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On Zero-divisors in Group Rings of Groups
with Torsion

S. V. Ivanov and Roman Mikhailov

Abstract. Nontrivial pairs of zero-divisors in group rings are introduced and discussed. A problem on
the existence of nontrivial pairs of zero-divisors in group rings of free Burnside groups of odd exponent
n > 1 is solved in the affirmative. Nontrivial pairs of zero-divisors are also found in group rings of
free products of groups with torsion.

1 Introduction

Let G be a group and Z[G] denote the group ring of G over the integers. If h € Gis an
element of finite order g > 1 and X, Y € Z[G], then we have the following equalities
in Z[G]:

X(1—h)-(Q+h+---+h"HY =0,
X(A+h+---+h™ .- (1-hY =0.

Hence, X(1—h) and (1+h+---+h1~ )Y, X(1+h+- - -+h?" 1) and (1 —h)Y areleft and
right zero-divisors of Z[G] (unless one of them is 0 itself), which we call trivial pairs
of zero-divisors associated with an element 4 € G of finite order g > 1. Equivalently,
A, B € Z[G], with AB = 0, A, B # 0, is a trivial pair of zero-divisors in Z[G] if there
are X,Y € Z[G] and h € G of finite order q > 1 such that either A = X(1 — h) and
B=(1+h+---+hHYYorA=X1+h+---+hTHand B=(1-h)Y.

An element A € Z[G] is called a nontrivial left (right) zero-divisor if A is a left
(right, resp.) zero-divisor and for every B € 7Z[G] such that B # 0, AB = 0, the pair
A, Bis not a trivial pair of zero-divisors.

The notorious Kaplansky conjecture on zero-divisors claims that, for any torsion-
free group G, its integral group ring Z[G] (or, more generally, its group algebra F[G]
over a field IF) contains no zero-divisors. In this note, we are concerned with a more
modest problem on the existence of zero-divisors in group rings of infinite groups
with torsion that would be structured essentially differently from the above examples
of trivial pairs of zero-divisors. We remark in passing that every pair of zero-divisors
in Z[G] is trivial whenever G is cyclic (or locally cyclic).
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Note that if G is a finite group, then every nonzero element X in the aug-
mentation ideal of Z[G] is a left (right) zero-divisor, because the linear operator
Lx: Q[G] — Q[G], given by multiplication Y — XY (Y — YX, resp.), has a non-
trivial kernel as follows from dim Lx(Q [G]) < dim Q[G]. Hence, 2 — g, — &, where
21,8 € G, is a left (right) zero-divisor of Z[G] unless g = g = 1. On the other
hand, the element 2 — g; — & € Z[G] is not a trivial left (right) zero-divisor unless
g1, & generate a cyclic subgroup of G. Hence, for a finite group G, the group ring Z[G]
of G contains no nontrivial zero-divisors if and only if G is cyclic. More generally, if
G is a group with a noncyclic finite subgroup H, then the element 2 —hy —h, € Z[G],
where hy, h, € H, is a nontrivial zero-divisor of Z[G] unless h;, h, generate a cyclic
subgroup of H (for details, see the proof of Theorem 1.2).

However, if G is an infinite torsion (or periodic) group all of whose finite sub-
groups are cyclic, then the existence of nontrivial pairs of zero-divisors in Z[G] is not
clear. For instance, let B(m, n) be the free Burnside group of rank m and exponent #;
that is, B(m, n) is the quotient F,,, /F”, of a free group F,, of rank m. It is known [8,13]
thatif m > 2 and n > 1 is odd, then every noncyclic subgroup of B(m, ) contains a
subgroup isomorphic to the free Burnside group B(co, ) of countably infinite rank;
in particular, every finite subgroup of B(m, n) is cyclic. Note that this situation is
dramatically different for even n >> 1; see [6].

In this regard and because of other properties of B(m, 1), analogous to properties
of absolutely free groups (see [13]), the first author asked the following question [10,
Problem 11.36d]: Suppose m > 2 and odd n >> 1. Is it true that every pair of zero-
divisors in Z[B(m, n)] is trivial, i.e., if AB = 0 in Z[B(m, n)], then A = XC, B = DY,
where X,Y, C,D € Z[B(m,n)] such that CD = 0 and the set supp(C) U supp(D) is
contained in a cyclic subgroup of B(m, n)?

In this paper we will give a negative answer to this question by constructing a
nontrivial pair of zero-divisors in Z[B(m, n)] as follows.

