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Abstract

To assess country-level progress toward these educational goals it is important to monitor

trends in educational outcomes over time. The purpose of this paper is to demonstrate how

optimally predictive growth models can be constructed to monitor the pace of progress at

which countries are moving toward (or way from) the education sustainable development

goals as specified by the United Nations. A number of growth curve models can be

specified to estimate the pace of progress, however, choosing one model and using it for

predictive purposes assumes that the chosen model is the one that generated the data, and

this choice runs the risk of “over-confident inferences and decisions that are more risky

than one thinks they are” (Hoeting, Madigan, Raftery, & Volinsky, 1999). To mitigate this

problem, we adapt and apply Bayesian stacking to form mixtures of predictive

distributions from an ensemble of individual models specified to predict country-level pace

of progress. We demonstrate Bayesian stacking using country-level data from the Program

on International Student Assessment. Our results show that Bayesian stacking yields better

predictive accuracy than any single model as measured by the Kullback-Leibler divergence.

Issues of Bayesian model identification and estimation for growth models are also discussed.
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Stacking Models of Growth:

A Methodology for Predicting the Pace of Progress to the Education

Sustainable Development Targets using International Large-Scale Assessments

In 2015, the Member States of the United Nations (UN) adopted the 2030 Agenda often

referred to as the Sustainable Development Goals (SDGs) (UN General Assembly, 2015).

With regard to education, the UN identified equitable, high-quality education, including

the achievement of literacy and numeracy for all youth as well as adults as one of its global

SDGs to attain by 2030 (UN General Assembly, 2015). To assess country-level progress

toward these global goals, it is necessary to monitor trends in educational outcomes over

time. Clearly, trends in educational outcomes have been seriously interrupted by the

COVID-19 global pandemic, and indeed, the recent release of the 2022 Program for

International Student Assessment (PISA) results by the OECD showed that between 2018

and 2022 average proficiency in mathematics dropped by almost 15 score points and almost

10 score points for reading, while science remained relatively stable from the 2018 results

(OECD, 2023b). To put this into perspective, the results show that, at least for

mathematics, students lost about three-quarters of a year of instruction (Avvisati &

Givord, 2023). The OECD report recognizes that trends in mathematics and reading were

declining prior to 2022, but that the drop observed in 2022 was vastly larger than any drop

previously recorded. Thus, as educational systems around the world face unprecedented

challenges due to the COVID-19 pandemic, monitoring trends in educational outcomes

could help identify the long-run impact of this unprecedented health crisis on global

education. To this end, international large-scale assessment (ILSA) programs such as the

Organization for Economic Cooperation and Development’s (OECD) Program for

International Student Assessment (PISA, OECD, 2001) are uniquely situated to provide

population-level trend data on literacy and numeracy outcomes.

The purpose of this paper is to demonstrate how optimally predictive models can be

constructed in order to monitor the pace at which countries are moving toward (or away
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from) the education SDGs, and, importantly, to understand the impact of the pandemic on

slowing down the pace of progress. A number of models can be specified to estimate the

pace of progress, and these can include models for linear and non-linear trends, including

time-varying and time-invariant predictors. However, choosing one model and using it for

predictive purposes assumes that the chosen model is the one that generated the data.

Choosing a single model runs the risk of “over-confident inferences and decisions that are

more risky than one thinks they are” (Hoeting et al., 1999). To mitigate this problem, we

adapt and apply Bayesian stacking (Wolpert, 1992; Breiman, 1996; Yao, Vehtari, Simpson,

& Gelman, 2018), a method for ensemble prediction that arose out of machine learning, to

form weighted mixtures of predictive distributions from an ensemble of individual growth

curve models, with weights based on leave-one-out log predictive density scores. Bayesian

stacking is an improvement over the more classical approach of Bayesian model averaging

(BMA) (e.g. Madigan & Raftery, 1994; Draper, 1995; Hoeting et al., 1999) insofar as BMA

assumes that the correct data generating model is in the space of models being averaged.

Bayesian stacking makes no such assumption, and in principle, should demonstrate better

predictive skill than that of any single model chosen for predictive purposes.

The organization of this paper is as follows. In the next section, we describe the current

procedures used by the OECD and the UN to measure the distance to the SDG targets.

Next, we provide our critique of the approach used by these agencies. Following, we outline

the specification, identification, and estimation of growth curve models from a Bayesian

perspective that sets the focus for our estimation of the pace at which countries are moving

toward, or away, from their education SDG targets. We refer to this simply as the pace of

progress, or pace. This is followed by a discussion of Bayesian probabilistic prediction as

situated in Bayesian decision theory and in the context of estimating pace. Next, we

discuss different modeling frameworks that set the stage for the assumptions underlying

Bayesian ensemble prediction using Bayesian stacking. This is followed by our example of

Bayesian stacking of models for the pace of progress using country-level data from PISA
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2009 to 2022. On the basis of the optimal estimates of pace, we then provide an example of

forecasting PISA results one-cycle ahead, namely for PISA 2025. The paper closes with the

presentation of a possible workflow for estimating trends and providing predictions from a

Bayesian perspective as well limitations of this paper and the insights that can be gleaned

from the predictive point of view applied to large-scale assessments of the education SDGs.

Current Methodology for Measuring Distance to SDG Targets

A key argument of this paper is that the progress countries are making to achieve their

SDG targets generally, and in education particularly, can be conceptualized as a rate of

change. However, the major policy reports on country-level progress to the SDG targets

presents the problem as one of measuring the distance to the target of interest. A review of

the extant reports on measuring the distance to the SDG targets have revealed differences

in approaches depending on whether the report emanates from the OECD or the United

Nations. In this section, we review the approaches taken by both organizations along three

lines (a) selection of indicators, (b) specification of target levels, (c) calculating distance

measures, and (d) estimating trends. Our review of the methodologies used by the OECD

is taken from OECD (2019). Our review of the methodologies used by the UN are taken

from Lafortune, Fuller, Moreno, Schmidt-Traub, and Kroll (2018).

Selection of Indicators

There are many ways to measure how far countries are from their 2030 targets. The

procedures used by the OECD are as follows. First, suitable data sources must be

identified. Where OECD data are aligned with the UN Global Indicator List, OECD data

are used. Where no OECD data sources exist, data are then extracted from the UN Global

Database. Finally, where neither OECD nor UN Global Database data are in full

alignment with the UN Global Indicator List, then OECD data that are considered

suitable as close proxies are used.

As with the OECD methodology for indicator selection, the UN reports indicators that

have been adopted by the UN Statistical Commission. However, where data gaps are
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identified, the UN uses 5 criteria for indicator selection and inclusion (Lafortune, Fuller,

Moreno, Schmidt-Traub & Kroll, 2018):

1. Global relevance and applicability to a broad range of country settings:

The indicators are relevant for monitoring achievement of the SDGs and applicable to

the entire continent. They are internationally comparable and allow for direct

comparison of performance across countries. In particular, they allow for the

definition of quantitative performance thresholds that signify SDG achievement.

2. Statistical adequacy: The indicators selected represent valid and reliable measures.

3. Timeliness: The indicators selected are up to date and published on a reasonably

prompt schedule.

4. Data quality: Data series represent the best available measure for a specific issue,

and derive from official national or international sources (e.g. national statistical

offices or international organizations) or other reputable sources, such as

peer-reviewed publications. No imputations of self-reported national estimates are

included.

5. Coverage: Data have to be available for at least 80% of the 149 UN Member States

with a national population greater than 1 million.

Specification of Target Levels

In the next step, target levels are required. The OECD selects target levels that are

explicitly specified in the 2030 Agenda are used. However, when no target value is

identified in the Agenda, target levels are drawn from other international agreements (e.g.

based on World Health Organization targets). If no target value can be identified, then the

target level is set to the current “best performance” among the OECD countries. If none of

these can be found or used, then no target level is set and no distance is calculated.

For the UN, target levels are set according to the following steps:
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1. Use absolute quantitative thresholds in SDGs and targets: e.g. zero poverty,

universal school completion, universal access to water and sanitation, full gender

equality. Some SDG Targets propose relative changes. For example, indicator 4.1.1

requires measuring the “Proportion of children and young people (a) in grades 2/3;

(b) at the end of primary; and (c) at the end of lower secondary achieving at least a

minimum proficiency level in (i) reading and (ii) mathematics, by sex". This indicator

presumes that a quantitative threshold for minimum proficiency exists and can be

applied more or less universally. In this case, the minimum proficiency level in PISA

(Level 2) (OECD, 2024) could serve this purpose, and it is implied that meeting the

indicator 4.1.1 means that there would be no individuals below level 2 by 2030.

2. When no explicit SDG target is available, apply the principle of “leave no one behind”

(https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind)

to set an upper bound to universal access or zero deprivation. This principle was

applied to targets addressing measures of extreme poverty, public service coverage,

and access to basic infrastructure.

3. When science-based targets exist that must be achieved by 2030 or later, use these to

set 100% upper bound. Here again, PISA level 2 could, arguably, be considered a

science-based indicator for 4.1.1 given the skills and competencies that scholars have

defined as minimum competency in the domains of reading and mathematics. A

bound on this indicator would mean that 0% of boys and girls are below minimum

competencies.

4. When several countries already exceed an SDG target, use the average of the top 5

performers.

