise, ensure Φe′ (�) l̂s+1(�) � Φe′ (gn� ). If this is already
satisfied by ls (�) then let ls+1(�) = ls(�) otherwise pick the ≺ least solution.
We’ll inductively ensure that Φe′ (gn� ) � Φe′ (fn� ).

Now check if there is any �′ = �̂〈m〉 such that Ts (�′) = �′ and Φe′
(
�′) �

Φe′
(
gnk

)
. If so, take the most senior such �′ and definefn+1

� = �′ and continue
to the next case. If not, finish processing � for this stage.

Case gn� = � ∧ gn+1
� ↑: As above, using gn� , g

n+1
� in place of fn� , f

n+1
� and fn+1

�

in place of gn� (note the off by 1 difference).
Case f0

� ↓ ∧g0
� ↑: We’ve already done all the hard work when defining f0

� , so we
look for the most senior �′ = Ts(�̂〈m〉) with Φe′

(
f0
�

)
� Φe′

(
�′) and define

g0
� = �′. If found, we move on to the next case. If not, finish processing � for

this stage.
Case (∀�, n)(� 
= fn� , gn� ) ∧ f0

� ↑: Let �′ = Ts (�̂〈m〉) with �̂〈m〉 be the most
senior extension of � (if any). If not found then finish processing � for this
stage. If found, set f0

k = �′ and set ls+1(�) to be the ≺ minimal value such that
Φe′ (�) l̂s+1(�) = Φe′

(
�′).

It is straightforward, to verify, that each node in rngT is only injured finitely
many times and that each fn� , g

n
� , is only undefined/redefined finitely many times.

To see this, note first that once all more senior elements in rngT have entered rngT
permanently the only way � is injured is if we define fn� , g

n
� to equal � or � = Ts(�)

and f0
� is injured. It is clear from the construction that for at most one pair (n, �)

and either f or g do we setfn� , g
n
� to equal � and that only if � goes unused in this way

do we extend it by f0
� . Thus, it is enough to show that each fn� , g

n
� eventually settles

down. To see this, note that if undefining hn� could cause ĥn� to become undefined
then hn� took the more senior extension of their common initial segment.

It is also evident from the construction that the images of f� and g� under e′

agree. Specifically, that, when defined Φe (gn� ) � Φe (fn� ) and Φe
(
fn+1
�

)
� Φe (gn� ).

We now show that for any � ∈ domT if � = T (�) isn’t terminal then it is extended.
We first deal with the case where � isn’t equal to anyfn� or gn� . In this case, we clearly
eventually define f0

� = T (�̂〈m〉) for some m and then for large enough m′, t we
will have �′ = Tt(�̂〈m′〉) then Φe′ (�′) � Φe′

(
f0
�

)
thus ensuring that we define g0

� .
If � = fn+1

� = Ts+1(�) the agreement remarked on above ensures we eventually
get a chance to define ls+1(�) so that Φe′ (fn� ) l̂s+1(�) � Φe′

(
gn+1
�

)
after which � is

never injured. Thus, for some sufficiently large m, t we have that if �′ = Tt(�̂〈m〉)
then Φe′ (�′) � Φe′ (gn� ) and we eventually define fn+2

� to be equal to such a �′. The
same argument applies, with the obvious adjustments to the indexes, when � = gn� .

Thus, if our tree is pruned then, as it is weakly, � branching for any � ∈ domT
there is some m with �′ = �̂〈m〉 such that f�′ , g�′ are defined and extend T (�′)
with equal images under Φe . The moreover claim is straightforward as well. �

With slightly more care, we could ensure that every node � ∈ rngT was extended
by infinitely many paths fk,�, gk,� . We are unsure if this argument can be improved
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to construct a single total computable functional which witnesses all 0′ computable
f-trees fail, in a strong sense, to have the properties necessary to help in a minimality
style argument.

Appendix B. Ordinal notation technicalities If we wish to build a sequence of
trees Tn all homeomorphic to T� ensuring the homeomorphism at limit levels only
requires that we ensure Tn�n = T��n and that our homeomorphism from Tn+1 to
Tn is the identity on Tn�n. In this appendix, we show that this idea can be extended
to arbitrary ordinal notations. The potential difficulty here is that we attempt to
demand that T�n�n should equal T	�n and that for some 
 with �n <O 
 <O 	 we
also demand T
�m = T	′ for some 	′ >O 	,m > n.

From here on out, we assume that we are working below some limit notation α
(e.g., Tα is the top tree) and show that for all � ≤O α we can effectively define ��

and l�(�). The idea is that T� will copy strings of length l�(�) from the tree T�� .
Note that, �� and l�(�) will depend on both α and � . We start by making the
following definition.

