on c” FUNCTIONS ANALYTIC ON SETS OF SMALL MEASURE
L.E. May%*

(received May 3, 1968)

1. Introduction. The original motivation for this work was
the problem of determining whether the signum function of a real
valued continuous function defined on the real line is Riemann integrable.
This problem is considered in §2 where an example of an infinitely
differentiable function is presented which possesses a non-Riemann
integrable signum function. Moreover, it is shown that, for any
e > 0, it is possible to construct such an example for which the set
of points of analyticity has ILebesgue measure which is less than ¢.
This appears to be a more interesting property than the one originally
sought.

In §3 the work of the previous paragraph is used to construct
a function which is infinitely differentiable on the entire real line but
which is nowhere analytic.

2. let e€> 0. We construct a function f which iias the
. . €
following properties:

(i) £ 1is infinitely differentiable on the entire real line;
€ .
(ii) the signum function of f is non-Riemann integrable
€
on any interval the length of which exceeds ¢;

(iii) the set of points of analyticity of f has measure
. . €
which is less than e.

First consider the function g, which is defined by

ga(X) = exp —Za—-—z , if xe(-a,a),

ga(X) =0 , if xd(-a,a) .
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It is clear that g, is everywhere infinitely differentiable and that

g, is analytic except at the points a and -a.

let {r } be an enumeration of the rational numbers. Let
n

)
G=Gle) = U (r -e2
n=1 n
Lebesgue measure which is less than ¢. Furthermore, since G is
a superset of the set of rational numbers, we have G = R, the real
line. We may express G as the countable union of pairwise disjoint
open intervals {I } where we write I =(b =-a , b +a ), where
n n n n n n

n-1

-n-1 -
? y rn+ €2 ). Then G 1is open and has

a >0.
n

We define the function f by
€

® gan (x-b)
f{x)= 2 —_—
n=4 n K

n

where the constants Kn are defined by

Kn = sup {[gir)(x)]: 0<r<n, x¢ R}.
n

It is clear, from the definition of the functions g, that the constants

{Kn} are finite and non-zero. Furthermore, we see that

< i1, for every n =1,2,3,..., and for every x ¢ R.

Thus the series which represents f converges for every x and
€

f is well defined. We note the following:
€

(a) f (x})>0, forall xe¢ R, and f (x) =0, if and only if x ¢ G;
€ - €

thus the signum function of f 1is the characteristic function of G.
€

Now we show that f ¢ C¥ (R). Let r be any integer and consider
€

h
the formal rt derivative of f :
(=4
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o) w 8, (x-D)
£ %) = = 2
€ n=1 n K
n
(r) (r)
req 8y (x-Db) g, (x-b)
= n + = n °
n=1 n K n=r n K
n n

Now the finite sum above.is a linear combination of functions each of

which is bounded on R. (This follows from the definition of the

functions ga.) From the definition of the constants { K } we have
n

for n> r and for all x ¢ R,

(r)
g, (x - bn)
L < 1,
K pr—
n

Thus all but a finite number of terms of the above series are dominated,

1
for every x, by the terms of the convergent series T3 ° By the

n

(r)

Weicerstrass M~-test, the series representing f (x) is uniformly
€

convergent on R. It follows that f

(r)(x) exists for every x, and
€

)
since r is arbitrary, f ¢ C (R).
€

The following is clear from the above discussion:

(b) for every fixed r,

r
f(e)(x) is uniformly bounded in x;

(c) if x¢ G, then £ (x) =0, for r =1,2,3,...
€
(To prove (c) we note that if x ¢ G then x¢ 1, for any n, thus
n
g(r)(x-b ) =0, for r =0,1,2,3,..., and so f(r)(x) =0.)
a.n n €

From (c), we see that the formal Taylor expansion of f about
€

‘any point a ¢ G 1is identically zero. However, by (a), we see, since
G is everywhere dense in R, that f is not identically zero on any
. €

opén set. Thus fe is not analytic on CG. However if ae G then a ¢ In ,
o
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e

a
n
1 0 .
for some n , whence { (x) = ———exp in some
o € 2 2

n K (x=-b ) =-a

on n n
o | o o

neighborhood of a. Thus f€ (x) is analytic at a ¢ G. Thus we have

(d) fe is analytic at the point a if and only if a ¢ G.
Since the lebesgue measure of G is less than ¢, property (iii) has
been demonstrated.

