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Abstract
Let Ω𝑛 be the ring of polynomial-valued holomorphic differential forms on complex n-space, referred to in physics
as the superspace ring of rank n. The symmetric group 𝔖𝑛 acts diagonally on Ω𝑛 by permuting commuting and
anticommuting generators simultaneously. We let 𝑆𝐼𝑛 ⊆ Ω𝑛 be the ideal generated by𝔖𝑛-invariants with vanishing
constant term and study the quotient 𝑆𝑅𝑛 = Ω𝑛/𝑆𝐼𝑛 of superspace by this ideal. We calculate the doubly-graded
Hilbert series of 𝑆𝑅𝑛 and prove an ‘operator theorem’, which characterizes the harmonic space 𝑆𝐻𝑛 ⊆ Ω𝑛
attached to 𝑆𝑅𝑛 in terms of the Vandermonde determinant and certain differential operators. Our methods employ
commutative algebra results that were used in the study of Hessenberg varieties. Our results prove conjectures of
N. Bergeron, Colmenarejo, Li, Machacek, Sulzgruber, Swanson, Wallach and Zabrocki.
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1. Introduction

Let x𝑛 = (𝑥1, . . . , 𝑥𝑛) be a list of n variables and let C[x𝑛] be the polynomial ring in these variables
over C. The symmetric group 𝔖𝑛 acts on C[x𝑛] by subscript permutation; the fixed subspace C[x𝑛]𝔖𝑛
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is the algebra of symmetric polynomials. The coinvariant ideal 𝐼𝑛 ⊆ C[x𝑛] is the ideal 𝐼𝑛 := (C[x𝑛]𝔖𝑛
+ )

generated by the space C[x𝑛]𝔖𝑛
+ of symmetric polynomials with vanishing constant term, and the

coinvariant ring 𝑅𝑛 := C[x𝑛]/𝐼𝑛 is the quotient of C[x𝑛] by 𝐼𝑛.
The graded𝔖𝑛-module 𝑅𝑛 is among the most important objects in algebraic combinatorics. E. Artin

proved [4] that the ‘sub-staircase monomials’ {𝑥𝑎1
1 · · · 𝑥𝑎𝑛𝑛 : 𝑎𝑖 < 𝑖} descend to a basis of 𝑅𝑛, so that

𝑅𝑛 has Hilbert series

Hilb(𝑅𝑛; 𝑞) = [𝑛]!𝑞 , (1.1)

where we use the standard q-number and q-factorial notation

[𝑛]𝑞 := 1 + 𝑞 + · · · + 𝑞𝑛−1 =
1 − 𝑞𝑛

1 − 𝑞
and [𝑛]!𝑞 := [𝑛]𝑞 [𝑛 − 1]𝑞 · · · [1]𝑞 . (1.2)

Chevalley showed [10] that 𝑅𝑛 � C[𝔖𝑛] carries the regular representation of 𝔖𝑛 as an ungraded
𝔖𝑛-module, and Borel showed [8] that 𝑅𝑛 = 𝐻•(Fl(𝑛)) presents the cohomology of the type A complete
flag variety.

Now let x𝑛 = (𝑥1, . . . , 𝑥𝑛) and y𝑛 = (𝑦1, . . . , 𝑦𝑛) be two sets of n commuting variables and consider
the polynomial ring C[x𝑛, y𝑛] over these variables with the diagonal action of 𝔖𝑛, viz.

𝑤 · 𝑥𝑖 := 𝑥𝑤 (𝑖) 𝑤 · 𝑦𝑖 := 𝑦𝑤 (𝑖) (𝑤 ∈ 𝔖𝑛, 1 ≤ 𝑖 ≤ 𝑛). (1.3)

Let 𝐷𝐼𝑛 ⊆ C[x𝑛, y𝑛] be the ideal generated by the 𝔖𝑛-invariants with vanishing constant term. Garsia
and Haiman [12, 17] initiated the study of the diagonal coinvariant ring

𝐷𝑅𝑛 := C[x𝑛, y𝑛]/𝐷𝐼𝑛. (1.4)

The quotient 𝐷𝑅𝑛 is a doubly-graded 𝔖𝑛-module. Haiman used the algebraic geometry of Hilbert
schemes to prove [18] that dim 𝐷𝑅𝑛 = (𝑛 + 1)𝑛−1 and that, as an ungraded 𝔖𝑛-module, the space 𝐷𝑅𝑛
carries the sign-twisted permutation action of 𝔖𝑛 on size n parking functions. Carlsson and Oblomkov
used the Lusztig-Smelt paving of affine Springer fibers to give [9] a monomial basis of 𝐷𝑅𝑛, which
restricts to Artin’s basis of 𝑅𝑛 when the y-variables are set to zero.

Next, let x𝑛 = (𝑥1, . . . , 𝑥𝑛) be a list of n commuting variables and let 𝜃𝑛 = (𝜃1, . . . , 𝜃𝑛) be a list of n
anticommuting variables. The superspace ring of rank n is the tensor product

Ω𝑛 = C[x𝑛] ⊗ ∧{𝜃𝑛} (1.5)

of the polynomial ring in the x-variables and the exterior algebra over the 𝜃-variables. This ring arises in
physics, where the x-variables correspond to the states of bosons and the 𝜃-variables correspond to the
states of fermions; see, for example, [28]. Accordingly, we shall refer to x-degree as bosonic degree and
𝜃-degree as fermionic degree. The ring Ω𝑛 also arises in differential geometry as the ring of polynomial-
valued holomorphic differential forms on complex n-space (and we would write 𝑑𝑥𝑖 instead of 𝜃𝑖); this
explains our use of Ω.

The symmetric group 𝔖𝑛 acts diagonally on superspace by the rule

𝑤 · 𝑥𝑖 = 𝑥𝑤 (𝑖) 𝑤 · 𝜃𝑖 = 𝜃𝑤 (𝑖) (𝑤 ∈ 𝔖𝑛, 1 ≤ 𝑖 ≤ 𝑛). (1.6)

Once again, we denote by (Ω𝑛)𝔖𝑛
+ the subalgebra of invariant polynomials with vanishing constant term

and consider the quotient ring

𝑆𝑅𝑛 := Ω𝑛/𝑆𝐼𝑛, (1.7)
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where the supercoinvariant ideal 𝑆𝐼𝑛 ⊆ Ω𝑛 is given by

𝑆𝐼𝑛 := ideal generated by (Ω𝑛)𝔖𝑛
+ ⊆ Ω𝑛. (1.8)

Like 𝐷𝑅𝑛, the quotient 𝑆𝑅𝑛 is a bigraded 𝔖𝑛-module, this time with respect to bosonic and fermionic
degree.

The study of 𝑆𝑅𝑛 was initiated by the Fields Institute Combinatorics Group1 in roughly 2018.
This group conjectured that dim 𝑆𝑅𝑛 is the ordered Bell number counting ordered set partitions of
[𝑛] := {1, . . . , 𝑛} and that, as an ungraded 𝔖𝑛-module, the quotient 𝑆𝑅𝑛 carries the permutation action
of 𝔖𝑛 on these ordered set partitions, up to sign twist. Furthermore, this group conjectured that the
doubly-graded 𝔖𝑛-structure of 𝑆𝑅𝑛 was given by

grFrob(𝑆𝑅𝑛; 𝑞, 𝑧) =
𝑛∑
𝑘=1

𝑧𝑛−𝑘 · Δ ′
𝑒𝑘−1 𝑒𝑛 |𝑡→0, (1.9)

where q tracks bosonic degree, z tracks fermionic degree, 𝑒𝑛 is the elementary symmetric function of
degree n, and Δ ′

𝑒𝑘−1 is a primed delta operator acting on the ring Λ of symmetric functions; see [14, 40]
for more details. The identity (1.9) implies that the bigraded Hilbert series of 𝑆𝑅𝑛 is given by

Hilb(𝑆𝑅𝑛; 𝑞, 𝑧) =
𝑛∑
𝑘=1

𝑧𝑛−𝑘 · [𝑘]!𝑞 · Stir𝑞 (𝑛, 𝑘), (1.10)

where the q-Stirling number Stir𝑞 (𝑛, 𝑘) is defined by the recursion

Stir𝑞 (𝑛, 𝑘) = [𝑘]𝑞 · Stir𝑞 (𝑛 − 1, 𝑘) + Stir𝑞 (𝑛 − 1, 𝑘 − 1) (1.11)

together with the initial condition

Stir𝑞 (0, 𝑘) =
{

1 𝑘 = 0
0 otherwise.

