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Let E be a non-singular projective curve of genus g=0, P the pro-
jective line and let F be the surface ExP. Then it is well known that a
ruled surface F* which is birational to F is biregular to a surface which is
obtained by successive elementary transformations from F (for the notion of
an elementary transformation, see [3]). The main purpose of the present
article is to prove the following

TueoreM 1. For any such F*, there is a section (i.e., an irreducible curve s
on F such that (s,1) =1 for a fibre | of F*) such that its self-intersection number
(s,8) s mot greater than g.

In classifying ruled surface F* as was noted by Atiyah [1], it is im-
portant to know the minimum value of self-intersection numbers (s,s) of
sections of F*1 QOur Theorem 1 is important in the respect.

The following is a key to our proof of Theorem 1:

THEOREM 2. Let d be a non-negative rational integer. If Qi + + +y Qgigg+s
are points?> of F, then there is a positive divisor D of F such that (i) D goes
through Qi « + +y Qgesg+y and (1) D s linearly equivalent to E X P+ 3¢ R, X P
with a P P and suitable R, € E.

In connection with this Theorem 2, we prove the following theorem

too:

Received October 11, 1968

1 Atiyah proved that the minimum value is not greater than 2g—1 if ¢>0. On the
other hand, it was remarked by M. Maruyama that there is an F (for every E) which
carries only sections s such that (s, s)=g (see [2]).

2) In this theorem, these @; need not be ordinary points, namely, some of these @;
may be infinitely near points of some ordinary points. For the definition of the term ‘“go
through® in such a case, see [3].
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TueoreMm 3. Let Q% - -+, Q¥ be independent generic points of F over a
field of definition k of F.  Let S* be the set of positive divisors D of F such that
(i) D goes through Q%, « - +,Q%., and (ii) D is linearly equivalent to EXP+3i.,
R, XP with a P P and suitable R, € E. If t<g, then S* is not empty and
S* dose not contain any algebraic family of positive dimension.

In appendix, we add some remarks on dimensions of algebraic families.

1. Some preliminary results, notation.

Since the case where g =0 is obvious, we assume that g=1. P (or P’)
denotes a point of P. R (or R;, Rj, R¥ etc.) denotes a point of E. @
(or Q;, Q}, etc.) denotes a point of F. Fk is a field of definition for E
and F, and for the sake of simplicity, we assume that % is algebraically
closed. L(R, - -+, R;) is the complete linear system |EXP+ Y_, R, XxP|.
Specializations are understood with reference to k. For fundamentals on
specializations of cycles, see [4] and [5].

LemmA 1. Let d be the dimension of the complete linear system |3%., R;| on
E. Let 33, R¥ be a generic member of the linear system over a field containing
k and let C* be a generic member of L(R,, -+ -, R;) over k(R¥, + -+, R¥). Then

(i) dimL(R,, +++, R)=2d+1,

(i) trans.deg, k(C*) = d + 1 + trans. degy k(R%, -+ -, R¥),

(i) ¢ dim |2, Ri|l=d and if (R{, -+, R}) is a specialization of
(R¥, «+ -, RY) then every member of L(R;, -+ -, R}) is a specialization of C* over
the specialization (R¥, +++, R¥) > (R, -+, R}).

Progf. Consider E'=EXP. Then dimTryL(R, «++, R)=d =
dim(L(R,, -+, R) — E’), from which (i) follows readily. = Now, consider
loci T and U of (C*, R¥, - - -, R¥) and C* respectively, over k. Then dim T
=trans.deg k(R¥, - « +, R¥) + trans. deguz;, ..., s k(C*), and on the other hand,
letting p denote the natural projection from 7 onto U, we have dim p~}(C*¥)
= dim | 2., R, | = d. Therefore trans. degyk(C*) = dimU =dim T — d=
d+1+trans.deg; k(R¥, -« -, R¥), which proves (ii). As for (iii), we consider
a specialization of (C*, RY, - -+, R¥, L(R;, - -+, R,)) over the specialization
(RY, «++«,RH> (R}, +++,R}). EXP+7Y,R!XPis specialized to E x P’ +
1R, x P, which must be a member of the specialization L* of L(R;, -+ +, R,).
Since dim L*=dim L(R;, - -+, R)=d =dim L(R}, - - -, R,) and since all
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members of L* are linearly equivalent to each other,¥ we see that
L*=L(R{, +++, R;). Thus Lemma 1 is proved.

