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We study the asymptotic behaviour, as p → 1+, of the solutions of the following
inhomogeneous Robin boundary value problem:{

−Δpup = f in Ω,

|∇up|p−2∇up · ν + λ|up|p−2up = g on ∂Ω,
(P)

where Ω is a bounded domain in R
N with sufficiently smooth boundary, ν is its unit

outward normal vector and Δpv is the p-Laplacian operator with p > 1. The data
f ∈ LN,∞(Ω) (which denotes the Marcinkiewicz space) and λ, g are bounded
functions defined on ∂Ω with λ � 0. We find the threshold below which the family of
p–solutions goes to 0 and above which this family blows up. As a second interest we
deal with the 1-Laplacian problem formally arising by taking p → 1+ in (P).
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1. Introduction

The aim of this paper is twofold. We first deal with the asymptotic behaviour of
solutions to inhomogeneous Robin boundary value problems with p-Laplacian as
principal operator and then we analyse existence of solution for the limit problem as
p→ 1+. To be more precise, let Ω be an open bounded subset of R

N (N � 2) with
smooth boundary and let ν denote its unit outward normal vector. We consider
problems {

−Δpup = f in Ω,
|∇up|p−2∇up · ν + λ|up|p−2up = g on ∂Ω,

(1.1)

where Δpv = div(|∇v|p−2∇v) is the p-Laplacian operator with p > 1, f belongs
to the Marcinkiewicz space LN,∞(Ω) and λ, g are bounded functions defined on
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∂Ω with λ � 0 not identically null. In this paper, we will study the behaviour of
solutions up as p→ 1+ and, when this family converges to an almost everywhere
finite function u, we will check that u is a solution to the limit problem.

Let us observe that problem (1.1) formally turns into a Dirichlet problem once
that λ = ∞, or into a Neumann problem if λ ≡ 0. In these extremal cases, the
study of the asymptotic behaviour with respect to p→ 1+ in problems driven by
the p–Laplacian is nowadays classical and widely studied.

1.1. Asymptotic behaviour

Without the purpose of being exhaustive, we present some of the results which
mostly motivated our work.

The Dirichlet case presents a huge literature; in [9, 14] the authors observe that
solutions to (1.1), obtained as a minimum of a suitable functional, converge to a
minimum of the functional written for p = 1. Since W 1,1(Ω) is not reflexive, the
limit is only expected to belong to BV (Ω). It is shown in [14] that, when f ≡ 1,
the family up goes to 0 or to ∞, depending on the domain. This degeneration/blow
up phenomenon was extended in [9]. It is shown that if ‖f‖N,∞ < S̃1 then up → 0
almost everywhere in Ω as p→ 1+ where S̃1 is the best constant in the Sobolev
embedding from W 1,1(Ω) into the Lorentz space L

N
N−1 , 1(Ω) (see [2]). In the critical

case ‖f‖N,∞ = S̃1 the solutions up converge almost everywhere to a function u

as p→ 1+ which is, in general, not null. Finally, if ‖f‖N,∞ > S̃1, examples of up

blowing up as p→ 1+ on a subset of Ω of positive measure are made explicit.
This result has been specified in [21] in the following sense: if ‖f‖W−1,∞(Ω) < 1

then up degenerates to zero, if ‖f‖W−1,∞(Ω) = 1 then up converges to an almost
everywhere finite function and, finally, if ‖f‖W−1,∞(Ω) > 1 then up blows up as
p→ 1+.

For the Neumann case, we mention [20]; here, in case f ≡ 0 and under the com-
patibility condition given by

∫
∂Ω
g dHN−1 = 0, the authors show once again the

degeneration/blow up phenomenon. If a suitable norm of g is small enough, then
up converges almost everywhere in Ω to a function which is almost everywhere
finite. By the way, if the same norm is large enough, up converges to a function
which is infinite on a set of positive measure.

Therefore, it should be expected that the solutions up to (1.1) experience the same
phenomena described above. Then a natural question is determining the threshold
which describes it. As we will see, a key role is played by the following quantity

M(f, g, λ) = sup
u∈W 1,1(Ω)\{0}

∫
Ω

fudx+
∫

∂Ω

gu dHN−1

∫
Ω

|∇u|dx+
∫

∂Ω

λ|u|dHN−1
,

which is finite once that f ∈ LN,∞(Ω) and g ∈ L∞(∂Ω). We point out that the
denominator defines a norm in W 1,1(Ω) which is equivalent to the usual one (see
[27, section 2.7]).

Using M(f, g, λ), our first result can be described as follows: if M � 1 then the
sequence up is bounded in BV (Ω) with respect to p and it converges to zero if
M < 1. Moreover, the result is optimal in the sense that if M > 1, then up blows
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Behaviour of solutions to p-Laplacian with Robin boundary conditions 107

up on a set of positive measure as p→ 1+ (see theorem 3.1 below). Let us also
mention that explicit examples show that when M = 1 the limit function is not
null in general (see § 5.2 below). This means that the asymptotic behaviour of up

is completely settled from M .
A further remark on this threshold M is in order. We stress that M depends on

both the volumetric datum f and the boundary datum g. As far as we know, it
is the first time that the phenomenon of degeneracy/blow up is studied when two
data occur. For a single datum an essential tool is the Hölder inequality. In our
setting this inequality does not lead to the desired value. So, we needed to extend
it in order to handle both data (for details we refer to the appendix).

1.2. Limit problem

After studying the asymptotic behaviour, we mean to study the 1-Laplace limit
problem. That is we deal with existence of a solution, intended suitably (see
definition 4.1 below), to the following problem⎧⎨

⎩
−Δ1u = f in Ω,
Du

|Du| · ν + λ sign u = g on ∂Ω,
(1.2)

which is formally the limit as p→ 1+ of (1.1). Here Δ1u := div( Du
|Du| ) is the

1-Laplacian operator.
It is worth highlighting that, among others, the 1-Laplace equations are strongly

related to image processing, torsion and mean curvature problems (see [3, 4, 7,
15, 26, 28, 29]). From the mathematical point of view, there is huge literature
concerning existence, uniqueness and regularity of solutions to problems involving
the 1-Laplace operator under Dirichlet boundary conditions; even the case λ = 0
has been dealt with but, unsurprisingly, the literature is more limited. The study
of this type of problems is a very active branch as shown by recent works such as
[1, 10, 17, 24, 25, 30].

Nevertheless, in all the papers cited above, a common denominator is that the
solutions belong, in general, only to the BV -space. This clearly plays a role in the
way the singular quotient |Du|−1Du needs to be intended both in Ω and on ∂Ω.
In [11] and [4] this difficulty is overcome for the first time by using a bounded
vector field z whose divergence is a function enjoying some regularity. Just have in
mind that this allows to define a distribution (z, Du) which couples one of these
bounded vector fields and the gradient of a BV –function (see [5] and [8], in § 2.3
below is briefly recalled). In other words this pairing, which is nothing more than
the scalar product if the involving terms are regular enough, is a way to give sense
to the singular quotient through a bounded vector field z satisfying ‖z‖∞ � 1 and
(z, Du) = |Du|, while the equation holds as −div z = f .