Theorem 1.1 Let B(m, n) be the free Burnside group of rank m > 2 and odd exponent
n > 1, and let ay, a, be free generators of B(m, n). Denote ¢ := alazafla;1 and let

A=l+c+--+" N — ayma ),
B:=(1—a)(1 +a2+-~-+a271).
Then AB = 0in Z[B(m, n)], and A, B is a nontrivial pair of zero-divisors in Z[B(m, n)].

It seems of interest to look at other classes of groups with torsion all of whose finite
subgroups are cyclic and ask a similar question on the existence of nontrivial pairs of
zero-divisors in their group rings. From this viewpoint, we consider free products
of cyclic groups, all of whose finite subgroups are cyclic by the Kurosh subgroup
theorem [11], and show the existence of nontrivial pairs of zero-divisors in their
group rings. More generally, we will prove the following theorem.

Theorem 1.2 Let a group G contain a subgroup isomorphic either to a finite noncyclic
group or to the free product Cy x C,, where C,, denotes a cyclic group of order n (perhaps,
n = o00), and 1 < min(q,r) < oco. Then the integer group ring 7[G] of G has a
nontrivial pair of zero-divisors.
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On the one hand, in view of Theorems 1.1 and 1.2, one might wonder if there ex-
ists a nonlocally cyclic group G with torsion without nontrivial pairs of zero-divisors
in Z[G]; in particular, whether there is a free Burnside group B(m, n), where m,n >
1, with this property. Note that, for every even n > 2 and m > 2, the free Burnside
group B(m, n) contains a dihedral subgroup, hence, by Theorem 1.2, Z[B(m, n)] does
have a nontrivial pair of zero-divisors.

On the other hand, our construction of nontrivial pairs of zero-divisors in
Z[Cy % C,], where 1 < g < oo, r € {2,00}, and C; = (a), is generated by a,
produces nontrivial pairs of zero-divisors of the form AB = 0, where A = (1 — a)U,
B = U'(X1,4a), and U is a unit of Z[C, * C,]. Thus, our nontrivial pairs of
zero-divisors in Z[C, * C,] are still rather restrictive and could be named primitive.

Generalizing the definition of a trivial pair of zero-divisors, we say that A,B €
Z[G], where A, B # 0, AB = 0, is a primitive pair of zero-divisors in Z[G] if there
exists a unit U of Z[G] such that A = XU, B = U~'Y, and X, Y is a trivial pair of
zero-divisors in Z[G]. One might conjecture that all pairs of zero-divisors in Z[G]
are primitive whenever G is a free product of cyclic groups. Results and techniques of
Cohn [1,2] (see also [3,4]) on units and zero-divisors in free products of rings could
be helpful in the investigation of this conjecture.

2 Three Lemmas

Lemma 2.1 Suppose that G is a group, h € G, H = (h), X € Z[G], and C € Z[H]
is not invertible in Z[G]. Then, for every g € G, the left coset gH of G by H is either
disjoint from supp(XC) or |gH N supp(XC)| > 2.

Proof Let X = Zf:lxiCi, where C; € Z[H| and x; € G, so that x;H # x;H
fori # j. Then XC = ZLI %;C;C and supp(XC) = U:;l x; supp(C;C) is a disjoint

union. Since C is not invertible in Z[H], | supp(C;C)| > 1, and the result follows. B

Recall that a subgroup K of a group G is called antinormal if, for every g € G, the
inequality gKg—!' N K # {1} implies that g € K.

Lemma 2.2 Suppose that G is a group, a,b € G, the elements b,c := aba~'b™"
have order n > 1, d := aba™!, the cyclic subgroups {(c), (ab’),i = 0,1...,n— 1, are
nontrivial, antinormal, and d & (c), c’d & {(ab') foralli,j € {0,1...,n— 1}. Then

equalities
(2.1) Q+c+---+7H —d) = XC,
(2.2) (1—a)1+b+---+b""Y) =Dy,

where X,Y € Z[G], C,D € Z[H], H is a cyclic subgroup of G, and CD = 0, are
impossible.

Proof Arguing on the contrary, assume that equalities (2.1) and (2.2) hold true.
Denote H = (h). Note that neither C nor D is invertible in Z[ H], because, otherwise,
CD = 0 would imply that one of C, D is 0, which contradicts one of (2.1) and (2.2)
and the assumptions a & (c), ¢ # 1.
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Hence, Lemma 2.1 applies to equality (2.1) and yields that the set
supp(XC) = {1,¢,...,c" ' d,cd,... " 'd}

can be partitioned into subsets of cardinality > 1 that are contained in distinct left
cosets gH, g € G.