5. For all other indicators, use the average of the top performers. In the case of global

indicators retained, the upper bound was set by taking the average value of the top 5

global performers. For OECD indicators, the average top 3 performers.
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Calculating a Distance Metric

For the purposes of understanding the pace at which every country is progressing toward

the target levels, there is a need for a common scale of comparison. For some of the SDGs,

the target levels, and hence the calculation of distances, are relatively straightforward. For

example, SDG Target 1.1 states “By 2030, eradicate extreme poverty for all people

everywhere, currently measured as people living on less than $1.25 a day". Although exact

targets were available for 47 of the 132 indicators used for the education goals, somewhat

more vague targets were specified making it difficult to provide a reliable distance metric.

For example, indicator 4.1.1 specifies “Proportion of children and young people (a) in

grades 2/3; (b) at the end of primary; and (c) at the end of lower secondary achieving at

least a minimum proficiency level in (i) reading and (ii) mathematics, by sex", and this

leaves it to the countries to define what is meant by “minimum proficiency".

To create a common metric, the OECD average distance is the population-weighted

average of distances across all OECD countries using the population in 2016 as weights. A

“standardized difference” is calculated as a z-score difference between a country’s current

position and the target end-value (OECD, 2023b).

Measuring trends

A distance measure between the current status of a county on an SDG indicator and a set

target is useful information, but clearly not sufficient to provide an understanding of

progress toward the stated target. What is of interest is the measurement of trend toward

the target. For the OECD report, a Spearman rank-order correlation between the observed

values of each indicator and time (in years) is calculated. For example, if the trend is

significantly below -0.20, then the trend is interpreted as a “movement away from the SDG

target”. If the trend is significantly above 0.20, then the trend is interpreted as “progress

toward the SDG target”. In between them “no consistent trend could be identified”.
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Critique of the OECD and UN Methodologies

The importance of the OECD and UN reports notwithstanding, there are several problems

with their methodology for computing the distance measures that need to be raised.

Missing data

In the OECD report, it is unclear how missing data is actually treated. The plots provided

by the OECD show uncertainties based on two assumptions made regarding the missing

data (a) that the missing indicators are all 3 standard deviations from the target level, and

(b) that the target level has been achieved. In no place is there a discussion of the reasons

that a country might be missing the indicators necessary to construct a distance measure.

Without explicit treatment of the missing data, any number of biases can enter the

analysis, and indeed, the OECD report recognizes this problem. The theoretical work on

missing data is well developed, and the implications associated with why data are missing

can directly impact the associated distance measures. In addition, it does not seem that

there were attempts to statistically address missing data such as through imputation

methods.

Measurement error

There is no discussion of measurement error in the indicators. A large number of indicators

are indexes comprised of individual measures, and so the reliability of these measures could

be calculated. In the case of Indicator 4.1.1, what is defined as “minimum proficiency”

would be dependent on the assessment that is being employed. For assessments such as

PISA, reliability information is readily available. In the case of lesser-known country-level

assessments, reliability information needs to be provided. Information regarding reliability

is particularly important insofar as it is well known that the validity of a measure cannot

exceed the square root of its reliability, and hence measuring the relationship of target

indicators to each other is directly impacted by the reliability of the measures involved.
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Difference scores

The above issues notwithstanding, the calculation of the standardized difference between

where a country is now and how far it is from the stated target cannot provide an

assessment of the pace at which countries are moving toward their stated targets. First,

the difference score does not indicate how a country got to where it is now. It only

measures the linear difference between the target and current status. As such, the

difference score does not (and cannot) pick up non-linearities over time in progress toward

the targets because the past trajectory is not part of the calculation of the difference score.

Second, the difference scores are calculated for each country and each indicator separately,

and so does not borrow information from other countries. For some indicators, this might

not be a serious problem, but for others, trans-boundary movement to the targets may be

important and one would want to utilize all available information, including that of other

countries, to estimate the pace at which a given country is moving toward the targets.

It seems that the OECD recognized these limitations. In fact, the OECD report states:

“These results should, however, be interpreted carefully. Progress towards the target says

nothing about whether the pace recently achieved by a country would be sufficient to meet

the target level by 2030. The evidence ... should therefore be considered as only a first step

towards a more extensive analysis that would allow target-by-target projections of the

future trajectories for each country.” (OECD, 2019, p. 34)

This paper considers the limitations recognized by the OECD as vitally important for

assessing progress toward the SDG education targets. For this paper, we conceptualize the

problem as one of assessing the pace at which countries are moving toward (or away) from

the targets, and importantly, we conceptualize gender inequality as one of gender

differences in the pace of progress. However, it is important to recognize the pervasive

uncertainty inherent in specifying models to estimate the pace of progress, and so to this

end, we develop an approach to assessing the pace of progress to the SDG targets based on

Bayesian growth curve modeling and Bayesian ensemble prediction.
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Bayesian Growth Curve Modeling:

Specification, Identification, and Estimation

In this section, we outline the specific form of the growth model that we will employ in our

empirical example. In anticipation of our example, we will contextualize the problem as

one of predicting the pace of progress in country-level mathematics proficiency as measured

by PISA. To begin, we write the intra-country model of the pace of progress in

mathematics outcomes as

yci = π0i + π1iCi + rci, (1)

where yic is mathematics outcome for country i (i = 1, . . . n) at PISA assessment cycle c

(c = 1 . . . C), π0i is the intercept capturing country i’s proficiency level at a fixed point in

time (usually the first cycle - for this paper, 2009), π1i is the slope (linear pace of progress

over time) in mathematics proficiency for country i at cycle c, and rci is the residual term.1

Together π0 and π1 are random effects, typically referred to as growth parameters in the

growth curve modeling literature (e.g. Bollen & Curran, 2006; Grimm, Ram, & Estabrook,

2017). For this paper, π0i is the estimated 2009 country-level achievement for country i,

which we will refer to simply as the starting point, and π1i is an estimate of the pace at

which country i is increasing or decreasing in mathematics proficiency. Our goal is to

obtain optimal estimates of these parameters to be used to predict future mathematics

proficiency scores.

The linear growth curve model in Equation (1) can be extended to include time-varying

predictors as

yci = π0i + π1iCci + βcizci + rci, (2)

where zci is a predictor that also changes over time with the outcome and is hypothesized

to predict the outcome at cycle c, but is not an outcome of interest in itself. The parameter

βci describes the size and sign of the prediction. An example of a time-varying predictor

1 Note that we are assuming that the cycles are at fixed intervals and the same for each country, which is
reasonable given the operational requirements of PISA.
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might be the number of math teachers in country i at cycle c.

It is well known that higher order terms can be specified, such as quadratic pace of

progress, which can be written as

yci = π0i + π1iCci + π2iC
2
ci + rci, (3)

and indeed, the latent variable modeling approach to growth curve modeling allows for

considerable flexibility in non-linear curve fitting (see Bollen & Curran, 2006; Grimm et al.,

2017), and our approach to stacking growth models can be easily extended to allow the

analyst to focus on any shape component (linear or non-linear) of substantive interest.

An important flexibility in growth curve modeling allows for the estimation of non-linear

trajectories using latent basis methods. This specification requires that some of the time

points be fixed to constant values while allowing the remaining time points to be estimated

from the data directly. Latent basis modeling yields data-based estimates of the time

points and often provides better fit of the model to the empirical trajectories of change

over time compared to forcing, say, a linear trend on the data. In the context of latent

basis methods, the pace parameter π1i is best conceived of as a shape parameter, but we

will continue to refer to this as a pace of progress parameter. These, and other extensions,

are discussed in Bollen and Curran (2006) and Grimm et al. (2017). For this paper, we will

examine differences in predictive performance across three latent curve models: (a) a

simple linear growth curve model, (b) a latent basis model with that last time point (2022)

freed to reflect a decrease in scores due to the COVID-19 pandemic, and (c) a latent basis

model in which the basis functions from 2015-2022 are freed, reflecting the idea that the

trend downward had started prior to 2022.

In addition to adding time-varying predictors to the model as in Equation (2), it is

common practice to model the starting point and pace parameters as a function of

time-invariant predictors. For this paper, the inter-country model for the starting point π0i
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and pace π1i respectively, can be written as

π0i = β00 +
Q∑

q=1
β0qxqi + ϵπ0i

, (4)

and

π1i = β10 +
Q∑

q=1
β1qxqi + ϵπ1i

, (5)

where xqi are values on Q predictors for country i, β00, β01, β10, and β1q are the intercept

and slopes associated with the time-invariant predictors of the starting point and pace of

progress, and ϵπ0i
and ϵπ1i

are errors. An example of a time-invariant predictor might be

the type of political system of a country.2 For this paper, we will develop a set of distinct

models for predicting π0 and π1.3

The Bayesian framework for the growth curve model in Equations (1) through (5) requires

specifying a probability model for the outcome and placing priors on all model parameters

(Kaplan, 2023). Following Kaplan and Huang (2021), the priors for our growth curve

models will be non-informative or weakly-informative (see e.g., Gelman, Simpson, &

Betancourt, 2017). This choice allows the data to “speak" while stabilising the analysis

without impacting inferences, particularly in the presence of small sample sizes (Kaplan,

2023).