Definition B.1. An O-path is a non-empty string � ∈ �<� that satisfies the
following for all n + 1 ∈ dom�, κ ∈ O and some � ∈ O:

1. �(|�| – 1) = � .
2. If �(n) = κ + 1 then �(n + 1) = κ.
3. If �(n) = 	 and the notation 	 isn’t a successor then �(n + 1) = 
 ∈ rng{	}O.

We call such an O-path an O-path from �(0) to � . The O-path is minimal if the 
 in
3 is required to be the minimal element in rng{	}O with � ≤O 
.

Lemma B.2. If � ≤O α then there is a unique minimal O-path from α to � .
Moreover, if � is a minimal O-path from α to � then ��n, n > 0 is the minimal O-
path from α to �(n – 1).

Proof. Clearly, no initial segment of an O-path from α to � can be an O-path
from α to � as an O-path is a strictly decreasing sequence under <O. Moreover,
there is at most one minimal O-path from α to � as a minimal O-path from α to �
is the lexicographically least O-path (under <O) from α to � . This establishes the
uniqueness and implies the moreover claim as well. It only remains to show that
there is always such an O-path.

Suppose not, then let f(0) = α and define f(n + 1) as per the definition of a
minimal O-path from α to � . If we ever have f(n) = � then f�n+1 is a minimal O-
path from α to � . If not, then, inductively, f(n) >O � and the conditions provide
a unique definition for f(n + 1). Thus, f is an infinite descending sequence of
notations. Contradiction. �

Definition B.3. We inductively define l�(�), �� for � <O α as follows.
Let � be the minimal O-path from α to � , n = |�| and 
 = �(n – 2). We stipulate

that l�(α) = 0 and break our definition into the following cases.
Case 
 ∈ +O : Define l�(�) = l�(
). If 
 is an even notation then define �� = 


and otherwise define �� = 
�.

Case 
 ∈ −→O : Letm ∈ � be such that � = {
}O(m). Define �� = 
 and l�(�) =
l�(
) +m.
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Lemma B.4. If 	 ∈ −→O , 	 ≤O α, and

�m =

{
{	}O(m), if {	}O(m) is even,
{	}O(m) – 1, otherwise,

then for all sufficiently large m, �m
� = 	 and l�(�m) ≥ m.

Proof. Let �m be the minimal O-path from α to �m. We first establish that for
all sufficiently large m we have 	 ∈ rng�m.

Note that, by examination of the conditions from Definition B.1, if �n(k) =
κ ≥O 	 then we clearly have that �n�k+1 ≺ �m for m ≥ n (as κ clearly satisfies the
minimality requirement for �m). Thus, if we see 	 ∈ rng�n for any n, we are done, so
suppose this never happens.

Define f(k) to be equal to �n(k) for the least value n such that �n(k) >O 	.
Obviously, f(0) is defined, so suppose that f(k + 1) fails to be defined for some
minimal k. If f(k) was a successor ordinal then �m(k + 1) = 	 where m is the
witness defining f(k) contradicting the supposition. Thus, we can assume that
f(k) = κ ∈ −→O . But, if {κ}O(x) ≤O 	 for all x then we’d have κ ≤O 	 contradicting
our assumption. Thus, we can pick x maximal with {κ}O(x) <O 	 and then choose
n so that {	}O(n) >O {κ}O(x). Therefore, �n(k + 1) ≥O {κ}O(x + 1) ≥O 	 and,
by assumption, we can’t have equality showing that f(k + 1) is defined. But the
function f defines an infinite decreasing sequence of notations. Contradiction.
Therefore, for all sufficiently large m we must have 	 ∈ rng�m.

If 	 ∈ rng�m then we obviously have �m = �(|�| – 1) and either 	 = �(|�| – 2) if
�m = {	}O(m) or 	 = �(|�| – 3), {	}O(m) = �m + 1 = �(|�| – 2). In both cases, we
clearly have �m

� = 	 and l�(�m) ≥ m. �

Proposition B.5. Suppose that for all� ≤O α we haveT��l�(�) = T̃���l�(�) where
T̃κ ⊃ Tκ for all κ then all of the following hold:

1. ��, l�(�) are given by a computable function of α, � .
2. For all � <O α, �� is an even notation satisfying � <O �

� ≤O α.
3. If � <O κ <O �

� then Tκ�l�(�) ⊃ T̃���l�(�) and l�(κ) ≥ l�(�). Furthermore,

if we always have T 〈∞〉
� �l�(�) = T̃ 〈∞〉

�� �l�(�) then Tκ〈∞〉�l�(�) = T̃ 〈∞〉
�� �l�(�).