(1.12)

Equation (1.10) was conjectured explicitly by Sagan and Swanson [33, Conj. 6.5].
The conjectures (1.9) and (1.10) were publicized at a BIRS meeting in January 2019. This resulted

in great excitement. Haglund, Rhoades and Shimozono [15] had introduced the quotient ring

𝑅𝑛,𝑘 := C[x𝑛]/(𝑥𝑘1 , 𝑥𝑘2 , . . . , 𝑥𝑘𝑛 , 𝑒𝑛, 𝑒𝑛−1, . . . , 𝑒𝑛−𝑘+1) (1.13)

and had proven [16] that

grFrob(𝑅𝑛,𝑘 ; 𝑞) = (rev𝑞 ◦ 𝜔)Δ ′
𝑒𝑘−1 𝑒𝑛 |𝑡=0 . (1.14)

Pawlowski and Rhoades [27] introduced the moduli space 𝑋𝑛,𝑘 of n-tuples of lines (ℓ1, . . . , ℓ𝑛) in C𝑘
such that ℓ1 + · · · + ℓ𝑘 = C𝑘 and proved the cohomology presentation

𝐻•(𝑋𝑛,𝑘 ) = 𝑅𝑛,𝑘 . (1.15)

The authors [30] introduced the superspace Vandermonde

𝛿𝑛,𝑘 := 𝜀𝑛 ·
(
𝑥𝑘−1

1 · · · 𝑥𝑘−1
𝑛−𝑘𝑥

𝑘−1
𝑛−𝑘+1𝑥𝑘−2

𝑛−𝑘+2 · · · 𝑥
1
𝑛−1𝑥0

𝑛 × 𝜃1 · · · 𝜃𝑛−𝑘
)

(1.16)

1Nantel Bergeron, Laura Colmenarejo, Shu Xiao Li, John Machacek, Robin Sulzgruber, and Mike Zabrocki
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and showed that the subspace 𝑉𝑛,𝑘 ⊆ Ω𝑛 obtained by starting with 𝛿𝑛,𝑘 and closing under the partial
derivative operators 𝜕

𝜕𝑥𝑖
and linearity carries a graded𝔖𝑛-action with graded character Δ ′

𝑒𝑘−1 𝑒𝑛 |𝑡=0. Of
all of these models, the supercoinvariant ring 𝑆𝑅𝑛 has the most intrinsic invariant-theoretic definition
which extends to arbitrary complex reflection groups 𝐺 ⊆ 𝐺𝐿𝑛 (C) in the most obvious way.

Zabrocki extended the conjecture (1.9) in a different direction by introducing another set of commut-
ing variables y𝑛 = (𝑦1, . . . , 𝑦𝑛) and considering the triply-graded 𝔖𝑛-module obtained by quotienting
C[x𝑛, y𝑛] ⊗ ∧{𝜃𝑛} by the ideal I generated by 𝔖𝑛-invariants with vanishing constant term. Zabrocki
conjectured [40] that

grFrob (C[x𝑛, y𝑛] ⊗ ∧{𝜃𝑛}/𝐼; 𝑞, 𝑡, 𝑧) =
𝑛∑
𝑘=1

𝑧𝑛−𝑘 · Δ ′
𝑒𝑘−1 𝑒𝑛, (1.17)

where q tracks x-degree, t tracks y-degree, and z tracks 𝜃-degree. Observe that (1.17) reduces to (1.9)
if the y-variables are set to zero, and Haiman’s theorem [18] when the 𝜃-variables are set to zero. The
conjecture (1.17) was the first predicted algebraic model for Δ ′

𝑒𝑘−1 𝑒𝑛; the authors [30] gave a parallel
conjectural model for Δ ′

𝑒𝑘−1 𝑒𝑛 involving the superspace Vandermondes 𝛿𝑛,𝑘 . The conjecture (1.17) was
extended to two sets of bosonic variables and two sets of fermionic variables by D’Adderio, Iraci and
Vanden Wyngaerd [11] using Θ-operators on symmetric functions; the case of two sets of fermionic
variables alone was solved by Iraci-Rhoades-Romero [20] and Kim-Rhoades [22]; see [21, 23] for a
connection between this quotient and skein relations on set partitions. F. Bergeron has a substantial
family [5, 6, 7] of conjectures on coinvariant quotients with multiple sets of bosonic and fermionic
variables.

Despite all of this activity, the equations (1.9) and (1.10) on the structure of 𝑆𝑅𝑛 remained frustratingly
conjectural. The methods that were used to successfully analyze objects like 𝑅𝑛,𝑘 , 𝑋𝑛,𝑘 and 𝑉𝑛,𝑘 have
not yet been extended to study 𝑆𝑅𝑛. Swanson and Wallach [36, 37] proved that the sign-isotypic
component of (1.9) is correct and that the fermionic degree 𝑛 − 𝑘 piece of 𝑆𝑅𝑛 has top bosonic degree
(𝑛 − 𝑘) · (𝑘 − 1) +

(𝑘
2
)

as predicted by (1.10); this was the only significant progress on 𝑆𝑅𝑛. In fact,
before this paper, even the dimension of 𝑆𝑅𝑛 was unknown.

In this paper, we will prove that the formula (1.10) calculates the bigraded Hilbert series of 𝑆𝑅𝑛
(Theorem 5.3). We will also prove (Theorem 5.1) an ‘operator conjecture’ of Swanson and Wallach
[37], which describes the harmonic space 𝑆𝐻𝑛 ⊆ Ω𝑛 attached to the supercoinvariant ring 𝑆𝑅𝑛 using
certain ‘higher Euler operators’ on Ω𝑛 which act by polarization.2 The space 𝑆𝐻𝑛 is helpful for machine
computations because 𝑆𝐻𝑛 � 𝑆𝑅𝑛 as doubly-graded 𝔖𝑛-modules, and yet members of 𝑆𝐻𝑛 are honest
superspace elements 𝑓 ∈ Ω𝑛 rather than cosets 𝑓 + 𝑆𝐼𝑛 ∈ 𝑆𝑅𝑛. The 𝔖𝑛-module structure of 𝑆𝑅𝑛,
ungraded or (bi)graded, remains open.

We turn to a description of our methods. The analysis of 𝑅𝑛,𝑘 and its variations relied on the
remarkably well-behaved Gröbner theory of its defining ideal (𝑥𝑘1 , . . . , 𝑥𝑘𝑛 , 𝑒𝑛, . . . , 𝑒𝑛−𝑘+1) ⊆ C[x𝑛].
This facilitated multiple provable combinatorial bases [13, 15, 26, 27] of 𝑅𝑛,𝑘 from which its structure
as a graded vector space or𝔖𝑛-module could be studied. There exists an extension of Gröbner theory to
the superspace ring Ω𝑛, but the Gröbner theory of the supercoinvariant ideal 𝑆𝐼𝑛 ⊆ Ω𝑛 has proven
to be inscrutable. Combinatorially, this has translated into a failure of using straightening arguments
to show that nice potential bases of 𝑆𝑅𝑛 span this quotient ring. Indeed, our approach does not prove
the existence of any specific basis of 𝑆𝑅𝑛. For a potential road from our methods to an Artin-like
basis of 𝑆𝑅𝑛 conjectured by Sagan and Swanson [33, Conj. 6.7], see Theorem 5.4, Conjecture 5.5 and
Proposition 5.7.