For a vector field z of this type it is also possible to define a weak normal trace
(denoted by [z, ν] below) which enters strongly in the definition of the bound-
ary condition. Indeed, another common feature for 1-Laplace equations is that the
boundary datum is not necessarily attained in the sense of traces. Just to give an
idea, in the homogeneous Dirichlet problem, a standard request is [z, ν] ∈ sign (−u)
on ∂Ω. On the contrary, the Neumann boundary condition holds pointwise as shown
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in [20]. In our framework, situated in between, we cannot expect the boundary
condition to hold. Nevertheless, it should be satisfied when λ tends to 0.

As far as we know, the only related paper involving the 1-Laplace operator and
a boundary condition of Robin’s type is [19]. The authors deal with f ≡ 0 jointly
with a boundary condition as

Du

|Du| · ν + λu = g

where λ is a positive constant and g ∈ L2(∂Ω). Note, however, that this condition
is slightly different from ours. More general data g can be handled in [19] owing to
the presence of the absorption term λu. It also provides a regularizing effect on the
solution which is proved to always lie in L2(∂Ω); this is something that in general
we will not expect for solutions to (1.2).

Thus, we deal with existence of a solution to (1.2) under the assumptions
f ∈ LN,∞(Ω), g ∈ L∞(∂Ω) and 0 � λ ∈ L∞(∂Ω) (see theorem 4.4). Working by
approximation through problems (1.1), the result is achieved by requiring that
M � 1. It is worth mentioning that the presence of λ ∈ L∞(∂Ω) (see also § 5.1 for
the extension to the merely integrable case) produces extra difficulties with respect
to the Dirichlet and Neumann cases. Indeed, for the equation in Ω a lower semicon-
tinuity argument is needed (see lemma 4.9 below) which has also its own interest
besides problem (1.2). Even the boundary condition presents some challenges.
Indeed, in order to characterize the solution on the boundary we will use an auxiliary
function β which is actually the sign function under some restriction on the data
and in the zone where λ is positive. If |g − λ sign (u)| � 1, the boundary condition
holds pointwise on the set {λ > 0} ∩ {u∣∣

∂Ω
	= 0}. Otherwise, if |g − λ sign (u)| > 1,

then the boundary condition should be interpreted as ||Du|−1Du · ν| is forced to be
as high as possible. This is basically the weak way we mean the boundary term (see
also remark 4.2 below). This feature is similar to that obtained in [19, definition
2.3 and remark 2.7], but our approach is different.

1.3. Plan of this paper

The next section is on preliminaries; the theory underlying the pairings (z, Du)
and the weak trace [z, ν] is sketching there. Section 3 is dedicated to the asymptotic
behaviour of up as p→ 1+. In § 4 we consider the 1-Laplace problem which formally
arises by taking p→ 1+ into (1.1). In § 5 we give some extensions and examples
concerning the results of the previous two sections. Finally, in the appendix, we
briefly consider two inequalities which are used throughout the paper.

2. Preliminaries

2.1. Notation

For a given function v we denote by v+ = max(v, 0) and by v− = −min(v, 0).
For a fixed k > 0, we define the truncation functions Tk : R → R as follows

Tk(s) := max(−k,min(s, k)).
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We denote by |E| and by HN−1(E) respectively the Lebesgue measure and the
(N − 1)–dimensional Hausdorff measure of a set E. Moreover χE stands for its
characteristic function.

If no otherwise specified, we denote by C several positive constants whose value
may change from line to line and, sometimes, on the same line. These values will
only depend on the data but they will never depend on the indexes of the sequences
we introduce below.

2.2. Functional spaces

Throughout this paper, Ω ⊂ R
N (with N � 2) stands for an open bounded set

with, at least, Lipschitz boundary. The unit outward normal vector, which exists
HN−1–a.e. on ∂Ω, is denoted by ν.

We denote by Lq(E) the usual Lebesgue space of q–summable functions on E.
The symbol Lq(∂Ω, λ) stands for the Lebesgue space having weight λ.

A function f belongs to the Marcinkiewicz (or weak Lebesgue) space LN,∞(Ω)
when |{|f | > t}| � Ct−N , for any t > 0. We recall that LN (Ω) ⊂ LN,∞(Ω) ⊂
LN−ε(Ω), for any ε > 0. We refer to [13] for an overview on these spaces.

We will denote by W 1,p(Ω) the usual Sobolev space, of measurable functions hav-
ing weak derivative in Lp(Ω)N . It is a Banach space when endowed with the usual
norm. It is well-known that functions in Sobolev spaces have a trace on the bound-
ary, this fact allows us to write u

∣∣
∂Ω

. Moreover, if u ∈W 1,1(Ω), then u
∣∣
∂Ω

∈ L1(∂Ω)
and the embedding W 1,1(Ω) → L1(∂Ω) is onto. On the other hand, the Sobolev
space W 1,1(Ω) is compactly embedded in L1(Ω) and continuously embedded into
the Lorentz space L

N
N−1 , 1(Ω) (see [2]). Since this Lorentz space has LN,∞(Ω) as

its dual (see [13]), it follows that fu ∈ L1(Ω) for every f ∈ LN,∞(Ω) and every
u ∈W 1,1(Ω). Finally, for a nonnegative λ ∈ L∞(∂Ω) not identically null, the norm
defined in W 1,1(Ω) as

‖v‖λ =
∫

Ω

|∇v|dx+
∫

∂Ω

λ(x)|v|dHN−1 (2.1)

is equivalent to the usual norm in W 1,1(Ω) (see [27, section 2.7]).
The space of functions of bounded variation is defined as

BV (Ω) := {u ∈ L1(Ω) : Du is a Radon measure with finite variation},

which is a Banach space.
Most of the features of W 1,1(Ω) also hold for BV (Ω), since the proofs can easily

be adapted by approximation. In this paper, we will use the following facts:

(1) equation (2.1) defines a norm in BV (Ω) equivalent to the usual one;

(2) the trace operator BV (Ω) → L1(∂Ω) is continuous and onto;

(3) the embedding BV (Ω) → L1(Ω) is compact;

(4) the embedding BV (Ω) → L
N

N−1 , 1(Ω) is continuous.

https://doi.org/10.1017/prm.2022.92 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.92


110 F. Della Pietra, F. Oliva and S. Segura de León

As a consequence of the last property, fu ∈ L1(Ω) for every f ∈ LN,∞(Ω) and every
u ∈ BV (Ω). We refer to [6] for a complete account on this space.

2.3. L∞-divergence vector fields

We briefly present the L∞-divergence-measure vector fields theory (see [5] and
[8]). We denote

X(Ω) := {z ∈ L∞(Ω,RN ) : div z ∈ LN,∞(Ω)}.
In [5] the distribution (z, Dv) : C1

c (Ω) → R is defined as

〈(z,Dv), ϕ〉 := −
∫

Ω

vϕdiv z −
∫

Ω

vz · ∇ϕ, ϕ ∈ C1
c (Ω),

which is well defined if v ∈ BV (Ω) and z is a bounded vector field such that its
divergence belongs to LN (Ω). Moreover (z, Dv) is a Radon measure satisfying∣∣∣∣

∫
B

(z,Dv)
∣∣∣∣ �

∫
B

|(z,Dv)| � ||z||L∞(U,RN )

∫
B

|Dv| ,

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
Let us also remark that, in [5], it is shown the existence of a weak trace on ∂Ω for

the normal component of a bounded vector field z such that div z ∈ L1(Ω). This is
denoted by [z, ν] where ν(x) is the outward normal unit vector. Then it is proven
that

||[z, ν]||L∞(∂Ω) � ||z||∞ .