Bayesian Model Identification

The issue of identification in the Bayesian context is somewhat different than what is

commonly understood as identification in the frequentist framework (Fisher, 1976). The

topic of parameter identification from the Bayesian perspective goes back at least as far as

Lindley (1971) who remarked that identification was not really an issue in Bayesian

inference because when a proper prior distribution is specified, the posterior will always

2 Of course, this assumes that the political system of a country is relatively stable over time.
3 Note that Equations (4) and (5) imply that the same predictors are being used for the starting point and
pace of progress, and although that will be the case for this paper, it is not necessary, and different
predictors for these parameters can be specified.
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exist. More recently, Florens and Simoni (2021) showed (among other things) that there

are cases in which the introduction of a proper (i.e. non-degenerate) prior distribution will

make a parameter that is otherwise non-identified in the frequentist case, identified in the

Bayesian case. Moreover, Florens and Simoni (2021) demonstrate via latent variable

models, that Markov chain Monte Carlo algorithms in fact show better mixing properties

when parameters are not identified than when placing identification constraints on a

model, as is typically done to achieve identification in the frequentist domain.

For this paper, we follow the discussion in Palomo, Dunson, and Bollen (2007). Specifically,

they consider the problem of Bayesian identification as one of Bayesian learning - namely

whether the estimates from the posterior distribution differ from those of the prior

distribution when having encountered the data. This implies that Bayesian identification is

tied closely to the specification of the prior distribution. As an example given in Palomo et

al. (2007), certain parameters such as variances require positivity constraints because

variances cannot be negative. Thus to ensure Bayesian identifiability of the variances of a

model, certain distributions such as the half-normal or half-Cauchy may be employed.

It should be noted that, in principle, Bayesian methods could allow one to choose

informative prior distributions that obtain sensible posterior estimates which would

otherwise not be identified in a frequentist framework. As such, Palomo et al. (2007), in

contrast to Florens and Simoni (2021), prefer setting frequentist identification constraints

within Bayesian models to reduce the dependence on prior distributions for those

parameters.

For this paper, we will be implementing a Bayesian structural equation modeling (SEM)

algorithm to estimate our growth models. The SEM approach to growth modeling was

originally considered by Muthen (1991, see also; Willett & Sayer, 1994) and further

developed in Bollen and Curran (2006) and Grimm et al. (2017). Within the SEM

framework, the growth parameters are considered latent variables obtained by setting

constraints in the factor loading matrix such that the intercepts and growth rates are
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essentially factor scores (random effects). A mean structure is added so that the average

intercept and average slope are estimated as factor means (see Willett & Sayer, 1994;

Bollen & Curran, 2006; Kaplan, 2009, for further discussion). Thus, we follow the

suggestion in Palomo et al. (2007), noting that the constraints that are placed on growth

curve models to render estimates of the starting point and pace of progress virtually

guarantees model identification. Nevertheless, we carefully assess convergence of the

MCMC algorithm, described next.

Model Estimation

The development of Markov chain Monte Carlo sampling methods such as the

Metropolis-Hastings (M-H) and Gibbs sampling algorithms and their implementation in

Bayesian software programs have made it possible to bring Bayesian statistics into

mainstream practice (Gilks, Richardson, & Spiegelhalter, 1996). However, these two

algorithms suffer from a severe practical limitation — namely, as the number of parameters

increases, the number of directions that the algorithm can search increases exponentially

while the M-H acceptance probability decreases. Thus, these two algorithms can take an

unacceptably long time to converge to the posterior distribution, resulting in a highly

inefficient use of computer resources (Hoffman & Gelman, 2014).

Hamiltonian Monte Carlo

An approach for addressing the problem of computational inefficiency has emerged from

the development of Hamiltonian Monte Carlo. The mathematics behind HMC arises from

the field of Hamiltonian dynamics which was designed to address problems in quantum

chromodynamics in the context of the orbital dynamics of fundamental particles.

Hamiltonian Monte Carlo underlies the Stan programming environment, which we will be

using for the example in this paper.

Following closely the discussion given in Kaplan (2023) and drawing on excellent intuitive

introductions to HMC by Betancourt (2018, 2019) the problem associated with the

inefficient use of computer resources when implementing M-H or Gibbs algorithms is a
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result of the geometry of probability distributions when the number of parameters

increases. In particular, although the density of a distribution is largest in the

neighborhood near the mode, the volume of that neighborhood decreases and thus has an

inconsequential impact on the calculation of expectations. At the same time, as the number

of parameters increases, the region far away from the mode has greater volume but much

smaller density and thus also contributes negligibly to the calculation of expectations. The

neighborhood between these extremes is called the typical set, which is a subspace of the

support of the distribution. This “Goldilocks zone" represents a region where the volume

and density are just right, and where the mass is sufficient to produce reasonable

expectations. Again, outside of the typical set, the contribution to the calculation of

expectations is inconsequential and thus a waste of computing resources (Betancourt, 2018)

The difficulty with the M-H and Gibbs algorithms is that although they will eventually

explore the typical set of a distribution, it might be so slow that computer resources will be

expended. This problem is due to the random walk nature of these algorithms. For

example, in the ideal situation for a small number of parameters, the proposal distribution

of the M-H algorithm (usually a Gaussian proposal distribution) will be biased toward the

tails of the distribution where the volume is high while the algorithm will reject proposal

values if the density is small. This will push the M-H algorithm toward the typical set as

desired. However, as the number of parameters increase, the volume outside the typical set

will dominate the volume inside the typical set and thus the Markov chain will mostly end

up outside the typical set yielding proposals with low probabilities and hence more

rejections by the algorithm. This results in the Markov chain getting stuck outside the

typical set and thus moving very slowly, as is often observed when employing M-H in

practice. The same problem just described holds for the Gibbs sampler as well.

The solution to the problem of Markov chains getting stuck outside the typical set is to

come up with an approach that is capable of making large jumps across regions of the

typical set, such that the typical set is fully explored without the algorithm jumping
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outside. This is the goal of HMC. Specifically, HMC exploits the geometry of the typical

set and constructs transitions that “...glide across the typical set towards new, unexplored

neighborhoods" (Betancourt, 2018, p. 18). To accomplish this controlled sojourn across the

typical set, HMC exploits the correspondence between probabilistic systems and physical

systems. As discussed in Betancourt (2018), the physical analogy is one of placing a

satellite in a stable orbit around Earth. A balance must be struck between the momentum

of the satellite and the gravity of Earth. Too much momentum and the satellite will fly off

into space. Too little, and the satellite will crash into Earth. Thus, the key to gliding

across the typical set is to carefully choose an auxiliary momentum parameter to the

probabilistic system. This momentum parameter is essentially a first-order gradient

calculated from the log-posterior distribution.

No-U-Turn Sampler (NUTS)

Hamiltonian Monte Carlo yields a much more efficient exploration of the posterior

distribution compared to random-walk M-H and Gibbs. However, HMC requires

user-specified parameters that can still result in a degree of computational inefficiency.

These parameters are referred to as the step size ϵ and the number of so-called leapfrog

steps L. If ϵ is too large, then the acceptance rates will be too low. On the other hand, if ϵ

is too small, then computation time is being wasted because the algorithm is taking

unnecessarily small steps. With regard to the leapfrog steps, if L is too small, then the

draws will be too close to each other, resulting in random walk behavior and slow mixing of

the chains. If L is too large, then computational resources will be wasted because the

algorithm will loop back and repeat its steps (Hoffman & Gelman, 2014). Although ϵ can

be adjusted “on the fly" through the use of adaptive MCMC, deciding on the appropriate

value of L is more difficult, and a poor choice of either parameter can lead to serious

computational inefficiency. To solve these problems, the No-U-Turn Sampler algorithm

was developed by Hoffman and Gelman (2014), which is designed to mimic the dynamics of

HMC, while not requiring the user to specify ϵ or L. The NUTS algorithm is implemented

in Stan (Stan Development Team, 2021).
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Bayesian Probabilistic Prediction

In the previous section, we discussed the specification, identification, and estimation of the

growth curve modeling framework that we will use in our example. Again, our goal is to

optimize the prediction of the pace at which countries are trending toward or away from

the SDGs for the purposes of accurately predicting future outcomes of country-level

mathematics competencies, and thus, the focus of this paper is on prediction in the

longitudinal context. We argue that a central characteristic of statistics is to develop

accurate predictive models, and, all other things being equal, a given model is to be

preferred over other competing models if it provides better predictions of what actually

occurred (Dawid, 1984). Indeed, it is hard to feel confident about inferences drawn from a

model that does a poor job of predicting the extant data. For our problem, the question is

how to develop accurate predictive models of country-level pace, and, importantly, how to

evaluate the accuracy of the predictions. Only then may we feel comfortable using optimal

predictions of pace to predict future observable outcomes. We argue that the evaluation of

Bayesian predictive models is best situated in the context of Bayesian decision theory.

Bayesian decision theory (see e.g. Good, 1952; Lindley, 1991; Berger, 2013) provides a

natural and intuitive approach to evaluating Bayesian predictive models. Specifically, as

will be expanded on below, Bayesian decision theory casts the problem of predictive

evaluation in the context of minimizing expected loss – that is, the penalty that is accrued

from using a particular model to predict future observations. The less the expected loss,

the better the model is at predictive performance in comparison to other models.