Since the direct analysis of 𝑆𝑅𝑛 by means of a basis has proven elusive, we adopt an indirect
approach that stands, in a nutshell, on the elimination of fermionic variables. This allows us to trade
supercommutative algebra problems in Ω𝑛 for commutative algebra problems in C[x𝑛], for which more
tools have been developed.

2This characterization of 𝑆𝐻𝑛 was conjectured earlier in unpublished work of N. Bergeron, L. Colmenarejo, S. X. Li, J.
Machacek, R. Sulzgruber and M. Zabrocki.
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For a given subset 𝐽 ⊆ [𝑛], we use a miraculous identity (Lemma 3.3) involving partial deriva-
tives of complete homogeneous symmetric polynomials to deduce the existence of a regular sequence
𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 ∈ C[x𝑛] (Lemma 3.5) in C[x𝑛]. These regular sequences are used to prove (Proposition
3.7) that the bigraded Hilbert series of 𝑆𝑅𝑛 is bounded above by the expression (1.10).

Next, we introduce a family𝔇𝐽 of combinatorially defined differential operators acting on Ω𝑛, which
are indexed by subsets 𝐽 ⊆ [𝑛]. We prove (Lemma 4.8) that the 𝔇𝐽 exhibit a triangularity property with
respect to the Gale order on subsets 𝐽 ⊆ [𝑛] with leading term given by the polynomial3

𝑓𝐽 :=
∏
𝑗∈𝐽

𝑥 𝑗

(∏
𝑖 > 𝑗

(𝑥 𝑗 − 𝑥𝑖)
)
∈ C[x𝑛] . (1.18)

This leads to a general recipe (Theorem 5.4) for constructing bases of 𝑆𝑅𝑛 from bases of the various
commutative quotient rings C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) by the colon ideals

(𝐼𝑛 : 𝑓𝐽 ) := {𝑔 ∈ C[x𝑛] : 𝑔 · 𝑓𝐽 ∈ 𝐼𝑛}. (1.19)

By identifying (𝐼𝑛 : 𝑓𝐽 ) with the ideal (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) cut out by the regular sequence in C[x𝑛] used
to prove the upper bound on Hilb(𝑆𝑅𝑛; 𝑞, 𝑧) (Theorem 4.12), we are able to prove both the operator
theorem characterizing the superharmonic space 𝑆𝐻𝑛 (Theorem 5.1) and the formula (1.10) for the
bigraded Hilbert series of 𝑆𝑅𝑛 (Theorem 5.3).

The rest of the paper is organized as follows. In Section 2, we give background material on superspace
and commutative algebra. In Section 3, we bound the bigraded Hilbert series of 𝑆𝑅𝑛 from above using
regular sequences. In Section 4, we introduce the differential operators 𝔇𝐽 and relate them to the colon
ideals (𝐼𝑛 : 𝑓𝐽 ). In Section 5, we prove our main results: the operator theorem and the Hilbert series of
𝑆𝑅𝑛. We also present a conjecture for an Artin-like basis of C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) and prove this conjecture
in a special case. We close in Section 6 with some open problems.

2. Background

2.1. Superspace

As in the introduction, the superspace ring Ω𝑛 = C[x𝑛] ⊗ ∧{𝜃𝑛} is the tensor product of a symmetric
algebra of rank n and an exterior algebra of rank n, both over C. A monomial in Ω𝑛 is a nonzero product
of the generators x𝑛 = (𝑥1, . . . , 𝑥𝑛) and 𝜃𝑛 = (𝜃1, . . . , 𝜃𝑛). A bosonic monomial is a monomial that
only involves the generators x𝑛, whereas a fermionic monomial is a monomial that only involves the
generators 𝜃𝑛. For any subset 𝐽 ⊆ [𝑛], we let 𝜃𝐽 be the product of the fermionic generators 𝜃 𝑗 indexed
by 𝑗 ∈ 𝐽 in increasing order; we have a direct sum decomposition

Ω𝑛 =
⊕
𝐽 ⊆[𝑛]

C[x𝑛] · 𝜃𝐽 . (2.1)

The Gale order ≤Gale on subsets 𝐽 ⊆ [𝑛] of the same cardinality will be used heavily. This partial
order is defined by

{𝑎1 < · · · < 𝑎𝑟 } ≤Gale {𝑏1 < · · · < 𝑏𝑟 } if 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖. (2.2)

This order will be used to compare fermionic monomials 𝜃𝐽 in the superspace ring Ω𝑛.
The ring Ω𝑛 may be identified with polynomial valued differential forms on C𝑛; as such, it carries

a plethora of derivative operators. For 1 ≤ 𝑖 ≤ 𝑛, let 𝜕𝑖 : C[x𝑛] → C[x𝑛] be the usual partial
differentiation with respect to 𝑥𝑖 . By acting on the first tensor factor of Ω𝑛 = C[x𝑛] ⊗ ∧{𝜃𝑛}, this

3See also Definition 4.6.
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extends to an action 𝜕𝑖 : Ω𝑛 → Ω𝑛. For 1 ≤ 𝑖 ≤ 𝑛, let 𝜕 𝜃𝑖 : ∧{𝜃𝑛} → ∧{𝜃𝑛} be the contraction operator
defined on fermionic monomials by

𝜕 𝜃𝑖 : 𝜃 𝑗1 · · · 𝜃 𝑗𝑟 =

{
(−1)𝑠−1𝜃 𝑗1 · · · 𝜃 𝑗𝑠 · · · 𝜃 𝑗𝑟 if 𝑗𝑠 = 𝑖 for some 𝑠,

0 otherwise
(2.3)

for any distinct indices 1 ≤ 𝑗1, . . . , 𝑗𝑟 ≤ 𝑛 where ·̂ denotes omission. By acting on the second tensor
factor of Ω𝑛 = C[x𝑛] ⊗ ∧{𝜃𝑛}, we have a fermionic derivative operator 𝜕 𝜃𝑖 : Ω𝑛 → Ω𝑛.

We let 𝑑 : Ω𝑛 → Ω𝑛 be the Euler operator of differential geometry defined by

𝑑 : 𝑓 ↦→
𝑛∑
𝑖=1

𝜕𝑖 𝑓 · 𝜃𝑖 (2.4)

for all 𝑓 ∈ Ω𝑛. This operator lowers bosonic degree by 1 while raising fermionic degree by 1. We will
need ‘higher’ versions 𝑑 𝑗 : Ω𝑛 → Ω𝑛 ( 𝑗 ≥ 1) of these operators given by

𝑑 𝑗 : 𝑓 ↦→
𝑛∑
𝑖=1

𝜕
𝑗
𝑖 𝑓 · 𝜃𝑖 . (2.5)

The operator 𝑑 𝑗 decreases bosonic degree by j while raising fermionic degree by 1. We have 𝑑1 = 𝑑. If
𝐽 = { 𝑗1 < 𝑗2 < · · · } is a set of positive integers, we write

𝑑𝐽 := 𝑑 𝑗1 𝑑 𝑗2 · · · (2.6)

for the corresponding product of higher Euler operators.
Considering bosonic and fermionic degree separately, superspace Ω𝑛 admits a bigrading

Ω𝑛 =
⊕
𝑖≥0

𝑛⊕
𝑗=0

(Ω𝑛)𝑖, 𝑗 where (Ω𝑛)𝑖, 𝑗 = C[x𝑛]𝑖 ⊗ ∧ 𝑗 {𝜃𝑛}. (2.7)

The diagonal action of the symmetric group 𝔖𝑛 on Ω𝑛 preserves this bigrading. As in the introduction,
we let (Ω𝑛)𝔖𝑛 be the fixed subalgebra for this action.