Finally a Green formula holds:∫
Ω

v div z +
∫

Ω

(z,Dv) =
∫

∂Ω

v[z, ν] dHN−1,

where z ∈ L∞(Ω, R
N ), div z ∈ LN (Ω) and v ∈ BV (Ω). Let us stress that all pre-

vious results can be easily extended to the case where z ∈ X(Ω) and u ∈ BV (Ω)
thanks to the continuous embedding of BV (Ω) into L

N
N−1 , 1(Ω).

3. Asymptotic behaviour as p → 1+

Let Ω be a bounded open set of R
N (N � 2) with Lipschitz boundary. We are

interested into taking p→ 1+ in the following Robin problem:{
−Δpup = f in Ω,
|∇up|p−2∇up · ν + λ|up|p−2up = g on ∂Ω,

(3.1)

where f ∈ LN,∞(Ω), λ ∈ L∞(∂Ω) is nonnegative but not identically null and finally
g ∈ L∞(∂Ω). The existence of up ∈W 1,p(Ω) satisfying (3.1) follows from [16]. We
remark that up can also be obtained as a minimum of a suitable functional (see
§ 5.3 below). For this section we are interested in the asymptotic behaviour of up

as p→ 1+.
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To begin with, we introduce the key quantity

M(f, g, λ) = sup
u∈W 1,1(Ω)\{0}

∫
Ω

fudx+
∫

∂Ω

gu dHN−1

‖u‖λ
,

which is always finite once that f ∈ LN,∞(Ω) and g ∈ L∞(∂Ω). In particular we
show that if M(f, g, λ) � 1, then we have an estimate of the family up in BV (Ω);
otherwise, as we will see, the solutions up blow up on a set of positive measure as
p approaches 1. This is the content of main theorem of this section:

Theorem 3.1. Given f ∈ LN,∞(Ω), λ ∈ L∞(∂Ω) nonnegative but not identically
null and g ∈ L∞(∂Ω), let up be a solution to (3.1). Then, up to subsequences, it
holds:

(i) if M(f, g, λ) < 1 then up converges almost everywhere in Ω to zero as
p→ 1+;

(ii) if M(f, g, λ) = 1 then up converges almost everywhere in Ω to a function u
as p→ 1+ which is almost everywhere finite;

(iii) if M(f, g, λ) > 1 then |up| blows up either on a subset of Ω of positive
Lebesgue measure or on a subset of ∂Ω of positive HN−1 measure.

Remark 3.2. It is worth to highlighting that in § 5.2 below the results of the
previous theorem are explicitly computed for the case Ω as a ball. In particular, let
us note that in case M = 1 one can actually find explicit examples of limit functions
u which are not null.

Remark 3.3. In the homogeneous Dirichlet case, that is when formally λ = +∞,
then

M = sup
u∈W 1,1

0 (Ω)\{0}

∫
Ω

fudx∫
Ω

|∇u|dx
.

By the Hardy–Littlewood and Sobolev inequalities, it is easy to see that

M �
‖f‖LN,∞(Ω)

Nω
1/N
N

,

where ωN is the volume of the unit ball in R
N . This implies that the smallness

condition on f considered in [9] in order to obtain a finite limit for up, namely
‖f‖LN,∞(Ω) � Nω

1/N
N , always implies that M � 1 (see also [21]).

We start stating and proving the uniform estimate under the smallness condition
on M(f, g, λ).
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Lemma 3.4. Let f ∈ LN,∞(Ω), let λ ∈ L∞(∂Ω) be nonnegative but not identically
null and let g ∈ L∞(∂Ω). If up is a solution to (3.1), then it holds

‖up‖λ � M(f, g, λ)
1

p−1

[
|Ω| +

∫
∂Ω

λdHN−1

]
.

Furthermore if M(f, g, λ) � 1 then up is bounded in BV (Ω) with respect to p and
it converges, up to a subsequence, *-weakly in BV (Ω) to a function u as p→ 1+.
In particular if M(f, g, λ) < 1 then u is identically null.

Proof. Let us take up as test function in (3.1), it yields∫
Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1 =
∫

Ω

fup dx+
∫

∂Ω

gup dHN−1

� M(f, g, λ)
[∫

Ω

|∇up|dx+
∫

∂Ω

λ|up|dHN−1

]

Denoting

Ap =
∫

Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1 Bp′
= |Ω| +

∫
∂Ω

λdHN−1 ,

one can apply proposition A.1 in order to obtain

Ap � M(f, g, λ)
[∫

Ω

|∇up|dx+
∫

∂Ω

λ|up|dHN−1

]
� M(f, g, λ)AB ,

so that

Ap−1 � M(f, g, λ)B.

Hence,

[∫
Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1

] p−1
p

� M(f, g, λ)
[
|Ω| +

∫
∂Ω

λdHN−1

] p−1
p

,

from which we deduce∫
Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1 � M(f, g, λ)
p

p−1

[
|Ω| +

∫
∂Ω

λdHN−1

]
. (3.2)

Then it follows from proposition A.1 and from (3.2) that we get

‖up‖λ =
∫

Ω

|∇up|dx+
∫

∂Ω

λ|up|dHN−1

�
[∫

Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1

] 1
p

[
|Ω| +

∫
∂Ω

λdHN−1

] 1
p′

� M(f, g, λ)
1

p−1

[
|Ω| +

∫
∂Ω

λdHN−1

]
.

(3.3)
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If M(f, g, λ) � 1 the previous estimate reads as

‖up‖λ � |Ω| +
∫

∂Ω

λdHN−1.

Then standard compactness arguments hold and there exists a function u such that,
up to subsequences, up converges to u *-weakly in BV (Ω) as p→ 1+.

Moreover the same estimate (3.3), if M(f, g, λ) < 1, guarantees that

lim
p→1+

‖up‖λ = 0,

which means that up goes to zero almost everywhere in Ω as p→ 1+. �

Let us show now that |∇up|p−2∇up and |up|p−2up weakly converges to some
functions in Ω and on ∂Ω as p→ 1+. Next theorem identifies these objects.

Lemma 3.5. Under the assumptions of lemma 3.4, let up be the solution to problem
(3.1). Then there exist z ∈ L∞(Ω; RN ) and β ∈ Ls(∂Ω, λ) for every s <∞ such
that βχ{λ>0} ∈ L∞(∂Ω) satisfying, up to subsequences, the following convergences

|∇up|p−2∇up ⇀ z weakly in Ls(Ω; RN ) for every 1 � s <∞, (3.4)

|up|p−2up ⇀ β weakly in Ls(∂Ω, λ) for every 1 � s <∞. (3.5)

Moreover, the following identities hold

max{‖z‖∞, ‖βχ{λ>0}‖∞} = M(f, g, λ) (3.6)

− div z = f in D′(Ω) (3.7)

[z, ν] + λβ = g HN−1−a.e. on ∂Ω (3.8)

Proof. It follows from lemma 3.4 that it holds∫
Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1 � M(f, g, λ)
p

p−1 Λ

where Λ = |Ω| + ∫
∂Ω
λdHN−1. Let us now fix s ∈ (1, ∞) and consider 1 < p <

s

s− 1
. By proposition A.1 below, it yields

[∫
Ω

|∇up|(p−1)sdx+
∫

∂Ω

λ|up|(p−1)sdHN−1

] 1
s

�
[∫

Ω

|∇up|pdx+
∫

∂Ω

λ|up|pdHN−1

] p−1
p

Λ
1
s− p−1

p � M(f, g, λ)Λ
1
s

(3.9)

from where we infer that this family is bounded. Thus, up to subsequences, there
exist zs ∈ Ls(Ω; RN ) and βs ∈ Ls(∂Ω, λ) satisfying

|∇up|p−2∇up ⇀ zs weakly in Ls(Ω; RN )
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and

|up|p−2up ⇀ βs weakly in Ls(∂Ω, λ)

Since these facts hold for every s, two diagonal procedures allow us to find z ∈
Ls(Ω; RN ) and β ∈ Ls(Ω, λ) for all s ∈ (1, ∞), and satisfying (3.4) and (3.5).