LemMmA 2. Let V be a surface defined over k. If M, « -+, M, are points
of V and if trans.degik(M,, « « -, M) =2n — «, then suitable n — o points among
My, -+, M, are independent generic points of V over k.

Proof. We use induction argument on n. (1) If M, is a generic
point of V over k(M,, * + +, M,-,), then trans. degyk(M,, + * +, My-y) =2(n—1)—a.
Then, by our induction assumption, there are » — 1 — « independent generic
points among M, -+, M,, and we see the assertion in this case. (2)
Otherwise, we have trans.deg, k(M;, « « +, M,-)=2(n —1) — (a — 1), and we
completes the proof by our induction assumption.

2. Proof of Theorem 2.
Let R%, .- -, Ri.q be independent generic points of E over k and let
C* be a generic member of L(R¥, -, R¥..) over KR}, »--, R¥q). Let
¥+« +, Q%4124+, be independent generic points of C* over k(C*). Then by
Lemma 1, trans.deg,k(C*, Q% + + «, Q%grza+1) = trans. deg, k(C*) + 29 + 2d +
+1=d+4+14+d+9g+ 29+ 2d+1=39g+4d+2=2294+ 2d +1)—g. Now
we consider locus T of (C*, Q%, + + -, Q%4424+1) and the natural projection pr
from T into the (2g + 2d + 1)-ple product F”” of F. Since the self-intersection
number (C* C*) of C* is equal to 2¢+ 2d, we see that pr is generically a
one-one correspondence between 7' and pr 7, which shows that dim 7 = dim
pr7. Therefore, applying Lemma 2 with » = 29 + 2d + 1, we see that there
are g+ 2d + 1 independent generic points of F among Q% - -+, Q%,12441-
This proves Theorem 2 in the case where @, * - -, Q@ 154+, are independent

generic points of F. New we complete the proof making use of specializations.

3. Proof of Theorem 1.

As was noted at the beginning, F* is obtained by successive elementary
transformations with centers, say, P, + -+, P, from F. 1If m=<g, then the
proper transform of an E x P has self-intersection number<g. Therefore
we assume that m>g. Then there is d such that m=g + 2d or m=g+2d + 1.
By virtue of Theorem 2, there is a positive divisor D of F such that (i)

3) Note that if D and D’ are divisors which are linearly equivalent to each other,

and if they are specialized to D; and D} under the same specialization, then D; is linearly
equivalent to Df{.
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D goes through P, - -+, P, and (ii) D is linearly equivalent to E x P+
S0t R, x P. Then the proper transform D' of D, or more precisely, the
divisor of F* which is the transform of D— 31 P,, has self-intersection num-
ber 2g + 2d — m, which is either g or ¢g—1. D’ has a section s of F* as a
component, and (s,s)=<g. This completes our proof of Theorem 1.