Let 𝐼 ⊆ Ω𝑛 be a bihomogeneous ideal in superspace (such as 𝑆𝐼𝑛). Analysis of the quotient ring
Ω𝑛/𝐼 is often complicated by the fact that its elements 𝑓 + 𝐼 are cosets rather than superspace elements
𝑓 ∈ Ω𝑛. The theory of (superspace) harmonics is a powerful technique for replacing cosets with honest
elements of superspace. We turn to a description of this method.

The partial derivative operators 𝜕𝑖 , 𝜕 𝜃𝑖 : Ω𝑛 → Ω𝑛 satisfy the relations

𝜕𝑖𝜕 𝑗 = 𝜕 𝑗𝜕𝑖 𝜕𝑖𝜕
𝜃
𝑗 = 𝜕 𝜃𝑗 𝜕𝑖 𝜕 𝜃𝑖 𝜕 𝜃𝑗 = −𝜕 𝜃𝑗 𝜕 𝜃𝑖 (2.8)

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Since these are the defining relations of Ω𝑛, for any superspace element
𝑓 = 𝑓 (𝑥1, . . . , 𝑥𝑛, 𝜃1, . . . , 𝜃𝑛) ∈ Ω𝑛, we get an operator

𝜕 𝑓 = 𝑓 (𝜕1, . . . , 𝜕𝑛, 𝜕 𝜃1 , . . . , 𝜕 𝜃𝑛 ) : Ω𝑛 → Ω𝑛 (2.9)

by replacing each 𝑥𝑖 in f with the bosonic derivative 𝜕𝑖 and each 𝜃𝑖 in f with the fermionic derivative
𝜕 𝜃𝑖 . This leads to an action of superspace on itself given by

� : Ω𝑛 ×Ω𝑛 → Ω𝑛 𝑓 � 𝑔 := (𝜕 𝑓 ) (𝑔). (2.10)

The �-action gives Ω𝑛-module structure on Ω𝑛.
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We use the �-action to construct an inner product on Ω𝑛 as follows. Let · : Ω𝑛 → Ω𝑛 be the
conjugate-linear involution that fixes all bosonic monomials, satisfies 𝜃𝑖1 · · · 𝜃𝑖𝑟 = 𝜃𝑖𝑟 · · · 𝜃𝑖1 for all
fermionic monomials 𝜃𝑖1 · · · 𝜃𝑖𝑟 , and sends any scalar 𝑐 ∈ C to its complex conjugate 𝑐. The pairing

〈−,−〉 : Ω𝑛 ×Ω𝑛 → Ω𝑛 〈 𝑓 , 𝑔〉 := constant term of 𝑓 � 𝑔 (2.11)

is easily seen to be an inner product, with the monomials {𝑥𝑎1
1 · · · 𝑥𝑎𝑛𝑛 · 𝜃𝐼 } forming an orthogonal (but

not orthonormal) basis.
Now suppose 𝐼 ⊆ Ω𝑛 is a bihomogeneous ideal defined over R (such as 𝑆𝐼𝑛). We have the equality

𝐼⊥ = {𝑔 ∈ Ω𝑛 : 𝑓 � 𝑔 = 0 for all 𝑓 ∈ 𝐼} (2.12)

of subspaces of Ω𝑛, where 𝐼⊥ is calculated with respect to the above inner product. The subspace
𝐼⊥ ⊆ Ω𝑛 is the harmonic space attached to I. We have a direct sum decomposition Ω𝑛 = 𝐼 ⊕ 𝐼⊥ and
an isomorphism of bigraded vector spaces Ω𝑛/𝐼 � 𝐼⊥. If I is 𝔖𝑛-stable, the isomorphism Ω𝑛/𝐼 � 𝐼⊥

is also an isomorphism of bigraded 𝔖𝑛-modules. The harmonic model 𝐼⊥ of Ω𝑛/𝐼 is useful because its
members are honest superspace elements rather than cosets.

We close this subsection with a combinatorial identity due to Sagan and Swanson that will be
useful in our analysis of 𝑆𝑅𝑛. For a subset 𝐽 ⊆ [𝑛], we define the J-staircase to be the sequence
st(𝐽) = (st(𝐽)1, . . . , st(𝐽)𝑛), where

st(𝐽)1 :=

{
0 1 ∈ 𝐽

1 1 ∉ 𝐽
(2.13)

and

st(𝐽)𝑖+1 :=

{
st(𝐽)𝑖 𝑖 + 1 ∈ 𝐽

st(𝐽)𝑖 + 1 𝑖 + 1 ∉ 𝐽.
(2.14)

For example, if 𝑛 = 7 and 𝐽 = {3, 5, 6}, we have st(𝐽) = (st(𝐽)1, . . . , st(𝐽)7) = (1, 2, 2, 3, 3, 3, 4).
Observe that st(∅) = (1, 2, . . . , 𝑛) is the usual staircase.
Lemma 2.1. (Sagan-Swanson [33]) We have the polynomial identity∑

𝐽 ⊆[𝑛]

(
𝑛∏
𝑖=1

[st(𝐽)𝑖]𝑞

)
· 𝑧 |𝐽 | =

𝑛∑
𝑘=1

𝑧𝑛−𝑘 · [𝑘]!𝑞 · Stir𝑞 (𝑛, 𝑘). (2.15)

2.2. Commutative algebra

Our overarching strategy for analyzing 𝑆𝑅𝑛 is to transfer problems involving the superspace ring Ω𝑛 to
problems involving the better-understood polynomial ring C[x𝑛]. We review the relevant notions from
commutative algebra.

A commutative graded C-algebra 𝐴 =
⊕

𝑖≥0 𝐴𝑖 is Artinian if A is a finite-dimensional C-vector
space. The Hilbert series of A is

Hilb(𝐴; 𝑞) :=
∑
𝑖≥0

dimC (𝐴𝑖) · 𝑞𝑖 , (2.16)

assuming each graded piece 𝐴𝑖 is finite-dimensional.
A sequence 𝑓1, . . . , 𝑓𝑛 of n polynomials in C[x𝑛] of homogeneous positive degrees is a regular

sequence if, for each 0 ≤ 𝑖 ≤ 𝑛 − 1, we have a short exact sequence

0 → C[x𝑛]/( 𝑓1, . . . , 𝑓𝑖)
× 𝑓𝑖+1−−−−−→ C[x𝑛]/( 𝑓1, . . . , 𝑓𝑖)

can.−−−−→ C[x𝑛]/( 𝑓1, . . . , 𝑓𝑖 , 𝑓𝑖+1) → 0, (2.17)
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where the first map is induced by multiplication by 𝑓𝑖+1 and the second map is the canonical pro-
jection. If the regular sequence 𝑓1, . . . , 𝑓𝑛 consists of homogeneous polynomials, the quotient ring
C[x𝑛]/( 𝑓1, . . . , 𝑓𝑛) is a finite-dimensional graded vector space with Hilbert series

Hilb(C[x𝑛]/( 𝑓1, . . . , 𝑓𝑛); 𝑞) = [deg 𝑓1]𝑞 · · · [deg 𝑓𝑛]𝑞 . (2.18)

An Artinian graded quotient C[x𝑛]/𝔞 of C[x𝑛] is a complete intersection if 𝔞 = ( 𝑓1, . . . , 𝑓𝑛) for some
length n regular sequence 𝑓1, . . . , 𝑓𝑛 ∈ C[x𝑛] of homogeneous polynomials.