Moreover, having in mind the lower semicontinuity of the s–norm with respect
to the weak convergence, we may let p go to 1 in (3.9); it yields

[∫
Ω

|z|s dx+
∫

∂Ω

λ|β|s dHN−1

] 1
s

� M(f, g, λ)Λ
1
s

for every s ∈ (1, ∞). Thanks to proposition A.2 below, we deduce that z ∈
L∞(Ω; RN ) and βχ{λ>0} ∈ L∞(∂Ω). In addition, we may take the limit as s tends
to ∞ and obtain

max{‖z‖∞, ‖βχ{λ>0}‖∞} � M(f, g, λ).

Now let us show the reverse inequality in order to deduce (3.6); to this aim we take
v ∈W 1,2(Ω) as test function in (3.1) (with 1 < p < 2) to get

∫
Ω

fv dx+
∫

∂Ω

gv dHN−1 =
∫

Ω

|∇up|p−2∇up · ∇v dx+
∫

∂Ω

λ|up|p−2upv dHN−1.

Letting p go to 1, we deduce

∫
Ω

fv dx+
∫

∂Ω

gv dHN−1 =
∫

Ω

z · ∇v dx+
∫

∂Ω

λβv dHN−1

� ‖z‖∞
∫

Ω

|∇v|dx+ ‖βχ{λ>0}‖∞
∫

∂Ω

λ|v|dHN−1

� max{‖z‖∞, ‖βχ{λ>0}‖∞}‖v‖λ.

By density, it yields

∫
Ω

fv dx+
∫

∂Ω

gv dHN−1 � max{‖z‖∞, ‖βχ{λ>0}‖∞}‖v‖λ

for every v ∈W 1,1(Ω). Therefore,

M(f, g, λ) � max{‖z‖∞, ‖βχ{λ>0}‖∞},

which gives (3.6).
The validity of (3.7) simply follows by taking ϕ ∈ C∞

0 (Ω) as test function in (3.1)
and letting p→ 1+.
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Now for 1 < p < 2, we choose v ∈W 1,2(Ω) as test function in (3.1) obtaining:∫
Ω

fv dx+
∫

∂Ω

gv dHN−1 =
∫

Ω

|∇up|p−2∇up · ∇v dx+
∫

∂Ω

λ|up|p−2upv dHN−1.

Letting p→ 1+, it yields∫
Ω

fv dx+
∫

∂Ω

gvHN−1 =
∫

Ω

z · ∇v dx+
∫

∂Ω

λβv dHN−1

for every v ∈W 1,2(Ω). This equality can be extended to every v ∈W 1,1(Ω) by
density. Using (3.7) and Green’s formula, we deduce∫

∂Ω

gvHN−1 =
∫

∂Ω

v[z, ν] dHN−1 +
∫

∂Ω

λβv dHN−1

for all v ∈W 1,1(Ω), wherewith it holds for every v ∈ L1(∂Ω). Thus, we have
obtained (3.8). �

The following lemma focuses on the behaviour of the objects studied in the
previous lemma when the family up is truncated at a certain level. This will be
useful in the next lemma 3.7.

Lemma 3.6. Under the assumptions of lemma 3.4, let up be the solution to problem
(3.1). For each k > 0 there exist zk ∈ L∞(Ω; RN ) and βk such that βkχ{λ>0} ∈
L∞(∂Ω) satisfying ‖zk‖∞ � 1, ‖βkχ{λ>0}‖∞ � 1 and, up to subsequences, the
following convergences hold

|∇up|p−2∇upχ{|up|<k} ⇀ zk weakly in Ls(Ω; RN ) for every 1 � s <∞,

|up|p−2upχ{|up|<k} ⇀ βk weakly in Ls(∂Ω, λ)for every 1 � s <∞.

Proof. For each k > 0, we take Tk(up) as test function in (3.1), it yields∫
Ω

|∇Tk(up)|pdx+
∫

∂Ω

λ|up|p−1|Tk(up)|dHN−1

=
∫

Ω

fTk(up) dx+
∫

∂Ω

gTk(up) dHN−1,

from where we get the estimate∫
Ω

|∇Tk(up)|pdx � k

(∫
Ω

|f |dx+
∫

∂Ω

|g|dHN−1

)
.

Given s < p
p−1 , Hölder’s inequality implies

[∫
Ω

|∇up|(p−1)sχ{|up|<k} dx
] 1

s

�
[∫

Ω

|∇up|pχ{|up|<k} dx
] p−1

p

|Ω| 1s− p−1
p

� k
p−1

p

(∫
Ω

|f |dx+
∫

∂Ω

|g|dHN−1

) p−1
p

|Ω| 1s− p−1
p .

(3.10)
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Hence, the family |∇up|p−2∇upχ{|up|<k} is bounded in Ls(Ω; RN ) for all s ∈ (1, ∞).
By the same procedure used in lemma 3.5, there exist zk ∈ Ls(Ω; RN ) and a
subsequence (not relabeled) such that

|∇up|p−2∇upχ{|up|<k} ⇀ zk

for all s ∈ (1, ∞). Going back to (3.10) and letting p go to 1, the lower
semicontinuity of the s–norm with respect to the weak convergence gives

[∫
Ω

|zk|s dx
] 1

s

� |Ω| 1s

for all s ∈ (1, ∞). Therefore, zk ∈ L∞(Ω; RN ) and ‖zk‖∞ � 1.
On the other hand, it follows from |up|p−1χ{|up|<k} � kp−1 that, up to subse-

quences,

|up|p−2upχ{|up|<k}
∗
⇀βk

∗-weakly in L∞(∂Ω, λ)

for certain βk ∈ L∞(∂Ω, λ) that satisfies ‖βkχ{λ>0}‖∞ � 1. �

Here we deal with the case M(f, g, λ) > 1; in particular we show that up blows
up on a set of positive measure.

Lemma 3.7. Under the assumptions of lemma 3.4, let up be the solution to problem
(3.1). If M(f, g, λ) > 1, then up converges almost everywhere in Ω as p→ 1+ to a
function u such that |u| = +∞ either on a subset of Ω of positive Lebesgue measure
or on a subset of ∂Ω of positive HN−1 measure. As a consequence, u /∈ BV (Ω).