Assume that ¢, ¢ € gH, where 0 < i} < iy < n — 1. Then ¢~ = h* £ 1 and,
by antinormality of (c), we have h = ¢’ for some i. Since d € supp(XC), it follows
from Lemma 2.1 that dh/ = dc'/ € supp(XC) with b/ # 1. Hence, either dc'/ = ¢’
or dci = ¢'awith ¢/ # 1. In either case, we have a contradiction to d & (c) and
antinormality of (c).

Now assume that ¢! d, ¢>d € gH, where 0 < i} < iy, < n — 1. Thend~'c"~2d =
h* # 1 and, by antinormality of (c), we have h = d~'c'd for some i. Since 1 €
supp(XC), it follows from Lemma 2.1 that h/ = d~'c¢'/d € supp(XC) with h/ #
1. Hence, either d~'ciid = ¢’ £ 1lord 'did = c'd. In either case, we have a
contradiction to antinormality of (c) and d & (c).

The contradictions obtained above prove that the foregoing partition of the
set supp(XC) consists of two element subsets so that one element belongs to
{1,¢c,...,c" '} and the other belongs to {d, cd, ..., c"~'d}. In particular, it follows
from1 € {l,c,...,c" '} that

(2.3) W= did £ 1

for some ki, i;.
Applying a “right-hand” version of Lemma 2.1 to the equality (2.2), we analo-
gously obtain that the set

supp(DY) = {1,b,...,b" " a,ab,...,ab" "'}

can be partitioned into subsets of cardinality > 1 which are contained in distinct
right cosets Hg, g € G.

Assume that b, b2 € Hg, where 0 < i} < iy < n— 1. Then b~ = We £ 1,
and, by antinormality of (b), we have h = b’ for some i. Since a € supp(DY),
it follows from the analog of Lemma 2.1 (in the “right-hand” version) that hia =
b'ia € supp(DY) with b/ # 1. Hence, either b'/a = b’ orblia = ab'’. In either case,
we have a contradiction to ¢ # 1 and antinormality of (b).

Now assume that ab’, ab”> € Hg, where 0 < i; < i, < n — 1. Then ab" ~247! =
Wk # 1, and, by antinormality of (b), we have h = ab'a~! for some i. Since 1 €
supp(DY), it follows from the analog of Lemma 2.1 that h/ = ab'/a~! € supp(DY)
with hJ # 1. Hence, either ab'ia~! = b'" # 1 or ab'ia~! = ab'’. In either case, we
have a contradiction to antinormality of (b) and ¢ # 1.

The contradictions obtained above prove that the foregoing partition of the
set supp(DY) consists of two element subsets so that one element belongs to
{1,b,...,b" "'} and the other belongs to {a, ab, . ..,ab""'}. In particular, it follows
from1 € {1,b,...,b" '} that

(2.4) B = ab® #£ 1
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for some k;, i,.

In view of equalities (2.3) and (2.4), we obtain c''dab™ = ab”c"'d. Since the
subgroup (ab) is antinormal, we conclude that ¢*d € (ab™). This, however, is
impossible by assumption, and Lemma 2.2 is proved. ]

Lemma 2.3 Supposea,b € G are elements of a group G such that the subgroup (a, b),
generated by a, b, is isomorphic to the free product (a) , * (b),, where (c); denotes a cyclic
group of order s generated by c (perhaps, s = 00), 1 < q < oo, r € {2,00}, and
(g,7) = (2,2) if r = 2. Then the elements

(2.5) A::(l—a)(1+(1—a)b<q a")),
i=1

s e (mama(E) (59

satisfy AB = 0 and form a nontrivial pair of zero-divisors in Z[G].

Proof Since

(1+(1—a)b(i:§:1ai)) -(1—(1—a)b(§:1ai>> — 1,

it follows that AB = (1 — a)(Z?:l a’) = 0and A, B # 0, hence A, B is a pair of
zero-divisors in Z[G]. We need to show that A, B is a nontrivial pair of zero-divisors.
Arguing on the contrary, assume that A, B is a trivial pair of zero-divisors in Z[G].
Then there is an element h € G of finite order s > 1 and X, Y € Z[G] such that either

(2.7) A=X1-h) and B:(ﬁjh")y
i=1

or

(2.8) A:X(fjh") and B= (1 —h)Y.

i=1

Let 0: Z|G] — 7 denote the augmentation homomorphism and H = (h),. It
follows from definitions (2.5) and (2.6) that 0(A) = 0 and o(B) = q. On the other
hand, it follows that if (2.7) are true, then 0(A) = 0 and if (2.8) hold, then o(B) = 0.
Hence, equalities (2.7) are true. Looking again at (2.5) and (2.6), we see that

(2.9) suppA = { 1,a,a'ba’ |i € {0,1},j € {0,1,...,9— 1}}.