The regularity of a sequence 𝑓1, . . . , 𝑓𝑛 ∈ C[x𝑛] of polynomials of homogeneous positive degree can
be interpreted in terms of the variety cut out by 𝑓1, . . . , 𝑓𝑛. Given any set 𝑆 ⊆ C[x𝑛] of polynomials,
write

V(𝑆) := {z ∈ C𝑛 : 𝑓 (z) = 0 for all 𝑓 ∈ 𝑆} (2.19)

for the locus of points in C𝑛 on which the polynomials in S vanish.

Lemma 2.2. Let 𝑓1, . . . , 𝑓𝑛 ∈ C[x𝑛] be a list of n homogeneous polynomials inC[x𝑛] of positive degree.
The sequence 𝑓1, . . . , 𝑓𝑛 is a regular sequence if and only if the variety V( 𝑓1, . . . , 𝑓𝑛) ⊆ C𝑛 cut out by
these polynomials consists of the origin {0} alone.

Let 𝔞 ⊆ C[x𝑛] be an ideal and let 𝑓 ∈ C[x𝑛] be a polynomial. The colon ideal (or ideal quotient) is

(𝔞 : 𝑓 ) := {𝑔 ∈ C[x𝑛] : 𝑓 · 𝑔 ∈ 𝔞} ⊆ C[x𝑛] . (2.20)

It is not difficult to check that (𝔞 : 𝑓 ) is an ideal in C[x𝑛] which contains 𝔞, and that (𝔞 : 𝑓 ) = C[x𝑛] if
and only if 𝑓 ∈ 𝔞.

Colon ideals will play a crucial role in our work, and we will need a criterion for determining a
generating set for them. Let 𝐴 =

⊕𝑑
𝑖=0 𝐴𝑖 be a finite-dimensional graded C-algebra with 𝐴𝑑 ≠ 0. The

algebra A is a Poincaré duality algebra if

• its top component 𝐴𝑑 � C is a 1-dimensional complex vector spaces, and
• for any 0 ≤ 𝑖 ≤ 𝑑, the multiplication map 𝐴𝑖 ⊗ 𝐴𝑑−𝑖 −→ 𝐴𝑑 � C is a perfect pairing.

If 𝐴 =
⊕𝑑

𝑖=0 𝐴𝑑 is a Poincaré duality algebra with 𝑑 ≠ 0, the maximal degree d is called the socle
degree of A. The following commutative algebra lemma will be remarkably useful to us.

Lemma 2.3. (Abe-Horiguchi-Masuda-Murai-Sato [2, Lem. 2.4]) Suppose 𝔞, 𝔞′ ⊆ C[x𝑛] are homoge-
neous ideals and 𝑓 ∈ C[x𝑛] is a homogeneous polynomial of degree k with 𝑓 ∉ 𝔞. Suppose 𝔞′ ⊆ (𝔞 : 𝑓 ).
If C[x𝑛]/𝔞′ is a Poincaré duality algebra of socle degree r and C[x𝑛]/𝔞 is a Poincaré duality algebra
of socle degree 𝑟 + 𝑘 , then 𝔞′ = (𝔞 : 𝑓 ).

We remark that [2, Lem. 2.4] was stated over the field R of real numbers, but its proof goes through
without change for arbitrary fields.

The polynomial ring C[x𝑛] inherits a theory of harmonics from the superspace ring Ω𝑛. Partial
differentiation yields an action � : C[x𝑛] × C[x𝑛] → C[x𝑛] of the polynomial ring C[x𝑛] on itself,
which gives rise to an inner product

〈−,−〉 : C[x𝑛] × C[x𝑛] → C 〈 𝑓 , 𝑔〉 = constant term of 𝑓 � 𝑔. (2.21)

If 𝐼 ⊆ C[x𝑛] is a homogeneous ideal, we have a direct sum decomposition C[x𝑛] = 𝐼 ⊕ 𝐼⊥ and an
identification

𝐼⊥ = {𝑔 ∈ C[x𝑛] : 𝑓 � 𝑔 = 0 for all 𝑓 ∈ 𝐼} (2.22)

of the harmonic space 𝐼⊥ as a subspace of C[x𝑛].
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The harmonic theory of the classical coinvariant ideal 𝐼𝑛 ⊆ C[x𝑛] is given as follows. Let 𝛿𝑛 ∈ C[x𝑛]
be the Vandermonde determinant

𝛿𝑛 :=
∏
𝑖< 𝑗

(𝑥 𝑗 − 𝑥𝑖) ∈ C[x𝑛] . (2.23)

Then 𝐼⊥𝑛 is a cyclic C[x𝑛]-module under the �-action generated by 𝛿𝑛. In symbols, we have

𝐼⊥𝑛 = C[x𝑛] � 𝛿𝑛. (2.24)

We write 𝐻𝑛 for the subspace 𝐼⊥𝑛 = C[x𝑛] � 𝛿𝑛 ⊆ C[x𝑛]; we have an isomorphism 𝑅𝑛 � 𝐻𝑛 of graded
𝔖𝑛-modules. The annihilator of 𝛿𝑛 under the �-action is precisely the coinvariant ideal 𝐼𝑛:

annC[x𝑛 ] (𝛿𝑛) = { 𝑓 ∈ C[x𝑛] : 𝑓 � 𝛿𝑛 = 0} = 𝐼𝑛. (2.25)

3. Upper Bound

3.1. A regular sequence in C[x𝒏]

Our first lemma gives a general technique for constructing interesting elements of the supercoinvariant
ideal 𝑆𝐼𝑛.

Lemma 3.1. The supercoinvariant ideal 𝑆𝐼𝑛 ⊆ Ω𝑛 contains the classical coinvariant ideal 𝐼𝑛 ⊆ C[x𝑛]
and is closed under the action of the Euler operator 𝑑 : Ω𝑛 → Ω𝑛.

Proof. The operator d commutes with the action of 𝔖𝑛 on Ω𝑛, so the result follows from the Leibniz
formula

𝑑 ( 𝑓 𝑔) = 𝑑𝑓 · 𝑔 ± 𝑓 · 𝑑𝑔, (3.1)

which holds for any bihomogeneous 𝑓 , 𝑔 ∈ Ω𝑛 (the sign is + if f has even fermionic degree and −
otherwise) and the relation 𝑑 ◦ 𝑑 = 0. �

Ideals in Ω𝑛 that are closed under the action of d are called differential ideals. To the knowledge
of the authors, the supercoinvariant ideal 𝑆𝐼𝑛 is the first differential ideal that has received significant
attention in algebraic combinatorics.

The most important elements of 𝑆𝐼𝑛 arising from Lemma 3.1 are as follows. Let ℎ𝑟 , 𝑒𝑟 ∈ C[x𝑛] be
the complete homogeneous and elementary symmetric polynomials

ℎ𝑟 :=
∑

1≤𝑖1≤···≤𝑖𝑟 ≤𝑛
𝑥𝑖1 · · · 𝑥𝑖𝑟 𝑒𝑟 :=

∑
1≤𝑖1< · · ·<𝑖𝑟 ≤𝑛

𝑥𝑖1 · · · 𝑥𝑖𝑟 . (3.2)

Here and throughout, if 𝑆 ⊆ [𝑛] is an index set, we use ℎ𝑟 (𝑆) and 𝑒𝑟 (𝑆) to denote the complete
homogeneous and elementary symmetric polynomials of degree r in the variables indexed by S. For
example, we have

ℎ2 (134) = 𝑥2
1 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2

3 + 𝑥3𝑥4 + 𝑥2
4 and 𝑒2(134) = 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥3𝑥4.