Proof. Firstly one can show that up converges almost everywhere in Ω to a function
u as p→ 1+ using arguments similar to the ones of step 2 of [22]. It follows from
the pointwise convergence up → u as p→ 1+ that

χ{|up|<k} → χ{|u|<k} strongly in Lr(Ω) ∀r ∈ (1,∞)

up to a countable set of k > 0. So, for almost all k > 0, it follows from lemmas 3.5
and 3.6 that we have

zk = zχ{|u|<k} and βkχ{λ>0} = βχ{{λ>0}∩{|u|<k}}

Thus, conditions ‖zk‖∞ � 1 and ‖βkχ{λ>0}‖∞ � 1 for all k > 0 imply

‖zχ{|u|<∞}‖∞ � 1 and ‖βχ{{λ>0}∩{|u|<∞}}‖∞ � 1.

Having in mind (3.6), the result follows. �

Finally we can gather the previous results to give the proof of the main result of
the current section.

Proof of theorem 3.1. The proof follows from lemmas 3.4 and 3.7. �
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4. The limit problem

Here we are interested into the study of the limit problem for (3.1) as p→ 1+.
In particular we first deal with the case Ω regular enough. Later and under some
assumptions on the data, we treat the case where Ω has Lipschitz boundary.

Thus we are studying the existence of a solution to{
−Δ1u = f in Ω,
[z, ν] + λ sign (u) = g on ∂Ω.

(4.1)

Let us stress that the sign function needs to be intended as a multivalued function
which is sign (u) = [−1, 1] when u = 0. Then let us specify the notion of solution
we adopt for problem (4.1).

Definition 4.1. A function u ∈ BV (Ω) is a solution to (4.1) if there exists z ∈
L∞(Ω, R

N ) with ||z||∞ � 1 such that

− div z = f as measures in Ω, (4.2)

(z,Du) = |Du| as measures in Ω, (4.3)

[z, ν] + λβ = g for HN−1-a.e. x ∈ ∂Ω, (4.4)

where β is a measurable function such that ‖βχ{λ>0}‖∞ � 1 and

(λβ − g) ∈ T1(λ sign (u) − g) for HN−1-a.e. x ∈ ∂Ω. (4.5)

Remark 4.2. The notion of solution given by definition 4.1 is nowadays classical
in the context of 1-Laplace operator. Equation (4.3) is how z plays the role of
the quotient |Du|−1Du, which, jointly with (4.2), formally represents the equation
in problem (4.1). Equations (4.4) and (4.5) deserve a particular attention. It is
clear that if |λ sign (u) − g| � 1 then (4.5) means β ∈ sign (u) in {λ > 0} which
is what one clearly expect as for the boundary equation in (4.1). Otherwise, if
|λ sign (u) − g| > 1, then (4.5) in (4.4) simply means that |[z, ν]| is forced to be
highest possible.

Remark 4.3. From definition 4.1 it is clear that there is no solution when
M(f, g, λ) > 1 in case f ∈ LN,∞(Ω) and g, λ ∈ L∞(∂Ω). Indeed, assume that there
exists a solution u to our problem. Then, for any v ∈W 1,1(Ω), Green’s formula
implies ∫

Ω

fv dx = −
∫

Ω

v div zdx =
∫

Ω

z · ∇v dx+
∫

∂Ω

v (λβ − g) dHN−1

and so ∫
Ω

fv dx+
∫

∂Ω

gv dHN−1 =
∫

Ω

z · ∇v dx+
∫

∂Ω

λβv dHN−1

�
∫

Ω

|∇v|dx+
∫

∂Ω

λ|v|dHN−1 = ‖v‖λ,

which gives that M(f, g, λ) � 1.
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4.1. The case ∂Ω ∈ C1

In this section Ω is a bounded open set of R
N with C1 boundary.

The main result of this section is the following:

Theorem 4.4. Let f ∈ LN,∞(Ω), g ∈ L∞(∂Ω) and let λ ∈ L∞(∂Ω) be nonnegative
but not identically null. If M(f, g, λ) � 1, then there exists a solution to (4.1).

Remark 4.5. One can wonder if the solution found in theorem 4.4 is actually the
unique one. In the context of the 1-Laplace operator this is often a delicate issue.
Let us stress that for problem 4.1 one can not expect uniqueness of solutions in the
sense of definition 4.1. Indeed, let F be an increasing function such that F (0) = 0.
It is now simple to convince that if u is a solution to (4.1) then F (u) is a solution
itself to the same problem.

Clearly we will prove theorem 4.4 by means of approximation through problems
(3.1) and using the information already gained on up. Henceforth z and β are the
ones found in lemmas 3.5 and 3.6 respectively.

Hence we just need to show the identification of both z and β by proving (4.3)
and (4.5).

We start by proving the identification of β; we first show that the assumption on
M can be read as an assumption connecting λ and g in an explicit way.

Lemma 4.6. Under the assumptions of theorem 4.4 let up be a solution of (3.1). If
M(f, g, λ) � 1, then |g| � λ+ 1. As a consequence,

T1(λ sign (r) − g)r � λ|r| − gr (4.6)

holds for all r ∈ R.

Proof. It follows from lemma 3.5 that if M(f, g, λ) � 1 then ‖z‖∞ � 1 and
‖βχ{λ>0}‖∞ � 1, so that −1 � [z, ν] � 1 and −1 � βχ{λ>0} � 1. These facts and
the identity [z, ν] + λβ = g yield the desired inequality. Indeed,

λ− g � λβ − g = −[z, ν] � −1

−λ− g � λβ − g = −[z, ν] � 1

wherewith g � λ+ 1 and −g � λ+ 1 hold.
It is enough to analyse two possibilities since (4.6) trivially holds when r = 0.
If r > 0, since we have already proven −1 � λ− g, then T1(λ− g)r � λr − gr.
If r < 0, since one has −1 � λ+ g , then −T1(λ+ g)r � −λr − gr, that is

T1(−λ− g)r � λ|r| − gr. �

The previous lemma allows us to prove the following result.

Lemma 4.7. Under the assumptions of theorem 4.4 let up be a solution of (3.1) and
let z and β be the vector field and the function found in lemma 3.5. Then it holds

u([z, ν] + T1(λ sign u− g)) = 0 HN−1–a.e. on ∂Ω.

In particular it holds (4.5).
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Proof. Let us take Tk(up) as a test function in (3.1) obtaining that∫
Ω

|∇Tk(up)|p dx+
∫

∂Ω

λ|Tk(up)|pdHN−1 =
∫

Ω

fTk(up) dx+
∫

∂Ω

gTk(up)dHN−1,

which, applying the Young inequality, implies that∫
Ω

|∇Tk(up)|dx+
∫

∂Ω

(λ|Tk(up)| − gTk(up))dHN−1

�
∫

Ω

fTk(up) dx+
p− 1
p

|Ω| + p− 1
p

∫
∂Ω

λdHN−1.

(4.7)

Owing to lemma 4.6, (4.7) becomes∫
Ω

|∇Tk(up)|dx+
∫

∂Ω

T1(λ sign (up) − g)Tk(up) dHN−1

�
∫

Ω

fTk(up) dx+
p− 1
p

[
|Ω| +

∫
∂Ω

λdHN−1

]
.