Fixing Notation and Concepts

Following closely the review in Kaplan (2021) but modified to focus on the prediction of

the pace of progress, let D = {yci, xi, zci}n
i=1 be a set of data assumed to be fixed in the

Bayesian sense4, where yti is the outcome of interest at cycle t for country i, xi is a

4 In Bayesian philosophy, conditioning is on observable and fixed data whereas parameters are treated as
random variables (Kaplan, 2023).
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(possibly vector-valued) set of time-invariant predictors, and zti is a set of time

varying-predictors for country i. Further, let (ỹ, x̃, z̃) be a future observation of the

outcome of interest and the set of predictors, respectively. Finally, let M = {Mk}K
k=1

represent a set of individual models specified to provide predictions of the pace of progress

π1 and let Mk represent a specific model for the pace of progress. Each Mk will eventually

be a member in the ensemble M.

The elements of Bayesian decision theory that we adopt in this paper have been described

by Bernardo and Smith (2000) and Vehtari and Ojanen (2012) among many others. These

elements consist of (a) an unknown state of the world denoted as ω ∈ Ω, (b) an action

a ∈ A, where A is the action space, (c) a loss function L(a, ω) : A × Ω → R that rewards

an action a when the state of the world is realized as ω, and (d) p(ω|D) representing one’s

current belief about the state of world conditional on observing the data, D.

To provide a context for these ideas, and in anticipation of our empirical example, consider

the problem of predicting a future outcome of mathematics proficiency for PISA

participating countries. In line with Bernardo and Smith (2000), Lindley (1991), Vehtari

and Ojanen (2012) and Berger (2013) and the notation given previously for country i at

time t, (a) the states of the world correspond to the future mathematics proficiency scores

from future cycles of PISA, that is, ỹ ∈ Y , (b) the action a ∈ A is the actual prediction of

those future observations based on using an optimized prediction of the pace of progress π1,

(c) the loss function L(a, ỹ) defines the loss attached to the prediction, and (d) a posterior

predictive distribution, p(ỹ|D, M∗), that encodes our belief about the pace of progress in

mathematics proficiency conditional on the data, D.

Loss Functions for Evaluating Predictions

The goal of predictive modeling is to minimize the loss associated with taking an action a

among a set of actions in the action space A. A number of loss functions exist, but
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common loss functions rest on the negative quadratic loss function

L(a, ỹ) = (ỹ − a)2. (6)

The optimal action a∗ is the one that minimizes the posterior expected loss, written as

a∗ = arg min
a∈A

∫
Ω

L(ω, a)p(ω|D)dω. (7)

The idea here is to take an action a that minimizes the loss L when the future observation

is ỹ. Clyde and Iversen (2013) show that the optimal decision obtains when a∗ = E(ỹ|D),

which is the posterior predictive mean of ỹ given the data D. Under the assumption that

the true model exists and is among the set of models under consideration, this can be

expressed as

E(ỹ|D) =
K∑

k=1
E(ỹ|Mk, D)p(Mk|D) =

K∑
k=1

p(Mk|D)ˆ̃yMk
, (8)

where ˆ̃yMk
is the posterior predictive mean of ỹ under Mk and p(Mk|D) is the posterior

model probability (PMP) associated with model k. The PMP can be expressed as

p(Mk|D) = p(D|Mk)p(Mk)∑K
l=1 p(D|Ml)p(Ml)

, l ̸= k. (9)

where p(Mk) the prior probability for model k. The typical default uniform prior mass over

the model space and non-informative priors for the parameters of each model, but software

programs such as BMS (Zeugner & Feldkircher, 2015) allows for other prior choices over

both the model space and the parameters. Equations (8) - (9) define Bayesian model

averaging.

It is important to note that when considering the selection of a single model, one might be

tempted to choose the model with the highest PMP. In the case of only two models, the

model with the largest PMP will be the closest to the BMA solution. However, for more

than two models, Clyde and Iversen (2013) point out that the model closest to the BMA
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solution might not be the one with the largest PMP.

Scoring Rules for Probabilistic Prediction

A critical part of building ensemble prediction models is to have a method for assessing the

quality of an ensemble’s predictive performance, sometimes referred to as a model’s

predictive skill. Popular methods used in economic forecasting and weather forecasting,

among other areas, for assessing predictive skill are referred to as scoring rules (see, e.g.,

Winkler, 1996; Bernardo & Smith, 2000; Jose, Nau, & Winkler, 2008; Merkle & Steyvers,

2013; Gneiting & Raftery, 2007). Scoring rules provide a measure of the accuracy of

probabilistic predictions, and a prediction can be said to be “well-calibrated” if the

assigned probability of the outcome matches the actual proportion of times that the

outcome occurred (Dawid, 1982). For this paper, we focus on one strictly proper scoring

rule that is commonly used to evaluate predictive accuracy - namely, the Kullback-Leibler

Divergence score (Kullback, 1959, 1987; Kullback & Leibler, 1951).

Kullback-Leibler Divergence Score

Consider two distributions, p(y) and g(y|θ), where p(y) could be the distribution of

observed mathematics proficiency scores, and g(y|θ) could be the prediction of these

mathematics scores based on a model. The KLD between these two distributions can be

written as

KLD(f, g) =
∫

p(y)log
(

p(y)
g(y|θ)

)
dy, (10)

where KLD(f, g) is the information lost when g(y|θ) is used to approximate p(y). For

example, the actual mathematics outcome scores might be compared to the predicted

outcome using Bayesian model averaging along with different choices of model and

parameter priors. The model with the lowest KLD measure is deemed best in the sense

that the information lost when approximating the actual mathematics outcome

distribution with the distribution predicted on the basis of the model is lowest.
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The Tripartite M-Framework

We noted earlier that BMA rests on a very restrictive assumption, namely that there is a

true (or correct) model for predicting the pace of progress, denoted as MT , and that this

true model for the pace of progress π1 is in the set of models that is being averaged. If this

assumption does not hold, then conventional BMA does not makes sense because the priors

on the model space are elicited to reflect the analyst’s belief about the existence of the true

model within the full set of models under consideration. Nevertheless, if we assume that

MT is in the space of models under consideration, this is referred to as the M-closed

framework, introduced as one of three modeling frameworks (M-frameworks) by Bernardo

and Smith (2000) and further discussed in Clyde and Iversen (2013).

The M-closed framework for BMA may be especially difficult to justify in the social and

behavioral sciences. However, as pointed out by Bernardo and Smith (2000), there may be

cases in which it is reasonable to act as though there is a true model. For example, we may

wish to act as though M-closed holds when a model has demonstrated good predictive

capabilities under a wide variety of situations, but that under a new situation, new

uncertainties arise. Such justification might be reasonable in cross-sectional studies, but

may be particularly difficult in longitudinal studies where information from previous

longitudinal studies may be hard to come by. Still, as long as the analyst is comfortable

assigning model priors, then the M-closed framework can be adopted. Nevertheless, the

truth or falsity of the M-closed framework notwithstanding, it is important to reiterate

that conventional BMA takes place under the M-closed framework and, indeed, readily

available BMA software typically employ a non-informative prior to the space of models as

a default, with the idea that the true model lies in the model space.

The M - Complete Framework

With the M-closed assumption unlikely to hold in practice, we are faced with the problem

of how to obtain the benefits of model averaging with respect to predictive accuracy. One

approach would be to create a list of simpler “proxy" linear models, {Mk}K
k=1 specified for
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clarity of communication and ease of analysis (Bernardo & Smith, 2000). Each of these

models would be evaluated in light of the true model. This is referred to as the

M-complete framework (Bernardo & Smith, 2000). Under M-complete, BMA would not,

in principle, be conducted as it does not make sense to place a discrete prior on the model

space when one does not believe that MT ∈ M. Instead, as suggested by Clyde and Iversen

(2013), Yao et al. (2018), and Vehtari and Ojanen (2012) one simply selects the model

Mk ∈ M that minimizes expected loss with respect to predictive distributions. However,

this suggests that a single model is being used for predictive purposes with the result that

model uncertainty is still not being addressed.

The M -Open Framework

If it is difficult to justify model priors as required under M-closed, and if selecting a single

model under M-complete that minimizes expected loss is not satisfactory, then we need an

approach that allows for model averaging without the need to assume MT ∈ M. This is

referred to as the M-open framework (Bernardo & Smith, 2000). An example of an

M-open problem is in specifying a set of regression models with different choices of

predictors. These different regression models would represent reasonable alternative belief

models, and so using posterior model probabilities as weights, each model would yield a

separate score without presuming the existence of a true model underlying any of the

separate models. These models would be combined using their scores as weights, and the

resulting predictive distribution would be obtained. This type of model averaging in the

M-open framework describes the methodology of Bayesian stacking which we consider

next.

Ensemble Prediction Using Bayesian Stacking

The method of stacking was originally developed in the machine learning literature by

Wolpert (1992) and Breiman (1996) and brought into the Bayesian paradigm by Clyde and

Iversen (2013). A review of Bayesian stacking applied to large-scale educational

assessments can be found in Kaplan (2021) and extensions of Bayesian stacking applied to
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multilevel models can be found in Huang and Kaplan (2024). The basic idea behind

stacking is to enumerate a set of K (k = 1, 2, . . . K) models and then create a weighted

combination of their predictions.

In what follows, we describe the process of ensemble modeling via Bayesian stacking for the

pace of progress parameter, π1 noting that the same approach was used for the starting

point, π0. Returning to our example, we can specify a set of ensemble member models of

the pace of progress in mathematics proficiency as

π1 = fk(x) + ϵ, (11)

were fk(x) are different models for the pace of progress π1 conditional on a vector of

predictors of the pace - e.g. some models may include only demographic predictors, others

may include various combinations of attitudes and behaviors related to mathematics, and

still others may be highly complex functional forms for the prediction of rates of change.