For any subset 𝑆 ⊆ [𝑛], it is well-known that

ℎ𝑟 (𝑆) ∈ 𝐼𝑛 whenever 𝑟 > 𝑛 − |𝑆 |. (3.3)
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Indeed, (3.3) follows inductively from the identity ℎ𝑟 (𝑆 ∪ 𝑖) = 𝑥𝑖ℎ𝑟−1(𝑆 ∪ 𝑖) + ℎ𝑟 (𝑆), which holds
whenever 𝑖 ∉ 𝑆. By Lemma 3.1, we have

𝑑ℎ𝑟 (𝑆) ∈ 𝑆𝐼𝑛 whenever 𝑟 > 𝑛 − |𝑆 |. (3.4)

Elements of 𝑆𝐼𝑛 of the form (3.3) and (3.4) are the only ones we will need.
For any subset 𝐽 ⊆ [𝑛], we construct a sequence (𝑞𝐽 ,1, 𝑞𝐽 ,2, . . . , 𝑞𝐽 ,𝑛) of superspace elements as

follows. Given 𝐽 ⊆ [𝑛], the sequence (𝑞𝐽 ,1, 𝑞𝐽 ,2, . . . , 𝑞𝐽 ,𝑛) in Ω𝑛 is defined by

𝑞𝐽 ,𝑖 :=

{
ℎ𝑖 ({𝑖, 𝑖 + 1, . . . , 𝑛}) · 𝜃𝐽 𝑖 < min(𝐽)
𝑑ℎ𝑟 (𝐽 ∪ {𝑖 + 1, . . . , 𝑛}) · 𝜃𝐽−max(𝐽∩{1,...,𝑖 }) 𝑖 ≥ min(𝐽),

(3.5)

where in the second branch 𝑟 = 𝑛 − |𝐽 ∪ {𝑖 + 1, . . . , 𝑛}| + 1.
The superspace elements 𝑞𝐽 ,𝑖 may be visualized (and remembered) as follows. Consider a linear

array of n boxes labeled 1, . . . , 𝑛 from left to right, where the boxes in positions 𝑗 ∈ 𝐽 are decorated
with a 𝜃. We consider moving a pointer from left to right along this array. When 𝑛 = 7 and 𝐽 = {3, 5, 6},
the picture is shown in Figure 1.

• When the pointer is at a position i which is strictly to the left of all of the 𝜃 decorations, the
corresponding superspace element is 𝑞𝐽 ,𝑖 = ℎ𝑖 ({𝑖, 𝑖 + 1, . . . , 𝑛}) · 𝜃𝐽 .

• When the pointer is at a position i which is weakly to the right of at least one 𝜃 decoration,
the corresponding superspace element is 𝑞𝐽 ,𝑖 = 𝑑ℎ𝑟 (𝐽 ∪ {𝑖 + 1, . . . , 𝑛}) · 𝜃𝐽 , where 𝐽 consists
of all elements of J except for the closest element 𝑗 ∈ 𝐽 weakly to the right of the pointer and
𝑟 = 𝑛 − |𝐽 ∪ {𝑖 + 1, . . . , 𝑛}| + 1 is the minimal degree such that ℎ𝑟 (𝐽 ∪ {𝑖 + 1, . . . , 𝑛}) ∈ 𝐼𝑛 lies in the
classical coinvariant ideal.

In our example, we have

𝑞𝐽 ,1 = ℎ1 (1234567) · 𝜃356 𝑞𝐽 ,2 = ℎ2 (234567) · 𝜃356 𝑞𝐽 ,3 = 𝑑ℎ3 (34567) · 𝜃56 𝑞𝐽 ,4 = 𝑑ℎ4 (3567) · 𝜃56

𝑞𝐽 ,5 = 𝑑ℎ4 (3567) · 𝜃36 𝑞𝐽 ,6 = 𝑑ℎ4 (3567) · 𝜃35 𝑞𝐽 ,7 = 𝑑ℎ5 (356) · 𝜃35.

We record some basic observations about the polynomials 𝑞𝐽 ,𝑖 .

Lemma 3.2. Let 𝐽 ⊆ [𝑛] and let (𝑞𝐽 ,1, 𝑞𝐽 ,2, . . . , 𝑞𝐽 ,𝑛) be the associated sequence of elements of Ω𝑛.
For any 1 ≤ 𝑖 ≤ 𝑛, the superspace element 𝑞𝐽 ,𝑖 satisfies the following properties.

1. We have 𝑞𝐽 ,𝑖 ∈ 𝑆𝐼𝑛.
2. The superspace element 𝑞𝐽 ,𝑖 is bihomogeneous with fermionic degree |𝐽 | and bosonic degree st(𝐽)𝑖

where st(𝐽) = (st(𝐽)1, . . . , st(𝐽)𝑛) is the J-staircase.
3. The element 𝑞𝐽 ,𝑖 lies in the subspace

⊕
𝐽 ≤Gale𝐾

C[x𝑛] · 𝜃𝐾 of Ω𝑛 spanned by monomials whose
fermionic parts are greater than or equal to J in Gale order.

Proof. The memberships (3.3) and (3.4) and the construction of 𝑞𝐽 ,𝑖 imply (1). Moving the pointer
from 𝑖 − 1 to i does not change the bosonic degree of 𝑞𝐽 ,𝑖 when the box i is decorated with a 𝜃, and
increases the bosonic degree of 𝑞𝐽 ,𝑖 by 1 otherwise, so (2) also holds by construction. To see why (3)
is true, observe that the only surviving fermionic monomials 𝜃𝐾 in the expression

𝑑ℎ𝑟 (𝐽 ∪ {𝑖 + 1, . . . , 𝑛})·𝜃𝐽−max(𝐽∩{1,...,𝑖 }) =∑
𝑘∈𝐽∪{𝑖+1,...,𝑛}

𝜕𝑘ℎ𝑟 (𝐽 ∪ {𝑖 + 1, . . . , 𝑛}) · 𝜃𝑘 · 𝜃𝐽−max(𝐽∩{1,...,𝑖 }) (3.6)

satisfy 𝐽 ≤Gale 𝐾 . �
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Figure 1. The pointer construction for the superspace elements 𝑞𝐽 ,𝑖 ∈ Ω𝑛 and the polynomials 𝑝𝐽 ,𝑖 ∈
C[x𝑛]. Here, 𝑛 = 7 and 𝐽 = {3, 5, 6}. Boxes whose positions in J are indicated with a 𝜃. Shaded boxes
indicate the set of bosonic variables involved at each stage; boxes with a 𝜃 are always shaded. The
degree of the h-polynomial in 𝑞𝐽 ,𝑖 and 𝑝𝐽 ,𝑖 is the number of unshaded boxes, plus one. Once the pointer
crosses the red line (i.e., reaches the minimum element of J), the definition of 𝑞𝐽 ,𝑖 and 𝑝𝐽 ,𝑖 involves
derivatives. The pointer points to shaded boxes to the left of the right line, and an unshaded box or 𝜃
box to the right of the red line. The 𝜃 decoration with an × corresponds to an unused 𝜃-variable 𝜃𝑠 in
the case of 𝑞𝐽 ,𝑖 , or a partial derivative 𝜕𝑠 in the case of 𝑝𝐽 ,𝑖 . The × appears on the closest 𝜃 which is
weakly to the left of the pointer.