4. Proof of Theorem 3.

Let Pand R,(i =1, - -, ¢) be such that @t = R, x P and Q%f,,€EXP.
Then ExP+3., R, X P is in S* and therefore S* is not empty. Assume
now that there is an irreducible algebraic family S of positive dimension
contained in S*. Let C be a generic member of S over k(@Q% - - -, Q%)
and let R; be such that Ce L(R{, +++, R;). Let X_, R?” be a generic
member of |3, R;] over k(Q% «-+-+, QFyy Ri, +++, R)) and let C"" be a
generic member of L(R{, -, R]) over kQ% .-, @, R, -+ +, R}, RY,
«++, R?”). Let U be the locus of C” over k¥ and set 4 =dim |X‘.,R}|.
Lemma 1 shows that dim U = trans. degy ¥(C"’) = d + 1 + trans. degk (RY, « - -,
RY). Set u = trans.deg; k(R%, + -+, RY). Then we may assume that R?,
++ e+, R are independent generic points of E over k.  Since ¢=<g, dim
|3  R”| =0, whence d =dim [, R!| <t — u. Thus we have that
dmU<t—u+1+u=1t+1, Since U is defined over % and since @*, - - -,
Q%,, are independent generic points, dimS=<¢+1—(¢+1)=0. This com-
pletes our proof of Theorem 3.

Appendix
Our proof of Theorem 2 above really gives a proof of the following
fact:

THEOREM Al. Let § be an algebraic family of positive divisors on a pro-
Jective variety V. If dim§=d and if Py, + -+, P, are points of V, then there is
a member D of § such that P, D for all i.

If & is a linear system, then, for a point P of V, {De &|P< D} forms
a hyperplane of & if & is viewed as a projective space of dimension d.
Therefore if & is a linear system, then Theorem A1l is obvious and is well
known. But, in the general case, the same reasoning cannot be given.
Furthermore, if § is an algebraic family of r-cycles (s divisors), then the
dimension defect by the condition to go through one point is not uniform.
For instance, let V be the projective space of dimension » and let § be the
family of m points which are colinear (m=3), then dim& = 2(n—1)+ m.
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For §' = {De §|P< D} (where P is a point of V), dim@ = dim & — »n. For
§"={De§'|P' € D} (where P’ is a point of V which is different from P),
dim &’ = dim & —». But then, if P” is a point of V which is different
from P, P/, (i) if P” is in outside of the line going through P, P’, then
F*={DeF’'|P"” D} is empty, (ii) otherwise, dim F* = dim §"" — 1.

Here we shall discuss such dimension defect in the general case. Our
result will give another proof of Theorem Al above.

From now on, let V be a projective variety of dimension » and let &
be an (irreducible) algebraic family of positive 7-cycles on V. We fix an
algebraically closed, common field of definition % for V and §. Let C* be
a generic member of § over k and let P be a point of V. Denote by
% — P the set {Ce &|Pe C).

Assume that there is a member C of & — P. Then there is a point P*
of C* such that (C* P*) is specialized to (C,P). Let U be the locus of P*
over k. Then

TueorREM A2. There is an algebraic family § such that (1) Ce F <F—P
and (2) dim§ =dimF + dim (U n C*) — dim U.

Progf. To begin with, we may assume that P* is a generic point of
an arbitrarily fixed component of C* N U over k(C*), whence we may assume
that dim (UNC*) = trans. degyen K(C* P*). Let W and T be the locus of C*
over k(P*) and the locus of (C*, P*) over k respectively. Then dimU + dim
W = trans. deg k(P*) + trans. degypn E(P*, C*) = dim T = dim F + dim (U N C*).
Thus dimW =dim F + dim(@U n C*) —dimU.  Consider a specialization
W — W’ over (C* P*)—(C,P). Then, since C* < W, we have Ce W’, Thus
it is enough to set § = W'.

From our Theorem A2, we get the following result immediately:

Let Cf (i =1, «+ -, t) be all of the irreducible components of C* and
let P¥ be a generic point of C¥ over k(C¥, ---, C¥). Let V; be the locus
of P* over k for each i. Then

Tueorem A3. For PV, we have

(1) ¢f P is not in any of V,, then § — P is emply,

(2)  otherwise, let p be the maximum of dimU, where U, ranges over all V,
which goes through P, then the dimension of every component of F — P is not less
than dim & -+ » — p.
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Now, our Theorem Al is a corollary to this.
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