By Lemma 2.1, supp A can be partitioned into subsets of cardinality > 1 that are
contained in distinct left cosets gH, ¢ € G. Since 1 € supp A, there is also an element
h' # 1 in supp A. Now we consider two cases: 7 = oo and (g, 7) = (2,2).

Suppose r = oo. Since for all i, j elements a’ba’ € supp A have infinite orders, it
follows that a = A for some £.
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Assume that (g, r) = (2,2). Then (2.9) turns into
suppA = {1,a, b, aba, ba, ab}.

Recall that supp A can be partitioned into some k subsets Sy, . .., Sk of cardinality
greater than 1 that are contained in distinct left cosets gH, ¢ € G. Hence, k < 3.
Note that if g, g, € {1, ba, ab} are distinct, then g 'g, has infinite order in the free
product (a), * (b),, whence g, 'g; & H and g, g, belong to different sets Sy, ..., Sk.
Therefore, k = 3.

Now we can verify that there is only one partition supp A = S; U S, U S5 such that
Si={L,ehS%={gu}S={g.%} 1€ S, ba € S,,ab € S;, and elements g,
g5 'g1, g5 ' g commute pairwise. This unique partition is the following: S; = {1, a},
S, = {b, ba}, S; = {ab,aba}. Hence, a = h'.

Thus in either case we have proved that a = h’ for some £. Then g = s and

2.10) zh _ (z ) (jgw) —(Tw) (£4).

Hence,
A(ghi) — X(1— h)(ghi) —o.

On the other hand, it follows from (2.10) that

A(5) ~A(Ee) (£9) - a-on( ) (E0)

k=1 j=0

=q(1— a)b(Zq: ak) ((i hj) =q(1— a)b<§:1hi> .

k=1 =0

Hence, (1 — a)b(z;1 k') = 0in Z[G], and, for every product bh', i = 1,...,s,
there is j such that bh' = abh/. This equality implies that b~'ab = h'~J, hence
a = h' commutes with b~'ab in the free product (a), * (b),. This is a contradiction,
which completes the proof. ]

3 Proofs of Theorems

Proof of Theorem 1.1 Let F,, = (b, b,,...,b,) be a free group of rank m with
free generators by, by, ..., b, and let B(m,n) = F,,/F" be a free m-generator Burn-
side group B(m, n) of exponent n, where F, is the (normal) subgroup generated by
all n-th powers of elements of F,,. Let aj,ay,...,a, be free generators of B(m, n),
where g; is the image of b;, i = 1,..., m, under the natural homomorphism F,, —
B(m,n) = F,,/F}.

Note that if G = (g1,£,) is generated by elements g1, &, and G has exponent n,
i, G" = {1}, then G is a homomorphic image of B(m, n) if m > 2. Also, there
is a nilpotent group G,, = (g1,£) of exponent n and class 2 in which elements
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g, 8] =998 'e " @ a8, i =0,...,n — 1, have order n. Therefore, elements
lay,a;] := alazal_lagl, ay, ayab, i = 0,...,n— 1, have order n in B(m, n) it m > 2.
In addition, since gig2g; ' ¢ ([g1, 1) and [g1, @V q108 ' & (@1g) in Gy, for all
i,j € {0,...,n — 1}, it follows that alazafl & (la1,a,]) and [al,az]jalazafl ¢
(a1ay) in B(m,n) foralli, j € {0,...,n— 1}.

Recall that if n > 1is odd (e.g., n > 10'° as in [12]), then every maximal cyclic
subgroup of B(m, n) is antinormal in B(m, n) (this is actually shown in the proof of
[13, Theorem 19.4]; similar arguments can be found in [5,9]). Since cyclic subgroups
(la1,a2]), {@1ab), i = 0,...,n — 1, are of order n and B(m, n) has exponent n, it
follows that these subgroups ([a;, a,]), {a1a}),i = 0,...,n — 1, are maximal cyclic
and hence are antinormal. Now we can see that all the conditions of Lemma 2.2
are satisfied for elements a = a;, b = a,, ¢ = [a1,a,], d = alazal_l of B(m, n).
Hence, Lemma 2.2 applies and yields that equalities (2.1) and (2.2) are impossible.
Furthermore, it is easy to see that (1 + ¢+ --- + (1 — d) # 0, because cd #1,
i=0,...,n—1,and (1—a)(1+b+---+b""') # 0,becauseab’ # 1, j =0,...,n—1.