(4.8)

Notice that the left-hand side of (4.8) is lower semicontinuous with respect to the
L1-convergence as p→ 1+ thanks to proposition 1.2 of [23]. Hence, taking p→ 1+

in (4.8), one yields to∫
Ω

|DTk(u)| +
∫

∂Ω

T1(λ sign u− g)Tk(u) dHN−1 �
∫

Ω

fTk(u) dx. (4.9)

Now since it follows from lemma 3.5 that −div z = f , from (4.9) one deduces that∫
Ω

|DTk(u)| +
∫

∂Ω

T1(λ sign u− g)Tk(u) dHN−1

� −
∫

Ω

div zTk(u)

=
∫

Ω

(z,DTk(u)) −
∫

∂Ω

Tk(u)[z, ν] dHN−1,

where the last equality follows from an application of the Green formula. Now
observe that (z, DTk(u)) � |DTk(u)| as measures since ‖z‖∞ � 1; then one gets∫

∂Ω

(T1(λ sign u− g) + [z, ν])Tk(u) dHN−1 � 0. (4.10)

Now observe that (T1(λ sign u− g) + [z, ν]) has the same sign of u for
HN−1–almost every point on ∂Ω. Indeed, assume first that x ∈ ∂Ω satisfies
u(x) > 0. Then λ(x) − g(x) � −1 by lemma 4.6. If λ(x) − g(x) � 1, then lemma
3.5 gives λ− g + [z, ν] = λ− g + g − λβ = λ− λβ � 0 since |βχ{λ>0}| � 1. Oth-
erwise let x be such that λ(x) − g(x) > 1 then 1 + [z, ν] � 0 since |[z, ν]| � 1. A
similar argument holds when u(x) < 0.

Thus, (4.10) implies that (T1(λ sign u− g) + [z, ν])u = 0 HN−1–almost every-
where on ∂Ω. Moreover since [z, ν] = g − λβ it follows (4.5). �
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Now we focus on proving (4.3).

Lemma 4.8. Under the assumptions of theorem 4.4 let up be a solution of (3.1) and
let z be the vector field found in lemma 3.5. Then it holds

(z,Du) = |Du| as measures in Ω.

Proof. Let us take Tk(up)ϕ (k > 0, 0 � ϕ ∈ C1
c (Ω)) as a test function in (3.1)

yielding to∫
Ω

|∇Tk(up)|pϕdx+
∫

Ω

Tk(up)|∇up|p−2∇up · ∇ϕdx =
∫

Ω

fTk(up)ϕdx,

which, from an application of the Young inequality, implies∫
Ω

|∇Tk(up)|ϕdx+
∫

Ω

Tk(up)|∇up|p−2∇up · ∇ϕdx

�
∫

Ω

fTk(up)ϕdx+
p− 1
p

∫
Ω

ϕdx.

By taking p→ 1+ in the previous inequality, one obtains that∫
Ω

|DTk(u)|ϕ+
∫

Ω

Tk(u)z · ∇ϕdx �
∫

Ω

fTk(u)ϕdx.

Hence, letting k → +∞,∫
Ω

|Du|ϕ+
∫

Ω

uz · ∇ϕdx �
∫

Ω

fuϕdx.

Now, recalling that −div z = f one has that∫
Ω

|Du|ϕ � −
∫

Ω

uz · ϕdx−
∫

Ω

div zuϕdx =
∫

Ω

(z,Du)ϕ.

This concludes the proof being the reverse inequality trivial since ||z||∞ � 1. �

Proof of theorem 4.4. Let up be a solution to (3.1). Then it follows from lemma 3.5
that there exist u ∈ BV (Ω) and z ∈ X(Ω) with ||z||∞ � 1 such that (4.2) and (4.4)
hold. Moreover lemmas 4.8 and 4.7 give that (4.3) and (4.5) hold respectively. This
concludes the proof. �

4.2. The case ∂Ω Lipschitz

In the previous subsection we required that Ω has C1 boundary. This fact is
due to the application in lemma 4.7 of Modica’s semicontinuity result that needs
this hypothesis. Nevertheless, as Modica himself points out, certain functionals are
lower semicontinuous with respect to the L1-convergence even when the Lipschitz-
continuous setting is considered.

We prove the following result.
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Lemma 4.9. Let H : BV (Ω) → R be a functional defined as

H(u) =
∫

Ω

|Du| +
∫

∂Ω

ψ(x)|u|dHN−1

where ψ ∈ L∞(∂Ω) satisfies 0 � ψ � 1.
Then H is lower semicontinuous with respect to the L1-convergence.

Proof. We first choose an open bounded set Ω′ containing Ω. Given ψ ∈ L∞(∂Ω),
we may find φ1 ∈ C1(Ω) ∩W 1,1(Ω) such that φ1

∣∣
∂Ω

= ψ and 0 � φ1 � 1. We may
also consider φ2 ∈ C1(Ω′\Ω) ∩W 1,1(Ω′\Ω) such that φ2

∣∣
∂Ω

= ψ and 0 � φ2 � 1.
Finally define the following continuous extension of ψ:

ϕ(x) =
{
φ1(x) if x ∈ Ω
φ2(x) if x ∈ Ω′\Ω .

We next claim that each u ∈ BV (Ω) satisfies∫
Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1

= sup
{∫

Ω′
u div (ϕF ) dx : F ∈ C1

0 (Ω′)N ‖F‖∞ � 1
}
,

where u is extended to BV (Ω′) by defining u = 0 in Ω′\Ω.
An inequality is obvious since Green’s formula implies∫

Ω′
u div (ϕF ) dx =

∫
Ω

u div (φ1F ) dx

= −
∫

Ω

φ1F ·Du+
∫

∂Ω

ψu[F, ν] dHN−1

�
∫

Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1

holds for all F ∈ C1
0 (Ω′)N such that ‖F‖∞ � 1.

To check the reverse inequality, we consider in C1
0 (Ω′)N the linear map given by

L(F ) =
∫

Ω′
u div (ϕF ) dx .

Notice that

|L(F )| =
∣∣∣∣
∫

Ω′
u div (ϕF ) dx

∣∣∣∣ =
∣∣∣∣−

∫
Ω

φ1F ·Du+
∫

∂Ω

ψu[F, ν] dHN−1

∣∣∣∣
� ‖F‖∞

[∫
Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1

]
.

From this inequality we deduce that L can be extended by density to a linear and
continuous map in C0(Ω′)N whose norm satisfies

‖L‖ �
∫

Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1 .
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Applying the Riesz representation theorem, there exists a Radon measure μ on Ω′

such that L(F ) =
∫
Ω′ F · μ for every F ∈ C0(Ω′)N and its total variation is

∫
Ω′ |μ| =

‖L‖. Thus,

∫
Ω′
F · μ = L(F ) =

∫
Ω′
u div (ϕF ) dx = −

∫
Ω

φ1F ·Du+
∫

∂Ω

uψ[F, ν] dHN−1

for all F ∈ C1
0 (Ω′)N . We deduce that

∫
Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1 =
∫

Ω′
|μ| = sup

{
L(F ) : F ∈ C0(Ω′)N ‖F‖∞ � 1

}
.

By density, we conclude that

∫
Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1 = sup
{
L(F ) : F ∈ C1

0 (Ω′)N ‖F‖∞ � 1
}

and the claim is proven.
As a straightforward consequence the functional

u �→
∫

Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1

is lower semicontinuous with respect to the L1–convergence. Therefore,

H(u) =
∫

Ω

(1 − φ1)|Du| +
∫

Ω

φ1|Du| +
∫

∂Ω

ψ|u|dHN−1

is the sum of two lower semicontinuous functionals, so that lemma is proven. �

The previous lemma can be applied to the functional

I(u) =
∫

Ω

|Du| +
∫

∂Ω

T1(λ sign (u) − g)u dHN−1, u ∈ BV (Ω) , (4.11)

as shown in proposition 4.10 below. Here we only have to take into account
the inequalities |a+ − b+| � |a− b| and |a− − b−| � |a− b|, which hold for all real
numbers.