We will be interested in the projections of the 𝑞𝐽 ,𝑖 to C[x𝑛] · 𝜃𝐽 . To this end, define polynomials
(𝑝𝐽 ,1, 𝑝𝐽 ,2, . . . , 𝑝𝐽 ,𝑛) ∈ C[x𝑛] by the rule

𝑝𝐽 ,𝑖 =

{
ℎ𝑖 (𝑖, 𝑖 + 1, . . . , 𝑛}) 𝑖 < min(𝐽)
𝜕𝑠 (ℎ𝑟 (𝐽 ∪ {𝑖 + 1, . . . , 𝑛})) 𝑠 = max(𝐽 ∩ {1, . . . , 𝑖}),

(3.7)

where (as in the definition of 𝑞𝐽 ,𝑖) in the second branch 𝑟 := 𝑛 − |𝐽 ∪ {𝑖 + 1, . . . , 𝑛}| + 1. As with the
superspace elements 𝑞𝐽 ,𝑖 , the polynomials 𝑝𝐽 ,𝑖 are easily visualized using the pointer construction. The
index s on the partial derivative operator 𝜕𝑠 is the maximal element of j weakly to the left of the pointer.
As the pointer moves from left to right, the degree of the h-polynomial increases and its number of
arguments decreases. When 𝑛 = 7 and 𝐽 = {3, 5, 6}, Figure 1 yields

𝑝𝐽 ,1 = ℎ1 (1234567) 𝑝𝐽 ,2 = ℎ2 (234567) 𝑝𝐽 ,3 = 𝜕3ℎ3 (34567) 𝑝𝐽 ,4 = 𝜕3ℎ4 (3567)

𝑝𝐽 ,5 = 𝜕5ℎ4 (3567) 𝑝𝐽 ,6 = 𝜕6ℎ4 (3567) 𝑝𝐽 ,7 = 𝜕6ℎ5 (356).

By Lemma 3.2 (3), we have

𝑞𝐽 ,𝑖 ≡ ±𝑝𝐽 ,𝑖 · 𝜃𝐽 mod
⊕
𝐽<Gale𝐾

C[x𝑛] · 𝜃𝐾 (3.8)

for all subsets 𝐽 ⊆ [𝑛] and 1 ≤ 𝑖 ≤ 𝑛. The polynomials 𝑝𝐽 ,𝑖 ∈ C[x𝑛] are the ‘Gale-leading terms’ of the
𝑞𝐽 ,𝑖 ∈ Ω𝑛 and will give us access to the tools of classical commutative algebra in C[x𝑛]. In particular,
we will prove that 𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 is a regular sequence in C[x𝑛] as long as 1 ∉ 𝐽. Our first step in doing
so is an identity involving partial derivatives of homogeneous symmetric polynomials in partial variable
sets.

Lemma 3.3. If 𝑆 ⊆ [𝑛] is any subset with 𝑎, 𝑏 ∈ 𝑆 and 𝑐 ∉ 𝑆, then

𝜕𝑎ℎ𝑟 (𝑆) = 𝜕𝑏ℎ𝑟 (𝑆) + (𝑥𝑐 − 𝑥𝑏) · 𝜕𝑏ℎ𝑟−1(𝑆 ∪ 𝑐) − (𝑥𝑐 − 𝑥𝑎) · 𝜕𝑎ℎ𝑟−1(𝑆 ∪ 𝑐) (3.9)

for all 𝑟 > 1.

In Lemma 3.3, we allow the possibility 𝑎 = 𝑏, in which case the claimed equation is trivial.
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Proof. The RHS of Equation (3.9) may be expanded and regrouped to give

𝜕𝑏ℎ𝑟 (𝑆) + (𝑥𝑐 − 𝑥𝑏)𝜕𝑏ℎ𝑟−1(𝑆 ∪ 𝑐) − (𝑥𝑐 − 𝑥𝑎)𝜕𝑎ℎ𝑟−1(𝑆 ∪ 𝑐) =
[𝜕𝑏 (ℎ𝑟 (𝑆) + 𝑥𝑐ℎ𝑟−1(𝑆 ∪ 𝑐)) − 𝜕𝑎 (𝑥𝑐ℎ𝑟−1(𝑆 ∪ 𝑐))] − [𝑥𝑏𝜕𝑏ℎ𝑟−1(𝑆 ∪ 𝑐)] + [𝑥𝑎𝜕𝑎ℎ𝑟−1(𝑆 ∪ 𝑐)] .

(3.10)

Since ℎ𝑟 (𝑆) + 𝑥𝑐ℎ𝑟−1(𝑆 ∪ 𝑐) = ℎ𝑟 (𝑆 ∪ 𝑐), the expression in the first set of brackets [ · · · ] on the RHS
of Equation (3.10) equals [𝜕𝑏ℎ𝑟 (𝑆 ∪ 𝑐) − 𝜕𝑎ℎ𝑟 (𝑆 ∪ 𝑐) + 𝜕𝑎ℎ𝑟 (𝑆)], the expression in the second set of
brackets equals [𝜕𝑏 (𝑥𝑏ℎ𝑟−1(𝑆∪ 𝑐)) − ℎ𝑟−1 (𝑆∪ 𝑐)], and the expression in the third set of brackets equals
[𝜕𝑎 (𝑥𝑎ℎ𝑟−1(𝑆 ∪ 𝑐)) − ℎ𝑟−1(𝑆 ∪ 𝑐)]. Plugging all this in yields

[𝜕𝑏 (ℎ𝑟 (𝑆) + 𝑥𝑐ℎ𝑟−1(𝑆 ∪ 𝑐)) − 𝜕𝑎 (𝑥𝑐ℎ𝑟−1(𝑆 ∪ 𝑐))] − [𝑥𝑏𝜕𝑏ℎ𝑟−1(𝑆 ∪ 𝑐)] + [𝑥𝑎𝜕𝑎ℎ𝑟−1(𝑆 ∪ 𝑐)]
= [𝜕𝑏ℎ𝑟 (𝑆 ∪ 𝑐) − 𝜕𝑎ℎ𝑟 (𝑆 ∪ 𝑐) + 𝜕𝑎ℎ𝑟 (𝑆)] − [𝜕𝑏 (𝑥𝑏ℎ𝑟−1(𝑆 ∪ 𝑐)) −�����

ℎ𝑟−1(𝑆 ∪ 𝑐)]
+[𝜕𝑎 (𝑥𝑎ℎ𝑟−1(𝑆 ∪ 𝑐)) −�����

ℎ𝑟−1(𝑆 ∪ 𝑐)] (3.11)

with the indicated cancellations. After performing these cancellations, the RHS of Equation (3.11) may
be regrouped as

[𝜕𝑏ℎ𝑟 (𝑆 ∪ 𝑐) − 𝜕𝑎ℎ𝑟 (𝑆 ∪ 𝑐) + 𝜕𝑎ℎ𝑟 (𝑆)] − [𝜕𝑏 (𝑥𝑏ℎ𝑟−1(𝑆 ∪ 𝑐))] + [𝜕𝑎 (𝑥𝑎ℎ𝑟−1(𝑆 ∪ 𝑐))]
= 𝜕𝑎ℎ𝑟 (𝑆) + {𝜕𝑏 (ℎ𝑟 (𝑆 ∪ 𝑐) − 𝑥𝑏ℎ𝑟−1(𝑆 ∪ 𝑐))} − {𝜕𝑎 (ℎ𝑟 (𝑆 ∪ 𝑐) − 𝑥𝑎ℎ𝑟−1(𝑆 ∪ 𝑐))} . (3.12)

Since the expression ℎ𝑟 (𝑆 ∪ 𝑐) − 𝑥𝑏ℎ𝑟−1(𝑆 ∪ 𝑐) = ℎ𝑟 ((𝑆 ∪ 𝑐) − 𝑏) is independent of 𝑥𝑏 ,
the partial derivative 𝜕𝑏 in the first set of curly braces { · · · } on the RHS of Equation (3.12) vanishes;
the expression in the second set of curly braces vanishes for similar reasons. This completes the proof
of Equation (3.9). �

The polynomial identity in Lemma 3.3 is, to the authors, somewhat miraculous; it would be nice to
have a conceptual understanding of ‘why’ it should be true. We use this identity to show that the ideal
I𝐽 generated by the polynomials 𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 ∈ C[x𝑛] contains certain strategic partial derivatives.