4. If 	 ≤O α is a limit notation then we can computably (in 	, n, α) enumerate a
sequence of even notations �n <O 	with �n

� = 	 such that both �n and l�(�n) ≥
n are strictly monotonically increasing.

Proof. The computability is clear from the definition establishing 1. To verify
2 note that if �� was going to be an odd notation then we set �� = 
� which
guarantees that �� is even. As the only elements that can appear in a minimal
O-path from α to � are ≤O α this establishes the other part of this claim.

To verify 3 suppose that � <O κ <O �
�, � is a minimal O-path from α to � ,

and 
 = �(|�| – 2). WLOG we may assume that 
 = �� since otherwise 
 is an
odd notation and the claim for � follows by proving the claim for 
. If �′ is a
minimal O-path from α to κ then �′ � �– since �– is the minimal O-path from α to

 = �� >O κ.
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But if κ′ appears in rng �′ \ rng �– then we must have Tκ′�l�(�) ⊃ T̃
�l�(�) and
l�(κ′) ≥ l�(�) (by induction on n ∈ dom �′ \ dom �–). A similar argument shows
the equality claim for the pruned trees under the provided assumptions.

Finally, for 4 let � ′n be the sequence defined in Lemma B.4 and inductively
define �n+1 to be the first element � ′m with � ′m

� = 	 and (when n > 0) l�(� ′m) >
l�(�n), � ′m >O �n. Clearly, we can computably search for such an element and
Lemma B.4 ensures that one will always be found. The moreover claim follows
immediately from 3. �

Lemma B.6. Given a notation 	 ∈ −→O and a tree T	 ⊂ �<� computable in X (	)

we can produce a tree T̃	 ⊃ T	 with [T̃	] = [T	] such that for all � <O 	 if �� = 	
then T̃	�l�(�) is uniformly computable in X (�). Moreover, this holds with all possible
uniformity and is agnostic to the index for T	.

Uniformly computable here specifically means there is a computable functional Ξ
with Ξ(�,X (�), �) deciding the membership of � in T̃	 when �� = 	 and |�| ≤ l�(�)
and that an index for Ξ is computable from 	 and an index for T	.

Proof. By part 4 of Proposition B.5 let �n be a monotonically increasing
computable enumeration of the notations � with �� = 	 and ln = l�(�n) also
monotonically increasing with limit �.

We now define T̃	 by setting � /∈ T̃	 where n is the greatest with |�| ≥ ln+1 just if
we see a computation whose use is seen to be limited to X (�n) before stage n placing
some �′ ≺ � out ofT	. Otherwise, place � into T̃	. By seen to be limited to, we mean
that the computation only consults columns κ of X (	) which are enumerated to be
below some �m,m ≤ n in less than n steps.

Note that, if |�| < l1 then � is trivially in T̃	 and since if �� = 	 and l�(�) >
l�(�m) then � ≥O �m we verify that T̃	 satisfies the uniform computation demands.
It remains only to verify that [T̃	] = [T	]. Clearly, [T̃	] ⊃ [T	] since T	 ⊂ T̃	. Now
suppose that f /∈ [T	] and let � ≺ f such that � /∈ T	. Some finite computation
from X (	) places � /∈ T	 in s stages. Since X (	) = ⊕n∈�X ({	}O(n)) there is some n
such that the use of this computation only mentions notations below �n. Let t ≥ s
be a stage where every notation mentioned in the use of this computation has been
enumerated to be below �n. Now if |�| = lt+1, � � � then � /∈ T	. �

Finally, we note that not only is the limit lemma completely uniform and
relativizable we can ensure that when we iterate its application only the final limit is
at risk of being undefined.

Lemma B.7. Given a functional Υ2, we can uniformly construct a computable

functional �X (z, s1, s0) such that if �X1 (z, s1)
def
= lims0→∞ �

X
n (z, s1, s0) then:

• For all X �X1 , �
X are total binary valued functions.

• Υ2(X ′′; z) ↓∈ {0, 1} iff �X2 (z) ↓= Υ2(X ′′; z).
Moreover, �X (z, s1, s0) depends only on the computations of the form Υ2(�; z) for
some �.

Proof. Using the limit lemma relativized toX ′ we can derive a total computable
binary valued functional whose limit gives Υ2(X ′′; z) when Υ2(X ′′; z) ↓∈ {0, 1}
and, by alternating between 0, 1 whenever we haven’t settled on a computation
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witnessing Υ2(X ′′; z) ↓∈ {0, 1}, ensures that otherwise the limit fails to exist. Using
a stagewise approximation to X ′ gives us our functional �X and ensures �X1 is total.
The moreover claim follows by attending to the details of the relativization of the
limit lemma to X ′. �
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