Proposition 4.10. The functional I defined in (4.11) is lower semicontinuous with
respect to the L1–convergence when |g| � λ.
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Proof. First write I = I1 + I2, where

I1(u) = I(u+) =
∫

Ω

|Du+|dx+
∫

∂Ω

T1(λ− g)u+ dHN−1

and

I2(u) = I(−u−) =
∫

Ω

|Du−|dx+
∫

∂Ω

T1(λ+ g)u− dHN−1

Take a sequence un in BV (Ω) that converges to u strongly in L1(Ω). Then u+
n

converges to u+ and u−n converges to u− as n→ ∞, so that lemma 4.9 implies that

I1(u) � lim inf
n→∞ I1(un)

and

I2(u) � lim inf
n→∞ I2(un) .

Therefore, its sum I is lower semicontinuous. �

Theorem 4.11. Theorem 4.4 holds even if Ω has Lipschitz boundary in case |g| � λ.

Proof. The only difference with respect to the proof of theorem 4.4 is the use of
proposition 4.10 in place of proposition 1.2 of [23]. �

5. Remarks and examples

5.1. The case with λ ∈ L1(∂Ω)

Here we briefly spend a few words for the case of a nonnegative λ ∈ L1(∂Ω).
Indeed, let us stress that, even for λ ∈ L1(∂Ω), the quotient which appears in M

is well defined. Nevertheless, now the supremum is taken over all u ∈W 1,1(Ω) ∩
L1(∂Ω, λ)\{0}

Then if one considers the following approximation scheme{
−Δpup = f in Ω,
|∇up|p−2∇up · ν + λ|up|p−2up = g on ∂Ω,

(5.1)

where f ∈ LN,∞(Ω), g ∈ L∞(∂Ω) and 0 � λ ∈ L1(∂Ω) but not identically null, the
existence of up ∈W 1,p(Ω) ∩ Lp(∂Ω, λ) satisfying (5.1) follows from the minimiza-
tion of the following functional

Q(u) =
1
p

∫
Ω

|∇u|p dx+
∫

∂Ω

λ

p
|u|p dHN−1 −

∫
∂Ω

gu dHN−1 −
∫

Ω

fu dx.

Indeed, we consider the space W 1,p(Ω) ∩ Lp(∂Ω, λ) endowed with the norm defined

as ‖u‖p
p,λ =

∫
Ω

|∇u|pdx+
∫

∂Ω

λ|u|p dHN−1. We remark that ‖u‖p,λ is not anymore
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an equivalent norm to the W 1,p–norm. By the way one can convince himself that
it always holds the inequality

‖u‖p,λ � C‖u‖W 1,p(Ω),

which allows to deduce all continuous and compact embeddings which holds for
W 1,p(Ω). Since Q can be written as

Q(u) =
1
p
‖u‖p

p,λ −
∫

∂Ω

gu dHN−1 −
∫

Ω

fu dx ,

it follows that these embeddings lead to coercivity. We also deduce from these
embeddings that Q is weakly lower semicontinuous. Standard results then yield the
desired minimizer.

Any minimizer up of the previous functional satisfies that∫
Ω

|∇up|p−2 ∇up · ∇ϕ dx+
∫

∂Ω

λ |up|p−2
upϕ dHN−1 =

∫
Ω

fϕ dx+
∫

∂Ω

gϕ dHN−1,

where ϕ ∈W 1,p(Ω) ∩ Lp(∂Ω, λ). Therefore up itself can be taken as a test function.
Now similar estimates for ‖up‖λ can be obtained. Notice that ‖up‖λ � C‖up‖BV (Ω)

but they are not equivalent. With this approach in mind one can show that the
results of both § 3 and 4 still hold if 0 � λ ∈ L1(Ω) (but not identically null) with
natural modifications.

5.2. The radial case

Here we deal with the case Ω as a ball of radius R centered at the origin, namely:

Ω = BR := {x ∈ R
N : |x| < R}.

Hence let us consider the following problem⎧⎨
⎩−Δpup =

A

|x| in Ω,

|∇up|p−2∇up · ν + λup−1
p = γ on ∂Ω ,

where A, λ and γ are positive constants, and we are firstly interested in the
asymptotic behaviour of up as p→ 1+. We explicitly observe that the datum
A/ |x| ∈ LN,∞(Ω).

Hence we look for a function up(r) (r = |x|) satisfying

− 1
rN−1

(
rN−1|u′p(r)|p−2u′p(r)

)′
=
A

r
,

which gives

[rN−1(−u′p(r))p−1]′ =
A

r2−N

and

− u′p(r) =
(

A

N − 1

) 1
p−1

. (5.2)
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Now integrating between r and R (with an abuse of notation) one has

up(r) = up(R) +
(

A

N − 1

) 1
p−1

(R− r) ,

and since it follows from the boundary condition and from (5.2) that

up(R) =
{

1
λ

[
A

N − 1
+ γ

]} 1
p−1

then one also has

up(r) =
{

1
λ

[
A

N − 1
+ γ

]} 1
p−1

+
(

A

N − 1

) 1
p−1

(R− r) .

Let us underline that:

(1) if A > N − 1, then up → +∞ in Ω;

(2) if A = N − 1, then
(a) if λ < 1 + γ, then up → +∞;

(b) if λ = 1 + γ, then up → 1 + (R− r);

(c) if λ > 1 + γ, then up → R− r;

(3) if A < N − 1, then
(a) if λ < A

N−1 + γ, then up → +∞ in Ω̄;

(b) if λ = A
N−1 + γ, then up → 1;

(c) if λ > A
N−1 + γ, then up → 0.

Remark 5.1. Let Ω = BR and A, γ � 0. A posteriori from lemma 3.4 and 3.7, last
example assures what follows.

• In the cases: A > N − 1; A = N − 1 and λ < 1 + γ; (N − 1)(λ− γ) < A <
N − 1, then

M(A/ |x| , γ, λ) > 1.

• In the cases: A = N − 1 and λ � 1 + γ; A = (λ− γ)(N − 1) < N − 1, then

M(A/ |x| , γ, λ) = 1.

• In the case A < min{N − 1, (λ− γ)(N − 1)} then

M(A/ |x| , γ, λ) < 1.

We conclude that

M(A/ |x| , γ, λ) = max
{

A

N − 1
,
1
λ

[
A

N − 1
+ γ

]}
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5.3. A variational approach

In the case λ(x) = λ positive constant, and g ≡ 0, the argument used in [12]
allows to prove that the functional

Jp(u) =
1
p

∫
Ω

|∇u|p dx+
λ

p

∫
∂Ω

|u|p dHN−1 −
∫

Ω

fu dx

Γ-converges in BV (Ω) to

J(u) =
∫

Ω

|Du| + min{λ, 1}
∫

∂Ω

|u| dHN−1 −
∫

Ω

fu dx.

Let us observe that the minimizers of Jp in W 1,p(Ω) are solutions to (3.1). Formally,
(4.1) is the Euler–Lagrange equation related to J . Then, if M(f, 0, λ) � 1 it follows
that the minimizers of Jp converge (in BV (Ω)) to a minimizer of J .