To begin, define a set of weights as a simplex,

WK
1 =

w ∈ [0, 1]K :
K∑

k=1
wk = 1

. (12)

The stacking problem can be written in terms of either minimizing the divergence d as

min
w∈WK

1

d

 K∑
k=1

wkp(π̃1|π1, Mk), pt(π̃1|π1)
, (13)

or maximizing the log score

max
w∈WK

1

S

 K∑
k=1

wkp(π̃1|π1, Mk), pt(π̃1|π1)
)

. (14)
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To approximate the full predictive distribution p(π̃1|π1, Mk) Yao et al. (2018) use the

leave-one-out (LOO) predictive distribution

p̂k,−1(π1i) =
∫

p(π1i|θk, Mk)p(θk|π1,−i, Mk)dθk. (15)

The stacking weights using the log score are the solution to

max
w∈WK

1

1
n

n∑
i=1

log
K∑

k=1
wkp̂(π1i|π1,−i, Mk). (16)

Optimization of Equation 16 uses algorithms in Stan (Stan Development Team, 2021).

Inspection of Equations (15) and (16) reveal that the the LOO predictive density is being

used twice and so could leave to overally optimistic conclusions. To remedy this, a full

Bayesian approach referred to as Bayesian hierarchical stacking (BHS) could be used, but

was not implemented in this paper (see Huang & Kaplan, 2024, for an application of BHS

to large-scale assessments).

Leave-One-Out Cross-Validation

We see from Equation (16) that a method is needed to estimate π1i based on n − 1

observations leaving the ith country out, and the most common approach is referred to as

leave-one-out cross validation. Leave-one-out-cross-validation (LOO-CV) is a special case

of q-fold cross-validation (q-fold CV) when q = n. In q-fold CV, a sample is split into q

groups (folds) and each fold is taken to be the validation set with the remaining q − 1 folds

serving as the training set. For LOO-CV, each observation serves as the validation set with

the remaining n − 1 observations serving as the training set. Leave-one-out cross-validation

is available in the R software program loo (Vehtari, Gabry, Yao, & Gelman, 2019).5

5 The widely applicable information criterion (WAIC) has also been advocated for model selection.
Although the WAIC and LOO-CV are asymptotically equivalent (Watanabe, 2010), the implementation of
LOO-CV in the loo package is more robust in finite samples with weak priors or influential observations
(Vehtari, Gelman, & Gabry, 2017)
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Following Vehtari et al. (2017), let π1i (i = 1, . . . , n) be an n-dimensional vector of pace

parameters following a distribution conditional on parameters θ - viz.

p(π1|θ) = ∏n
i=1 p(π1i|θ). Given a prior distribution on the parameters, p(θ), we can obtain

the posterior distribution, p(θ|π1) as well as a posterior predictive distribution of predicted

values π̃1 written as p(π̃1|π1) =
∫

p(π̃1|θ)p(θ|π1)dθ. The Bayesian LOO-CV rests on the

derivation of the expected log point-wise predictive density (ELPD) for new data defined as

ELPD =
n∑

i=1

∫
pt(π̃1i)log p(π̃1i|π1)dπ̃1i, (17)

where pt(π̃1i) represents the distribution of the true but unknown data-generating process

for each country’s pace of progress π̃1i and where Equation (17) is approximated by

cross-validation procedures. The ELPD provides a measure of predictive accuracy for the n

data points taken one at a time (Vehtari et al., 2017). From here, the Bayesian LOO

estimate can be written as

ELPDloo =
n∑

i=1
log p(π1i|π1−i), (18)

where

p(π1i|π1−i) =
∫

p(π1|θ)p(θ|π1−i)dθ, (19)

which is the leave-one-out predictive distribution using the log predictive score to assess

predictive accuracy.

It is useful to note that an information criterion based on LOO (LOO-IC) can be easily

derived as

LOO-IC = −2 ÊLPDloo. (20)

which places the LOO-IC on the “deviance scale” (see Vehtari et al., 2017 for more details

on the implementation of the LOO-IC in loo). Among a set of competing models, the one

with the smallest LOO-IC is considered best from an out-of-sample point-wise predictive

point of view.
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As pointed out by Vehtari et al. (2017), it can be time-consuming to calculate exact

LOO-CV and this may be a reason why LOO-CV is not widely adopted. To remedy this,

Vehtari et al. (2017) developed a fast and stable approach to obtaining LOO-CV referred

to as Pareto-smoothed importance sampling (PSIS-LOO) (see Vehtari et al., 2017, for more

details). The PSIS approach is implemented in loo (Vehtari et al., 2019).

Other Types of Stacking Weights

In addition to stacking weights based on the ELPD, we will also examine the performance

of two alternative stacking weights: pseudo-BMA (PBMA) and pseudo-BMA+ weights.

Pseudo-BMA Weights

Pseudo-BMA (PBMA) weights were proposed by (Geisser & Eddy, 1979, see also; Gelfand,

1996; Yao et al., 2018). The basic idea behind PBMA is as follows. First, as discussed in

Yao, Pirš, Vehtari, and Gelman (2021), LOO-CV has connections to other types of weights

that can be used for stacking. For example, in the case of maximum likelihood estimation,

LOO-CV weights are asymptotically equivalent to Akaike information criterion (AIC)

weights (Akaike, 1973) that are used in frequentist model averaging applications (Yao et

al., 2018, see also; Burnham & Anderson, 2002; Fletcher, 2018). As a method of model

selection, earlier work by Geisser and Eddy (1979, see also; Gelfand, 1996) criticised the

underpinnings of Bayes factors and suggested substituting the marginal likelihood of the

kth model, p(y|Mk), used in the calculation of Bayes factors with Bayesian leave-one-out

cross-validation predictive densities, defined as ∏n
i=1 p(π1i|π1−i, Mk). Yao et al. (2018) refer

to AIC weighting using LOO-CV predictive densities as pseudo-BMA weighting.

Pseudo-BMA+ Weights

The difficulty with PBMA weights is that they do not take into account uncertainty in the

LOO estimation of the weights. To address this Yao et al. (2018) proposed an approach

that combines the Bayesian bootstrap (see Rubin, 1981) with the ELPD defined earlier.

They refer to this approach as pseudo-BMA+ (PBMA+). Following Yao et al. (2018), the

essential idea behind PBMA+ is that the posterior distribution of the realizations of a
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random variable Z, that is zi, (i = 1, . . . , n), follows a Dirichlet(1,. . . ,1) distribution - i.e. a

uniform distribution. Taking samples from this distribution yields Bayesian bootstrap

samples from which parameters from this distribution can be calculated. Specifically, let

{δ}n
i=1 ∼

n︷ ︸︸ ︷
Dirichlet(1,. . . ,1) (21)

be a set of posterior probabilities for all zi representing one Bayesian bootstrap replication.

From here, a parameter of interest represented as a function of Z, ϕ(Z|δ) can be obtained

as

ϕ̂(Z|δ) =
n∑

i=1
δϕ(zi). (22)

Repeated sampling from π then results in an estimate of ϕ(Z).

With regard to stacking, Yao et al. (2018) note that the ELPD based on LOO can be

highly skewed and argue that the Bayesian bootstrap might be an improvement over the

usual Gaussian approximation. The PBMA+ weighting follows essentially the same line of

argument as the conventional Bayesian bootstrap. That is, define for each model k,

{z}k
i=1 =

{
ÊLPDloo

}K

k=1
. (23)

Taking B bootstrap samples (δ1b, . . . , δnb), b = 1, . . . , B from
n︷ ︸︸ ︷

Dirichlet(1,. . . ,1) allows us to

calculate the weighted means as

z̄k
b =

n∑
i=1

δibz
k
i . (24)

From here, a Bayesian bootstrap sample of the stacking weight for model k based on

bootstrap samples of size B can be obtained as

wkb = exp(nz̄k
b )∑K

k=1 exp(nz̄k
b )

, b = 1, . . . , B (25)
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leading to the final PBMA+ weight for model k

wk = 1
B

B∑
b=1

wk,b. (26)

Of importance to this paper, Yao et al. (2018) showed that PBMA+ performs better than

BMA and PBMA in M-open settings, but not as well as stacking using the log score. This

paper adds to the existing literature by comparing stacking based on the ELPDloo to

PBMA and PBMA+ weights in the context of growth curve models applied to large-scale

assessments.

Example: Stacking Growth Curve Models of PISA Mathematics Proficiency

This paper will apply Bayesian stacking to data from 53 countries that have participated in

PISA from 2009 – 2022. Launched in 2000 by the Organization for Economic Cooperation

and Development, PISA is a triennial international survey that aims to evaluate education

systems worldwide by testing the skills and knowledge of 15-year-old students and is,

arguably, the most important policy-relevant international survey currently operating. In

2022, 690,000 15-year-old students attending educational institutions in lower secondary

education grades or higher from 81 countries and economies took an internationally

agreed-upon 2-hour test (OECD, 2023b). Students were assessed in reading, mathematics,

science, collaborative problem solving and financial literacy. Available country-level results

already account for the complex sampling design and plausible value methodology for

obtaining mathematics literacy scores. A detailed account of the PISA design can be found

in the overview by Kaplan and Kuger (2016).

