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A b s t r a c t . The idea behind the use of ensemble averaging and the fi-
nite magnetic energy method of Van Geffen and Hoyng (1992) is briefly 
discussed. Applying this method to the solar dynamo shows tha t the tur-
bulence — an essential ingredient of traditional mean field dynamo theory 
— poses grave problems: the turbulence makes the magnetic field so un-
stable that it becomes impossible to recognize any period. 

1. Introduction 

The Sun's large-scale magnetic field shows a cyclic behaviour with a 
period of about 22 years. The origin of this magnetic cycle is not well 
known. The principal processes involved are turbulent convection 
in a spherical shell (called the convection zone) directly underneath 
the solar surface and differential rotation in that shell. Both these 
velocity fields drag the magnetic field along: they stretch, twist and 
spread the field lines. The combination of these processes results in 
what is called the solar αΩ-dynamo. 

Models of large-scale fields Β usually employ the so-called dy-
namo equation for the mean magnetic field < B >. Traditionally it 
is assumed that < B > is marginally stable. Such solutions, however, 
face two problems: 

1. The solution is strictly periodic, which means that the dynamo 
has an infinite phase memory, even though the underlying mecha-
nisms are of a stochastic nature (Hoyng, 1987; 1988). This means 
that we can expect at best quasi-periodic solutions, which is also 
what the solar dynamo exhibits: successive cycles vary both in 
length and in strength. 

2. The mean magnetic energy < B B > appears to grow without 
bounds, which implies that the field Β itself does not remain 
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finite (Parker, 1979, Sect. 17.6), and this is physically unaccept-
able. 

The omission of a non-linear feedback of the magnetic field on the 
fluid motions is not the main reason for these two problems (though 
non-linearities are ultimately needed to determine the strength of 
the magnetic field, but that is a separate problem). Instead, they are 
consequences of an improper treatment of the effects of fluctuations 
in the turbulence. The origin of this problem is the following. The 
traditionally used averaging procedures, indicated by < · > , do not 
satisfy the Reynolds rules (see e.g. Krause and Rädler, 1980, Ch. 2) 
exactly and/or results in fluctuating terms. To account for this an 
extra term — with the nature of a random forcing term — appears 
in the dynamo equation. Most authors assume that this extra term 
may be ignored, but there is no manageable expression for the random 
forcing term to check whether it can indeed be ignored (Hoyng, 1978). 

If one applies ensemble averaging the Reynolds rules are fulfilled 
exactly and no terms are omitted in the dynamo equation, so that 
the effects of the (stochastic) fluctuations are properly accounted for. 
The ensemble is to be taken literally: an infinite amount of copy 
systems, each one with a different realization of the turbulence. Un-
fortunately, ensemble averaging means that the mean field < Β > 
cannot be identified with an observable large-scale field in any of the 
copy systems; the magnetic field S in a given ensemble member must 
therefore be described by other means (Hoyng, 1988). 

2. The finite magnetic energy method 

With ensemble averaging as a starting point, the finite magnetic en-
ergy method is developed to describe the effects of fluctuations in the 
turbulence properly with a linear theory. The idea behind the finite 
magnetic energy method is that the field Β in some ensemble mem-
ber remains finite if and only if the mean magnetic energy < B B > is 
finite. In linear mean-field theory, namely, only exponential growth 
or decay is possible. This means that if < B B > goes to zero, then so 
does JB, contrary to the assumption that a dynamo is present. And if 
< B B > increases, the magnetic energy increases indefinitely, which 
is unphysica.l. Therefore < Β Β > must be marginally stable. The 
combination of parameters that renders < B B > marginally stable is 
then used to solve the dynamo equation. We then find that the mean 
field < B > is damped. The damping time of < B > is interpreted 
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as the auto-correlation time of J3, i.e. it is a measure of the period 
stability of the dynamo. 