Finally, we need to show that

A+ct+-—-+"H1-dA—-a)1+b+---+b" 1) =0.

Note that d = cb and da = ab, hence, assuming that iy, ji, ..., 14, j4 are arbitrary
integers that satisfy 0 < iy, ji,...,1s, j4 < n— 1, we have

A+c+-+"HA -1 —a)Q+b+---+b"")

= (Zcil - Zcizd— Zci3a+Zci4da) (Z bjl)

1

= (Z dr— Z c2eb — Z Pa+ Z ci“ab) (Z bj‘)
iy [5) 13 1y J
=S M — z:c"zﬂbjfr1 — Y rab® + Y tabit! = 0.

RN i2,j2 13,]3 4 ]4

Thus (1+c+---+c""1)(1—d)and (1 —a)(1+b+---+b""") is a pair of zero-divisors
in Z[B(m, n)], which is not trivial by Lemma 2.2, and Theorem 1.1 is proved. [ |

The idea of the above construction of a nontrivial pair of zero-divisors in
Z[B(m, n)] could be associated with Fox derivatives (which is somewhat analogous
to [7], however, no mention of Fox derivatives is made in [7]) and may be described
as follows. As above, let F, = F(b;, b,) be a free group with free generators by, b,.
For w € F,, consider Fox derivatives g—;v € Z|F,], i = 1,2. Then

ow ow
(3.1) W_l_%(bl_l)+%(b2_l)

in Z[F,]. Letting w := [by, b,]", we observe that

by, bp]" i i\ Olb,ba]
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Hence,

d[b1, b, ] - _
ol (; (b1 b2)7) (1= bibaby),

O[by, by]"
0b,

Therefore, taking the image of the equality (3.1) in Z[B(2, n)], we obtain

(g (b1, 6217 ) (b1 = babobi b5,

n—1

0=[a;,a;]"— 1= (Z [al,az]j) (1 —ayaza; (a; — 1)

j=0
n—1 . . .
+(Slan@l) @ - aasa;a; ) e, — 1),
j=0
Now multiplication on the right by """ 0 al, yields

(Z_:O[ahaz )(1*ﬂ1€l2al )01*1)(2_: )
= =0

and this is what we have in Theorem 1.1.

Analogously, let a group G = (ay, a,) be generated by a;, ay, let aj = 1in G, let
w(by,by) € F(by, b,) be a word with the property that w(a;,a;) = 1in G, and let
0: Z[F(by,b,)] — Z[G], where 8(b;) = a;,1 = 1, 2, denote the natural epimorphism.
As above, we can obtain

Ow(by, by) N\ _ o Owlby, by) =
(= (bl_l)(zb)) (=, )(“1_1)(§)“2> =0
This equation can be used for constructing other potentially nontrivial pairs of zero-

divisors in Z[G] (which, however, does not work in case when G is a free product of
the form (a;) * (ay)).

Proof of Theorem 1.2 Suppose G is a group and G contains a subgroup H isomor-
phic either to a finite noncyclic group or to the free product C, * C, of cyclic groups
Cy, Cy, where 1 < min(g, r) < oo.

First assume that H is a finite noncyclic group. Then there are h;, h, € H such
that the subgroup (h;, h,), generated by h;, hy, is not cyclic. Since 2 — h; — hy is a
left (right) zero-divisor in Z[H], 2 — hy — h; is also a left (right, resp.) zero-divisor in
Z[G]. If2 — hy — h; is a trivial left (right, resp.) zero-divisor in Z[G], then it follows
from Lemma 2.1 that elements 1, h;, h, belong to the same coset gH, (Hog, resp.),
where Hy = (hy) is cyclic. But then ¢ € Hy and hy, h, € Hy, whence the subgroup
(h1, hy) is cyclic. This contradiction completes the proof in the case where H is finite
noncyclic.

Suppose C, * C; is a subgroup of G, 1 < min(g,7) < oo. We may assume that
q is finite. Denote C; = (a), and C, = (b),. Note that the subgroup (a, babab) of
C,4*C, is isomorphic to the free product C;*Co, unless ¢ = r = 2. Therefore, we may
assume that G contains a subgroup isomorphic to Cys *C,s, where g’ = q > 11is finite
and either r’ = oo or ¢’ = r’ = 2. Now Theorem 1.2 follows from Lemma 2.3. H
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