We will focus on country-level longitudinal outcomes in mathematics proficiency using data

from PISA 2009 to PISA 2022. Although longer time points are available, it was decided to

only include countries with complete data on the mathematics outcome so that predictive

analyses were not dependent on imputation of missing data. The list of these countries is

shown in Table 1.
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Table 1. Fifty-four countries and economies with complete mathematics assessment data
from 2009 to 2022.

Albania Argentina Australia Austria Belgium
Brazil Bulgaria Canada Chile Chinese Taipei

Colombia Croatia Czech Republic Denmark Estonia
Finland France Germany Greece Hong Kong-China

Hungary Iceland Indonesia Ireland Israel
Italy Japan Jordan Kazakhstan Korea

Latvia Lithuania Macao-China Mexico Montenegro
The Netherlands New Zealand Norway Peru Poland

Portugal Qatar Romania Singapore Slovak Republic
Slovenia Spain Sweden Switzerland Thailand
Turkey United Kingdom United States Uruguay

Note: Luxembourg did not have data for PISA 2022 and the Russian Federation was
excluded from the PISA 2022 assessment due to the war in Ukraine.

Proposed Workflow

For this paper, we use the R program blavaan, which is a lavaan-type structural equation

modeling interface to rstan (Merkle, Fitzsimmons, Uanhoro, & Goodrich, 2021; Rosseel,

2012; Stan Development Team, 2023) for the estimation of the starting point and pace of

progress. The program mice (van Buuren & Groothuis-Oudshoorn, 2011) was used for

predictive mean matching imputation of missing data. Weight calculations under EPLDloo,

PBMA, and PBMA+ used the program loo (Vehtari et al., 2019), and model evaluation

used LaplacesDemon (Statisticat & LLC., 2021). The full analysis with 8 models, including

growth curve modeling, missing data imputation, weight calculation, model evaluation, and

knitted with rmarkdown (Allaire et al., 2024), took forty-five minutes using twenty cores on

a Dell laptop. The code for this analysis is available at

https://bise.wceruw.org/publications.html.

The workflow for our example is as follows.

Step 1: Estimate a latent growth curve model without predictors. Different growth

curve models should be specified and compared via leave-one-out cross-validation.
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Step 1a: If each model gives rise to very different growth rates, it may be useful

to perform Bayesian stacking on these models first. The stacked predictive

distributions could then be used below in a stacking that involves models with

different predictors. We refer to this as super-ensemble modeling.

Step 2: Create a list of ensemble members, each one being a substantively distinct

model predicting the growth rate. For each member model, estimate the pace of

progress from Equation (1) and compare models based on the ELPDloo values, and,

relatedly the LOO-IC. Compare ELPDloo weights to PBMA and PBMA+ weights. In

practice, the analyst would likely choose just one of these weights, but there is no

harm in comparing outcomes using the other weights.

2a: (Optional, but recommended): Here, one could check on the relative

distinctiveness of the individual member models via posterior predictive

checking of each model separately (see Nold, Meinfelder, & Kaplan, 2024; Yao et

al., 2021).6

Step 3: Combine the predictive distributions of the growth rates weighted by the

stacking weights. The code we use for stacking predictive distributions is available at

(blinded for review)

Step 4: Evaluate the stacked predictive distribution of linear growth against the

linear growth rate in Step 1 via the KLD scoring rule in Equation (10). In theory, the

stacked predictive distribution should have a smaller KLD than that of any of the

model members.

Step 5: Based on the average pace of progress from the stacked predictive

distribution, produce prediction plots.

Step 5a (Optional but recommended): For this step, pseudo out-of-sample

predictions may be desirable. For pseudo out-of-sample prediction, the stacked

6 We discuss the issue of distinctiveness in the Summary and Discussion section.
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pace of progress is estimated on all but the T th − 1 time point. Then, with the

stacked pace of progress in hand, one simply estimates the proficiency scores for

the T th time point and compares the predictions to the actual values at time T

using KLD. One can also compare the different weight methods described above,

and the weighting method that yields the lowest KLD would be chosen for the

prediction task at hand. Once the analyst has settled on a weighting method

that showed the best performance using the KLD, then the analyst can move on

to out-of-sample prediction using the intercept and stacked pace of progress.

Results

To begin, Figure 1 displays the observed trajectories from 2009 to 2022 for mathematics

proficiency across the countries for this analysis, along with the OECD international

average. The red line represents the trajectories for girls and the blue line represents the

trajectories for boys. The black horizontal line represents the PISA Level-2 proficiency

cutoff (OECD, 2024). Countries below the black line are performing, on average below

minimum proficiency in mathematics.

We observe a fair amount of variation in mathematics proficiency over time, as well as a

noticeable decline for many countries (including the overall international average) from

2018 to 2022. For example, Finland had been showing a steady decline in mathematics

proficiency from 2009, with perhaps a slightly steeper decline in 2022. Alternatively,

Albania was showing steady improvement in mathematics (equivalently for boys and girls),

but a sudden drop off to slightly below the minimum proficiency level in 2022. Finally,

Chinese Taipei shows relatively stable performance in mathematics through 2022. Thus, to

reiterate, the purpose of this paper is (1) to estimate the country-level starting point and

pace of progress in mathematics proficiency over time, (2) create a set of member models

to explain variation in these parameters over countries, (3) stack the predictive

distributions derived from the member models to obtain an ensemble distribution of these

parameters, and (4) use the starting point and pace of progress means of the ensemble
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distribution to predict future mathematics proficiency.

Single model members

For Step 1 of our workflow, we begin with a single model approach in which we examine

several models with slight differences in the estimation of the pace of progress. This

approach is akin to so-called single model ensemble forecasting found in the weather

forecasting literature (Dutton, 2021). The following is the list of member models for

estimating the pace of progress in PISA mathematics proficiency.

1. Linear growth curve model. This model was described in Equation (1). The basis

terms for this model range from the 2009 to 2022 cycles of PISA and are fixed and

coded as 0,3,6,9,13. Note that the last basis term for 2022 is 4 years after the latent

basis term for 2018 reflecting the delay of the 2022 PISA cycle due to the pandemic.

2. Latent Basis Model A. This model is the same as the linear growth model except

that the latent basis term for 2022 is allowed to be freely estimated. This model

assumes that the decrease in mathematics achievement scores occurred mainly as a

result of the pandemic and shown in the PISA 2022 results.

3. Latent basis model B. This model is the same as latent basis model A except that

we also allow the latent basis term for 2018, as well as 2022, to be estimated by the

data. This model assumes that the decrease in mathematics was already occurring

prior to the pandemic and was already manifest in the PISA 2018 scores.

Single model ensemble results

Here and throughout, we base our decisions regarding model predictive quality on models

for the pace of progress, π1, and not for the starting point, π0. We discuss the implications

of this decision in the Summary and Discussion section.

In Table 2 we present the posterior rates of progress under the linear growth model and

two latent basis models. We find that the linear slope model and the latent basis models do

not show substantively important differences in predictive quality either overall or for boys
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and girls separately in terms of the LOO-IC. A possible explanation for this finding is that

the across countries the trends are, for the most part, linear, and so relaxing the the strict

linear model by allowing for data-based estimation of the basis terms does not contribute

much to overall predictive skill. That said, we do find some decline in country-level

mathematics scores is greater when allowing a degree of non-linearity induced by the

possible impact of the pandemic measured at the PISA 2022 cycle. Moreover, focusing on

latent basis M1, we find that, at the country level, boys are declining in mathematics at a

rate that is 1.5 times faster than for girls. An inspection of the 90% credible interval for

this model also reveals that the overall decline, as well as the decline for boys, does not

contain zero, whereas the credible interval for the girls does contain zero. This suggests

that the trend in mathematics competencies has been relatively flat for girls from 2009 to

2022, whereas the trend has been steadily decreasing for boys and possibly made worse by

the pandemic.

Table 2. Posterior estimate of starting points and rates of progress, 90% credible intervals
(in parentheses), and predictive evaluation under linear and two latent basis modelsa

Overall Boys Girls

Starting point
Linear model 470.002 (469.805, 470.202) 470.002 (469.808, 470.198) 470.000 (469.803, 470.197)
Latent basis M1 470.001 (469.814, 470.199) 470.001 (469.805, 470.197) 470.001 (469.805, 470.198)
Latent basis M2 470.008 (469.808, 470.198) 470.000 (469.809, 470.197) 470.001 (469.809, 470.194)

Pace of progress
Linear model -0.503 (-0.977, -0.040) -0.654 (-1.097, -0.227) -0.405 (-0.917, 0.107)
Latent basis M1 -0.564 (-1.071, -0.019) -0.700 (-1.097, -0.227) -0.457 (-1.047, 0.211)
Latent basis M2 -0.641 (-1.234, 0.020) -0.772 (-1.284, -0.158) -0.556 (-1.233, 0.269)

Predictive evaluation
LOO-IC Linear model 2301.39 2325.35 2305.40
LOO-IC Latent basis M1 2304.13 2328.20 2307.35
LOO-IC Latent basis M2 2304.31 2328.64 2308.30
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Having observed in Table (2) that there is no clear distinction among the three models for

the estimation of the pace of progress, we focus on obtaining the pace of progress for each

country using latent basis M1. Our justification for this model stems from the desire to

account for possible non-linearity due to the impact of COVID-19 as reported for PISA

2022. We now move to the next step in our workflow which entails specifying separate and

theoretically justified models for the pace of progress.