The finite magnetic energy method is described and applied 
to realistic models of the solar dynamo by Van Geffen and Hoyng 
(1992; Paper I) and Van Geffen ( 1992a,b; Papers II and III, respec-
tively). This contributed paper summarizes the results obtained so 
far. The method yields an energy balance for the mean energy density 
< 5 2 > / 8 π , in which appear the relative rates of production of mean 
magnetic energy by vorticity and by differential rotation, and the en-
ergy that escapes from the dynamo through the surface. Helicity does 
not produce mean energy; it only affects the distribution of energy 
over the various components of <BB>. The energy is transported 
to the surface by turbulent diffusion. Resistivity can be neglected in 
the solar dynamo (Paper I). The mean energy of the dynamo is only 
marginally stable for a fairly large value of the turbulent diffusion 
coefficient β (β = 1014 cm2 s - 1 ) in the bulk of the convection zone 
(Paper I). Since the method is linear, it does not provide the absolute 
magnitude of the magnetic field. But a tentative identification of the 
escaping energy flux with the flux needed to heat the corona yields an 
estimate of the r.m.s. field strengths at which the dynamo operates. 

3. A solar convection zone dynamo 

In Paper II the finite magnetic energy method is applied to a dynamo 
operating throughout the entire solar convection zone, using a con-
stant turbulent diffusion coefficient β. The mean magnetic energy 
of such a convection zone dynamo is mainly generated by vorticity 
— i.e. by random field line stretching at small spatial scales — since 
it turns out that differential rotation produces only 2 to 10% of the 
total mean energy flux. 

The r.m.s. field strength at which the dynamo operates is about 
9 G at the surface and about 140 G at the base of the convection 
zone — see Fig. la. These values are too low to explain the observed 
field strength and orientation of active regions on the solar surface. 
Furthermore, it appears that the field itself is rapidly fluctuating: 
the damping time of the mean field < B > is only about 14 days, a 
fraction of the cycle period of 22 years. Hence, a convection zone 
dynamo shows no clear period and no well-defined large-scale field: 
it is merely a rapidly fluctuating small-scale field dynamo, unable to 
sustain the solar cycle. 
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Figure 1 
The r.m.s. field strength as a 
function of radius at the pole 
(plus signs), at the equator 
(solid line) and at 40° latitude 
(asterisks), for a ) a convec-
tion zone dynamo, and for b ) 
a localized dynamo with a tur-
bulent diffusion coefficient β 
which is at the base a factor of 
100 smaller than in the bulk of 
the convection zone. [After Van 
Geffen (1992b).] 

4. A localized solar dynamo 

It has been suggested that the magnetic field strengths required to 
explain the observed fluxes in active regions may be generated by a 
dynamo operating mainly in a thin boundary layer at the interface 
between the radiative core and the convection zone. 

In Paper III the finite magnetic energy method is applied to such 
a localized solar dynamo. This is achieved by making the turbulent 
diffusion coefficient β decrease near the base of the convection zone. 
The results are as follows. Differential rotation produces now rel-
atively more mean energy than in the convection dynamo, namely 
about 20%. As expected, the magnetic field is concentrated towards 
the base and the r.m.s. field strength increases there, whereas the 
r.m.s. surface value is unaffected — see Fig. lb. But the r.m.s. field 
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strength at the base of the convection zone has increased only to 230 
to 450 G, which is still too low by a factor of 10 to 100 to explain 
the observed active region-phenomena. Furthermore, the damping 
time of the mean field is still very small: no more than about 20 
days. Hence, the localized dynamo modelled in Paper III is also an 
aperiodic, small-scale field dynamo, incapable of sustaining the solar 
cycle. 

5. Conclusion 

From the results of the finite magnetic energy method, briefly sum-
marized above, it appears that the solar cycle cannot be explained by 
conventional mean-field αΩ-dynamo models, regardless whether the 
dynamo processes mainly operate throughout the convection zone or 
in a boundary layer. The major difficulty with such αΩ-dynamos is 
that a stochastic mechanism (helical convection) is invoked to pro-
duce a periodic magnetic field. But the convection makes the field 
at the same time so unstable that fluctuations make it impossible to 
recognize any period. An explanation of the solar cycle may there-
fore require alternative theories in which traditional mean field αΩ-
mechanisms play only a minor role, or in which differential rotation 
and helicity are spatially separated. 
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