Since by (a), sgn f€ is the characteristic function of G, and
since G = R, it follows that sgn f€ (x) = 1 at any point at which sgn f
is continuous. Since sgn fE is clearly continuous on G, and since )
sgn fe (x) =0, if x¢ G, we see that G 1is precisely the set of points

of continuity of sgn f . Since G has ILebesgue measure which is less
€

than ¢, it follows from a well known characterization of Riemann
integrable functions that f 1is not Riemann integrable on any interval
€

the length of which exceeds e.

Since the zeros of an analytic function are isolated, the signum
function of an analytic function is Riemann integrable. Thus in some
sense, the example constructed here is the best possible with respect
to properties (i) and (ii).

)
3. A nowhere analytic C function. Let us write {f = fi/ ,
n n

where f1/ is the function constructed in §2 with ¢ = 4/n. From (b),
n .

we see that A; = sup { ,f(:;) (x)l: x ¢ R} is finite and non-zero
for every n =1,2,3,... and r =0,4,2,3... .

Let B = max {A:: 0<r<n and 1<s<n}. We define a function
n r= =8z

f by
o0 £ (%)
flx) = = o
n=1 n Bn

©
We will show that f ¢ C (R) but that f is nowhere analytic.

th
We consider the formal r derivative of f,
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As in the previous paragraph, we argue that all but a finite number of
terms of the above series are dominated by the corresponding terms

1 : 0
of those of 2—2-. Thus, as in §2, we see that f ¢ C (R).
n

® -k-1 k- 1\

Let us now consider the sets G = J |r =———, r +
n Kt k n k n

associated with the functions fn. Clearly {Gn} is a decreasing sequence.

o
1
We have mGn < o and thus m(h Gn = 0, where m denotes Lebesgue
n=1

0

measure. Thus c(m G is everywhere dense in R.
n
n=4 )

o
Now we will show that f is not analytic at any point a ¢ C (/) G ).
n=1 n
Thus, since the set of points at which a function is analytic is open, it
will follow that f is nowhere analytic.

© , 0
let ae¢C () G). Then a¢ N G. If a¢ G, for every n,
n n n
n=1 n=1

then, by (c), we have f(;) (a) = 0, for r =0,1,2,3,... and n =1,2,3... .

Thus the Taylor expansion of f about a is identically zero. But then { is

not analytic at a since f is not identically zero in any neighborhood of a.

Now, if there exists n such that a ¢ G , then since {G } is a decreasing
n n

sequence, there is an integer no suchthat a ¢ G, if n< no, but
n =

(r)

a¢G, if n>n . Thus, by (c), f (a) =0, if n>n and for
n ) n o

r =0,1,2,3,... . We therefore have

n (r)
o f "(a)
f(r)(a) R _121__ .
n=i n B
n

Now the derivatives above are also those of the function
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n

o f (x)
glx) = Z ’
n={ n B
n

evaluated at x = a. Each f 1is analytic on G ; thus g is certainly
n n
n

o

analytic on M Gn = G . In particular then g is analytic at a.
n=i %o

Now suppose { is analytic at x = a. Then we have

g (x) = f(x),

for x in some neighborhood H of a since all respective derivatives
are equal at a. Thus

© fn (x)
= 2 =0,
n=n +1 n B

(o} n

for x € H. Since each term of the above series is non-negative, we
have fn + (x) = 0, for all x ¢ H. It follows that
o

x: f x)>0} = G
{ n +1( ) } n +1
o o
is not everywhere dense. This is a contradiction, since G contains
n
(<]

the set of rational numbers.

©
Thus f is not analytic on C(() G ), whence f is nowhere
n=1 o
analytic.

It is also not difficult to see that f also satisfies property (ii)
of §2, where we set ¢ = 1.
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