Proposed multi-model ensemble members

To obtain predictors of the pace of progress in mathematics proficiency, we have drawn on

a variety of data sources. Specifically, in addition to the mathematics proficiency outcome,

PISA includes measures of school-level resources, accountability, and leadership indicators

that can be aggregated to the country level. However, we recognize that caution in

interpretation is needed as the meaning of these school-level indicators may change when

aggregated to the country level. In addition to PISA, the OECD also provides data on

country-level economic indicators such as gross domestic product and government spending

on education (see https://data.oecd.org/education.htm). Additional data sources from the

OECD were obtained from their annual “Education-at-a-Glance" volumes (e.g., OECD,

2018). Many of the OECD education indicators are also made available to the World Bank

through its “EdStats All Indicator Query" system. This system offers more than 4,000

internationally comparable indicators covering different aspects of system-level education.

Data are available from the year 1970 onward (see The World Bank, 2019). Finally,

UNESCO offers a considerable amount of data in the area of international education. Of

relevance to this proposal, UNESCO has already collected selected data linked to the SDGs

since 2012 (see UNESCO Institute of Statistics, 2019). UNESCO also has in place a global

educational monitoring system for which additional data are readily available (see

UNESCO, 2015).

For this paper, we have created eight relatively distinct models for the prediction of the

pace of progress in mathematics outcomes over the 2009 to 2022 cycles of PISA using
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latent basis M1. This approach is akin to so-called multi-model ensemble forecasting again

found in the weather forecasting domain (Dutton, 2021). Clearly, different models could be

specified, but those chosen for this paper are based on eight distinct indicator categories

based on data sources derived from a consideration of a number of documents and reports

from various governmental organizations, in particular, the OECD, UNESCO, and the

World Bank. Predictors were chosen and sorted into categories derived from the target

definitions of the SDGs (UN General Assembly, 2015) and the theoretical framework of

PISA (OECD, 2023a). The predictors were sorted into the categories SDG 1 or SDG 4 if

they measure aspects that are defined or related to the definitions of the SDG targets 1 or

4, respectively.7. Indicators which can be related to aspects of educational quality as

defined in the PISA framework were sorted into the category Instructional quality for

predictors referring to aggregated effects on the school level, or the category Resources if

they refer to instructional resources on school level. Indicators were sorted into the

category Equity if they relate to differences between men and women in the selected areas

on system level, in most cases a proportion or ratio of men/women, or if the indicators are

related to equity in education as defined in the PISA framework. A variable list along with

the indicator category and model is given in Appendix A. Note also that remaining

analyses are based on 53 countries. Chinese-Taipei was removed from remaining analyses

due to a large amount of missing data on relevant predictors.

Separate model results

In this section we present the results from separate analyses of the pace of progress, with a

focus on each model’s predictive performance based on the expected log predictive density

using leave-one-out cross-validation. The results for boys and girls are presented in Table

(3).

7 SDG 1 “aims to end poverty in all its forms everywhere by the year 2030"; and SDG 4 aims to “Ensure
inclusive and equitable quality education and promote lifelong learning opportunities for all" see UN
General Assembly (2015)
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Table 3. Expected log predictive performance based on loo cross-validation for boys (upper
panel) and girls (lower panel)

Model ELPDdiff sediff ELPDloo seELP D LOO-IC
Boys

Model 4b 0.000 0.000 -63.071 6.054 126.143
Model 3 -2.093 4.184 -65.165 6.423 130.329
Model 2 -2.796 3.987 -65.868 8.395 131.735
Model 6b -5.499 6.142 -68.571 9.060 137.141
Model 1 -5.584 4.342 -68.655 7.775 137.311
Model 4a -8.640 5.666 -71.711 9.478 143.422
Model 6a -8.658 4.267 -71.730 7.975 143.459
Model 5 -8.711 3.921 -71.783 5.500 143.566

Girls
Model 4b 0.000 0.000 -61.113 5.926 122.226
Model 3 -0.955 4.423 -62.068 6.631 124.136
Model 2 -1.123 4.331 -62.236 8.239 124.472
Model 6b -1.638 5.914 -62.751 9.040 125.502
Model 6a -5.836 4.397 -66.949 7.458 133.897
Model 1 -6.154 4.805 -67.267 8.216 134.535
Model 4a -7.992 6.338 -69.105 9.638 138.211
Model 5 -8.795 3.777 -69.908 5.374 139.815

We find for the boys, that Model 4b (resources at the system level) has the lowest LOO-IC.

However, on the basis of the ELPDdiff relative to its standard error, Model 1 (size of the

education system), Model 2 (SDG goal 4 at the system level), Model 3 (SDG Goal 1 at the

system level), Model 4b (resources at the system level), and Model 6b (equity in education)

have very similar predictive performance. Regarding the girls, we also find that Model 4b

(resources at the system level) has the lowest LOO-IC value and that this model, along

with Models 3, 2, and 6b have similar predictive performance.

Stacking results

In Table (4) we present the stacking results for boys and girls. For each model, we present

the stacking weights under ELPDloo, PBMA, and PBMA+. In addition, we present the

KLDs under each of these stacking weights compared to the baseline latent basis model.

For comparison purposes, we also show the KLDs for the individual models in comparison

to the latent basis model.
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Table 4. Stacking weights and Kullback-Leibler divergence scores for each model separately
and for the ensemble.

Model ELPDloo PBMA PBMA+ KLD
Boys

Model 1 0.000 0.003 0.017 0.446
Model 2 0.038 0.051 0.142 0.390
Model 3 0.247 0.103 0.219 0.368
Model 4a 0.000 0.000 0.006 0.403
Model 4b 0.487 0.838 0.518 0.331
Model 5 0.000 0.000 0.004 0.356
Model 6a 0.000 0.000 0.001 0.437
Model 6b 0.227 0.003 0.092 0.363
Ensemble KLD 0.316 0.323 0.323

Girls
Model 1 0.000 0.001 0.006 0.415
Model 2 0.107 0.195 0.183 0.333
Model 3 0.334 0.175 0.223 0.327
Model 4a 0.000 0.000 0.006 0.358
Model 4b 0.058 0.501 0.274 0.300
Model 5 0.000 0.000 0.001 0.340
Model 6a 0.000 0.002 0.005 0.354
Model 6b 0.500 0.124 0.301 0.303
Ensemble KLD 0.279 0.274 0.284

We observe that the KLD scores for each of the weighting methods are uniformly lower

than any of the KLDs for the individual models, suggesting that better predictive skill is

obtained by using the stacking weights in comparison to any of the member models,

including the model with the highest stacking weight. Among the different stacking

weights, we find that the KLD associated with the ELPDloo weight is the lowest for the

boys, while the PBMA weight is the lowest for the girls but not by very much.

To gain further insight into stacking, Figure 2 shows the predictive distributions of

estimates of the pace of progress across the individual models and the different stacking

weights for boys and girls. It appears that the predictive distribution from the ensemble

based on ELPDloo is relatively similar to the distributions from the ensemble member

models, and that the baseline distribution exhibits greater density at the lower tail of the
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distribution than what is captured by the stacked distribution or the model members. We

discuss the implications of Figure 2 in the Summary and Discussion section.

Prediction results

In the final step of our workflow we develop predictive plots for mathematical competency.

Specifically, with the estimates of the pace of progress based on the ELPDloo stacking

weight in hand, we plot the empirical trajectory of mathematics proficiency scores from

2009 to 2022, and then forecast one period out to 2025 - the next PISA cycle. In addition,

we show the trajectories based on the posterior estimates of the pace of progress for each

ensemble model member. These plots are shown for boys and girls in Figure (3) where we

observe that for the boys and the girls, each model predicts a steady decline in mathematics

proficiency as measured in PISA. The dark line represents the ensemble prediction of the

pace of progress based on the stacking of the linear latent basis model M1. We notice a

clustering of models around the ensemble prediction, and this suggests that these models

could, individually demonstrate good predictive skill. Nevertheless, from a predictive point

of view, the ensemble prediction would, in principle, demonstrate the best predictive skill.

Summary and Discussion

The purpose of this paper was to demonstrate an approach to combining predictions of the

pace of progress from a set of growth curve models. In line with a long tradition of

multi-model inference, we argued that combining predictions from multiple models into an

ensemble prediction yields overall better predictive skill than what could be achieved from

the selection of a single model.

For this paper, we presented a workflow where the first step was to examine predictive skill

resulting from relatively minor changes in a growth curve model without adding predictors.

We argued that this was similar, though not identical to, single-model ensemble methods

found in weather forecasting. In our particular example, we did not find any important

differences in the predictive performance of the three changes to the growth models. Had

we found important differences, it would have been advisable to use stacking methods to
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create an ensemble prediction. Not having to create the ensemble, we decided to obtain

Bayesian estimates of country-level pace of progress in mathematics proficiency from a

latent basis model that allowed for some non-linearity due to the impact of COVID-19.