Actually, the truncation appearing in the boundary datum seems to be natural.
If one considers λ > 1 and the functional

J̃(u) =
∫

Ω

|Du| + λ

∫
∂Ω

|u| dHN−1 −
∫

Ω

fu dx,

it is easy to convince that

min
u∈BV (Ω)

J̃(u) = min
u∈BV (Ω)

J(u). (5.3)

Indeed, if v is a minimum for J , theorem 3.1 of [18] assures the existence of
a sequence vk ∈ C∞

c (Ω) which converges to v in Lq(Ω) for any q � N
N−1 and

such that
∫
Ω
|∇vk|dx converges to

∫
RN |Dv| as k → ∞. Hence J̃(vk) = J(vk) for

all k > 0 and minu∈BV (Ω) J̃(u) � limk→+∞ J(vk) = minu∈BV (Ω) J(u). Being the
reverse inequality trivial, it holds (5.3).

5.4. A sharp estimate on M(f, g, λ)

Let f ≡ 1, g ≡ 0, λ � 0 and let Ω be a Lipschitz bounded domain. Then, by
pointing out the dependence of M by Ω,

M(1, 0, λ) = M(1, 0, λ,Ω) = sup
u∈W 1,1(Ω)\{0}

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

|u|dx∫
Ω

|∇u| dx+ λ

∫
∂Ω

|u|dHN−1

⎫⎪⎪⎬
⎪⎪⎭ .

In this case we denote by Λ(Ω, λ) = 1
M(1, 0, λ, Ω) , and the value Λ(Ω, λ) is the limit,

as p→ 1, of the first Robin p-Laplace eigenvalue (see [12]). It has been proved in
[12] that when λ > 0 and Ω is a Lipschitz bounded domain, then Λ(Ω, λ) ∈]0, +∞[
and

Λ(Ω, λ) � min{λ, 1}N
R
, (5.4)

where R is the radius of the ball having the same volume than Ω. Moreover, for any
λ � 0, inequality (5.4) is an equality when Ω is a ball. Then (5.4) gives an explicit
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upper bound for M(1, 0, λ, Ω), and then an explicit condition in order to obtain
that the solutions up of (3.1), for this particular choice of the coefficients, go to zero
in Ω as p→ 1.

Financial support
F. Della Pietra has been partially supported by the MIUR-PRIN 2017 grant ‘Qual-
itative and quantitative aspects of nonlinear PDE’s’, by GNAMPA of INdAM, by
the FRA Project (Compagnia di San Paolo and Università degli studi di Napoli
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Appendix A. Some auxiliary lemmas

For the convenience of the reader, here we consider some technical lemmas used
throughout the paper. In what follows we assume that λ is a nonnegative, bounded,
measurable function that does not vanish.

Proposition A.1. Let 1 < p, p′ <∞ be such that
1
p

+
1
p′

= 1. Assume that f1, f2 :

Ω → R and g1, g2 : ∂Ω → R are measurable functions satisfying f1 ∈ Lp(Ω), f2 ∈
Lp′

(Ω), g1 ∈ Lp(∂Ω, λ) and g2 ∈ Lp′
(∂Ω, λ). Then f1f2 ∈ L1(Ω), g1g2 ∈ L1(∂Ω, λ)

and ∫
Ω

|f1f2|dx+
∫

∂Ω

λ(x)|g1g2|dHN−1

�
[∫

Ω

|f1|p dx+
∫

∂Ω

λ(x)|g1|p dHN−1

] 1
p

×
[∫

Ω

|f2|p′
dx+

∫
∂Ω

λ(x)|g2|p′
dHN−1

] 1
p′
.

Proof. For every ε > 0, we apply Young’s inequality to get∫
Ω

|f1f2|dx+
∫

∂Ω

λ(x)|g1g2|dHN−1

� εp

p

∫
Ω

|f1|p dx+
1

εp′p′

∫
Ω

|f2|p′
dx

+
εp

p

∫
∂Ω

λ(x)|g1|p dHN−1 +
1

εp′p′

∫
∂Ω

λ(x)|g2|p′
dHN−1 ,

Denoting

Ap =
∫

Ω

|f1|p dx+
∫

∂Ω

λ(x)|g1|p dHN−1

https://doi.org/10.1017/prm.2022.92 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.92


128 F. Della Pietra, F. Oliva and S. Segura de León

and

Bp′
=

∫
Ω

|f2|p′
dx+

∫
∂Ω

λ(x)|g2|p′
dHN−1

we have obtained that∫
Ω

|f1f2|dx+
∫

∂Ω

λ(x)|g1g2|dHN−1 � εp

p
Ap +

1
εp′p′

Bp′

for all ε > 0. Minimizing in ε, it follows that∫
Ω

|f1f2|dx+
∫

∂Ω

λ(x)|g1g2|dHN−1 � AB

as desired. �

Proposition A.2. Assume that f ∈ Ls(Ω) and g ∈ Ls(∂Ω, λ) for all 1 � s <∞.
If ∫

Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1 � Cs ∀s <∞

for some constant C > 0, then

(1) There exists lim
s→∞

[∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

] 1
s

;

(2) f ∈ L∞(Ω) and gχ{λ>0} ∈ L∞(∂Ω);

(3) max{‖f‖∞, ‖gχ{λ>0}‖∞} = lim
s→∞

[∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

] 1
s

.

Proof. (1) Let Λ = |Ω| + ∫
∂Ω
λ(x) dHN−1. Observe that the family

[
1
Λ

(∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

)] 1
s

is increasing in s as a consequence of proposition A.1. On the other hand, it is

bounded by
C

Λ1/s
� C + 1 for s large enough. Hence, it converges. Denote

Γ = lim
s→∞

[
1
Λ

(∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

)] 1
s

and notice that it leads to

lim
s→∞

[∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

] 1
s

= Γ.
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(2) We are proving that |f(x)| � Γ a.e. in Ω. For every ε > 0, define

Aε = {x ∈ Ω : |f(x)| > Γ + ε}.
If |Aε| > 0, then

[∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

] 1
s

�
[∫

Aε

|f |s dx
] 1

s

� (Γ + ε)|Aε| 1s .

Letting s go to ∞, we arrive at Γ � Γ + ε, which is a contradiction. So Aε is a null
set and consequently |f(x)| � Γ + ε a.e. for every ε > 0, wherewith |f(x)| � Γ a.e.

We next check that |g(x)| � Γ HN−1–a.e. on {λ > 0} following a similar
argument. For every ε > 0, define

Bε = {x ∈ ∂Ω : λ(x) > 0 , |g(x)| > Γ + ε}.
If

∫
Bε
λdHN−1 > 0, then

[∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

] 1
s

�
[∫

Bε

λ|g|s dHN−1

] 1
s

� (Γ + ε)
∫

Bε

λdHN−1.

When s goes to ∞, this inequality becomes Γ � Γ + ε, which is a contradic-
tion. So

∫
Bε
λdHN−1 vanishes. Hence |g(x)|χ{λ>0} � Γ + ε for all ε > 0, so that

|g(x)|χ{λ>0} � Γ.

(3) By the previous point, we already know that max{‖f‖∞, ‖gχ{λ>0}‖∞} � Γ.
The reverse inequality follows from the inequality

[∫
Ω

|f |s dx+
∫

∂Ω

λ(x)|g|s dHN−1

] 1
s

� max{‖f‖∞, ‖gχ{λ>0}‖∞}Λ 1
s

by taking the limit as s tends to ∞. �
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