For the next step of our workflow, we specified a number of different models for the pace of

progress based on a collection and merging of data sources containing country-level

indicators of education. Six models were specified, and again this phase of our workflow is

similar, though not identical to, multi-model ensemble prediction, also found in the

weather forecasting domain. As mentioned earlier, we did not judge the predictive quality

of the individual models or the ensemble based on models for the starting point. We felt it

was more important to stack models for the pace of progress, and it remains a future area

of research on how to combine decisions based on related parameters of interest. That said,

our results showed that although the boys started off in 2009 with higher mathematics

proficiency scores on average across the countries, they have been declining at a noticeably

faster rate than girls, which we also observed from the growth rates in Table (2).

Of course, gender inequity in the decline in mathematics performance as seen in this paper,

is unacceptable under any circumstances, but it should also be noted that in real terms,

these declines are not very large, resulting, on average, in about two score points every

three years. Nevertheless, we argue that the methodologies and workflow provided in this

paper could be informative to national educational systems as they consider policies to

reverse these trends. We hasten to add, however, that although this paper provides a

promising approach to policy-relevant prediction in longitudinal settings, where obtaining

optimal estimates of the pace of progress is the focus, in no way should the results of this

specific study be interpreted as informing specific policy decisions.

Although we found Bayesian stacking to provide better predictive performance than any

single model in the ensemble, there are open issues with the Bayesian stacking that set the

stage for future research. First, the performance of Bayesian stacking is, of course, highly

dependent on the set of the member models to be ensembled. We believe that the eight
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categories of models that we specified are defensible in terms of our review of the extant

literature on indicators of global education systems, but naturally other specifications are

possible, and we can’t even be certain we have captured functional forms correctly.

Nevertheless, the tools available for assessing the quality of predictive models allow for

alternative models to be specified and compared in terms of their predictive performance.

Second, even with well developed ensemble members, Bayesian stacking is argued to work

well when models are as distinct as possible (Breiman, 1996; Clarke, 2003). However, as

pointed out by Yao et al. (2021), model distinctiveness is an ideal and there is presently

not much guidance on how to quantify distinctiveness among models, or any existing

knowledge as to how serious a problem this might be for predictive performance. That

said, Figure 2 could provide useful information for assessing the capacity of the ensemble

member models to capture broad features of the empirical pace of progress. Specifically,

Figure 2 showed that the predictive distributions from the individual models did not seem

to capture the lower tail of the baseline empirical pace of progress and this could indicate

that other model specifications that capture flatter growth rates should be specified and

included in the stack. Using a plot such as Figure 2 to assess the extent to which ensemble

member distributions cover the range of possible values of the distribution is beyond the

scope of this study but should constitute future research.

Finally, a third area for future research in the context of Bayesian stacking concerns

missing data. With regard to this paper, we originally considered taking the difference in

the predictors from 2022 to 2009 as a measure of their stability over time. However, two

important problems emerged. First, for many countries, data on important indicators were

simply not reported by the countries. Second, for those that were reported, many were not

measured at each time point coincident with the cycles of PISA used in this study (2009 -

2022). As such, we felt that there were too many missing data points on a number of

important indicators and too few countries to begin with to feel comfortable using multiple

imputation methods. Thus, we only examined predictors measured in 2009 under the
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assumption that these predictors have been relatively stable over time. An inspection of

some basic descriptive statistics suggests evidence of stability in many, but not all of the

predictors. For missing data in 2009, one predictive mean matching imputation

(van Buuren & Groothuis-Oudshoorn, 2011) was used.

We recognize that it is better to analyze many (e.g. >20) imputed data sets. One approach

to analyzing multiply imputed data sets in a Bayesian analysis was proposed by Zhou and

Reiter (2010) who recommended analyzing each imputed data set separately and then

mixing and summarizing the posterior draws. They find this approach to yield less biased

parameter estimates than averaging the parameter estimates. Combining the approach

suggested by Zhou and Reiter (2010) along with Bayesian stacking was felt to be beyond

the scope of this paper, but it does offer an interesting area for future research.

Nevertheless, we recognize that our results could change if we had made other decisions

regarding missing data.

To conclude, we recognize that the domain of weather forecasting has certain advantages

compared to monitoring trends in educational outcomes. In particular, the non-linear

dynamics of weather, as well as the near-continuous collection of data, provide rich

information on which to build and stack predictions from complex models. Indeed, as

noted by the World Climate Service, modern weather ensemble forecasts have been known

to have between 12 and 51 model members (Dutton, 2021). Moreover, weather forecasting

models are flexible enough to handle exogenous shocks to weather systems, such as the

2024 Icelandic volcano eruption. In the case of monitoring trends in educational outcomes,

as we have seen, often simple linear models will suffice, and theory as to why trends in

proficiency outcomes have been, in our example, declining for many countries, are not well

developed. Still, the methods we are proposing are also flexible enough to handle

exogenous shocks to the educational system, such as the disruption to schooling caused by

the 2019 global pandemic. It would be interesting to examine whether the workflow that

we propose in this paper would be applicable to other education targets or even targets
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associated with different SDGs.

An additional contribution of this paper was the demonstration of how ILSAs generally,

and PISA in particular, can be leveraged to provide information relevant to tracking

progress to the educational sustainable development targets. We believe that this

contribution is important because PISA, in particular, has been used by organizations such

as the World Bank to monitor and forecast the global impact of the pandemic on

educational trends (Azevedo, Hasan, Goldemberg, Iqbal, & Geven, 2020). These endeavors

have contributed greatly to our understanding of the impact of the pandemic on schooling.

This paper adds to the growing literature on monitoring and forecasting educational

trends, as well as exogenous shocks to those trends, by combining models that are designed

for estimating rates of change, along with Bayesian approaches to optimizing prediction,

which we maintain can provide important insights into country-level progress in education.
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Figure 1
Trend lines for PISA mathematics proficiency from 2009 to 2022. The red line is for the
girls, the blue line is for boys, and the horizontal black line is the cutoff for PISA level-2
minimum proficiency. Note that Chinese-Taipei is shown here but was removed from the
stacking analysis due to a large amount of missing data on relevant predictors.
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Figure 2
Predictive densities of the pace of progress across different stacking weights and different
models for boys and girls.
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Figure 3
Within-sample and one-cycle ahead predictions for each ensemble member and for the
stacked prediction based on ELPDloo for boys’ and girls’ performance on the PISA
mathematics assessment.
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Appendix A

Variable names, indicator category, and model number,

for multi-model ensemble membersa

Variable name Indicator category Model

% adolescents out of school Size of education system M1

Number of students - Primary to post-secondary non-tertiary Size of education system M1

Number of students - Tertiary Size of education system M1

Children out of school (% of primary school age) SDG goal 4 on system level M2

Gross enrolment ratio - primary - both sexes (%) SDG goal 4 on system level M2

Gross enrolment ratio - secondary - both sexes (%) SDG goal 4 on system level M2

Official entrance age to lower secondary education (years) SDG goal 4 on system level M2

Official entrance age to pre-primary education (years) SDG goal 4 on system level M2

Official entrance age to primary education (years) SDG goal 4 on system level M2

GDP SDG goal 1 on system level M3

Gender wage gap at medianb SDG goal 1 on system level M3

Poverty rate from age 0 − 17c SDG goal 1 on system level M3

Annual employment of females as % of employment SDG goal 1 on system level M3

Labour force females Annual SDG goal 1 on system level M3

Teaching hours - Lower Secondary Resources on education system level M4a

Teaching hours - Primary Resources on education system level M4a

% GDP expenditure on pre-primary education Resources on education system level M4a

% GDP expenditure expenditure on primary education Resources on education system level M4a

% GDP expenditure on secondary education Resources on education system level M4a

Private spending on education Resources on education system level M4a

Index school size Resources on education system level M4a

Funding government Resources on education system level M4a
a Sources: OECD, UNESCO, and the World Bank.
b Measured in 2010.
c Measured in 2011.
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Appendix A (Cont’d)a

Variable name Indicator category Model

% Rural population Resources on education system level M4b

Teaching hours - Early childhood education Resources on education system level M4b

Teaching hours - Upper Secondary Resources on education system level M4b

Teaching staff compensation pre-primary public (%) Resources on education system level M4b

Teaching staff compensation primary public (%) Resources on education system level M4b

Teaching staff compensation secondary public (%) Resources on education system level M4b

Percentage of teachers in pre-primary education who are female (%) Instructional quality on school level M5

Percentage of teachers in primary education who are female (%) Instructional quality on school level M5

Percentage of teachers in secondary education who are female (%) Instructional quality on school level M5

Part time teach in total 2009 Instructional quality on school level M5

Trained teachers in primary education (% of total teachers) Instructional quality on school level M5

Trained teachers in secondary education (% of total teachers) Instructional quality on school level M5

Index minutes per week in mathematics courses Instructional quality on school level M5

Number class periods in math Instructional quality on school level M5

Index use of ICT at school in general Instructional quality on school level M5

Lower secondary school starting age (years) Equity in education M6a

Primary school starting age (years) Equity in education M6a

Progression to secondary school (%) Equity in education M6a

% Repetition rate in lower secondary - both sexes (%) Equity in education M6a

Repetition rate in primary education (all grades) - both sexes (%) Equity in education M6a

Survival rate to the last grade of primary education - both sexes (%) Equity in education M6a

Index highest occupational status of parents Equity in education M6b

Index home educational resources Equity in education M6b

Index home possessions Equity in education M6b

Index ICT - resources Equity in education M6b

Index ICT use outside of school for leisure Equity in education M6b

Index ICT use outside of school for schoolwork Equity in education M6b
a Sources: OECD, UNESCO, and the World Bank.
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