Lemma 3.4. Let 𝐽 ⊆ [𝑛] and write I𝐽 = (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) ⊆ C[x𝑛] for the ideal generated by
𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛. For any index 𝑗 ∈ 𝐽, we have 𝜕 𝑗ℎ𝑛−|𝐽 |+1 (𝐽) ∈ I𝐽 .

Proof. We prove the following claim, which is stronger than the lemma and amenable to induction.

Claim: The polynomials in question lie in the ideal

I ′
𝐽 := (𝑝𝐽 , 𝑗0 , 𝑝𝐽 , 𝑗0+1, . . . , 𝑝𝐽 ,𝑛) ⊆ C[𝑥 𝑗0 , 𝑥 𝑗0+1, . . . , 𝑥𝑛], (3.13)

where 𝑗0 = min(𝐽) is the smallest element of J.
The pointer construction makes it clear that the generators of I ′

𝐽 do not involve the variables
𝑥1, 𝑥2, . . . , 𝑥 𝑗0−1 and so lie in the polynomial ring C[𝑥 𝑗0 , 𝑥 𝑗0+1, . . . , 𝑥𝑛] generated by the remaining
variables. We prove the Claim by induction on the number 𝑛 − 𝑗0 + 1 of variables in the ambient ring
of I ′

𝐽 .
If 𝐽 = {𝑛−𝑟 +1, . . . , 𝑛−1, 𝑛} is a terminal subset of [𝑛], the polynomials in the Claim are generators

of the ideal I ′
𝐽 . Furthermore, for any subset 𝐽 ⊆ [𝑛], if 𝑗 = max(𝐽) is the largest element of J, then

𝜕 𝑗ℎ𝑛−|𝐽 |+1 (𝐽) = 𝑝𝐽 ,𝑛 is also a generator of I ′
𝐽 .

By the above paragraph, we may assume that 𝑗0 = min(𝐽) ≠ max(𝐽) and that there exists an element
𝑐 ∈ [𝑛]−𝐽 with 𝑐 > 𝑗0. Let 𝑐0 := min{ 𝑗0 < 𝑐 ≤ 𝑛 : 𝑐 ∉ 𝐽} be the smallest such c and define 𝑆 ⊆ [𝑛] by

𝑆 := { 𝑗0, 𝑗0 + 1, . . . , 𝑛 − 1, 𝑛} − {𝑐0}. (3.14)

Observe that the elements 𝑗0, 𝑗0 + 1, . . . , 𝑐0 − 2, 𝑐0 − 1 of S lie in J. Let 𝑟 := 𝑛 − |𝑆 | + 1. We apply
Lemma 3.3 iteratively as follows.
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• Since 𝜕𝑐0−1ℎ𝑟 (𝑆), 𝜕𝑐0−1ℎ𝑟−1(𝑆 ∪ 𝑐0), 𝜕𝑐0−2(𝑆 ∪ 𝑐0) ∈ I ′
𝐽 , Lemma 3.3 with 𝑎 = 𝑐0 − 2, 𝑏 = 𝑐0 − 1,

and 𝑐 = 𝑐0 implies 𝜕𝑐0−2ℎ𝑟 (𝑆) ∈ I ′
𝐽 .

• Since 𝜕𝑐0−2ℎ𝑟 (𝑆), 𝜕𝑐0−2ℎ𝑟−1(𝑆 ∪ 𝑐0), 𝜕𝑐0−3 (𝑆 ∪ 𝑐0) ∈ I ′
𝐽 , Lemma 3.3 with 𝑎 = 𝑐0 − 3, 𝑏 = 𝑐0 − 2,

and 𝑐 = 𝑐0 implies 𝜕𝑐0−3ℎ𝑟 (𝑆) ∈ I ′
𝐽 .

• Since 𝜕𝑐0−3ℎ𝑟 (𝑆), 𝜕𝑐0−3ℎ𝑟−1(𝑆 ∪ 𝑐0), 𝜕𝑐0−4 (𝑆 ∪ 𝑐0) ∈ I ′
𝐽 , Lemma 3.3 with 𝑎 = 𝑐0 − 3, 𝑏 = 𝑐0 − 2,

and 𝑐 = 𝑐0 implies 𝜕𝑐0−4ℎ𝑟 (𝑆) ∈ I ′
𝐽 , and so on.

We see that the polynomials

𝑝′
𝐽 , 𝑗0

:= 𝜕 𝑗0 ℎ𝑟 (𝑆) 𝑝′
𝐽 , 𝑗0+1 := 𝜕 𝑗0+1ℎ𝑟 (𝑆) . . . 𝑝′

𝐽 ,𝑐0−1 := 𝜕𝑐0−1ℎ𝑟 (𝑆) (3.15)

lie in I ′
𝐽 so that

(𝑝′
𝐽 , 𝑗0

, 𝑝′
𝐽 , 𝑗0+1, . . . , 𝑝′

𝐽 ,𝑐0−1, 𝑝𝐽 ,𝑐0+1, 𝑝𝐽 ,𝑐0+2, . . . , 𝑝𝐽 ,𝑛) ⊆ I ′
𝐽 (3.16)

as ideals in C[𝑥 𝑗0 , 𝑥 𝑗0+1, . . . , 𝑥𝑛]. But the generators on the ideal on the LHS of (3.16) do not involve
the variable 𝑥𝑐0 . In fact, if we consider the variable set

x := (𝑥 𝑗0 , 𝑥 𝑗0+1, . . . , 𝑥𝑐0−1, 𝑥𝑐0+1, . . . , 𝑥𝑛−1, 𝑥𝑛) (3.17)

obtained from our old variable set (𝑥 𝑗0 , 𝑥 𝑗0+1, . . . , 𝑥𝑛) by removing 𝑥𝑐0 , then

(𝑝′
𝐽 , 𝑗0

, 𝑝′
𝐽 , 𝑗0+1, . . . , 𝑝′

𝐽 ,𝑐0−1, 𝑝𝐽 ,𝑐0+1, 𝑝𝐽 ,𝑐0+2, . . . , 𝑝𝐽 ,𝑛) = I ′
𝐽 ′ (3.18)

as ideals in C[x] where 𝐽 ′ = (𝐽 − 𝑗0) ∪ 𝑐0 is the corresponding cyclic rotation of the set J. Since
the variable set x contains fewer variables than the original set {𝑥 𝑗0 , 𝑥 𝑗0+1, . . . , 𝑥𝑛}, we are done by
induction. �

An example may help clarify Lemma 3.4 and its proof. Suppose 𝑛 = 7 and 𝐽 = {3, 5, 6}. We have
I𝐽 = (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,7), where

𝑝𝐽 ,1 = ℎ1 (1234567) 𝑝𝐽 ,2 = ℎ2 (234567) 𝑝𝐽 ,3 = 𝜕3ℎ3 (34567) 𝑝𝐽 ,4 = 𝜕3ℎ4 (3567)

𝑝𝐽 ,5 = 𝜕5ℎ4 (3567) 𝑝𝐽 ,6 = 𝜕6ℎ4 (3567) 𝑝𝐽 ,7 = 𝜕6ℎ5 (356).

Our aim is to show that the ideal I𝐽 contains the elements

𝜕3ℎ5 (356), 𝜕5ℎ5 (356), 𝜕6ℎ5 (356).

To this end, we reason as follows.

• The element 𝜕6ℎ5 (356) = 𝑝𝐽 ,7 is a generator of I𝐽 . This was one of the desired memberships.
• Since 𝜕3ℎ3(34567) = 𝑝𝐽 ,3, 𝜕3ℎ4 (3567) = 𝑝𝐽 ,4, and 𝜕5ℎ4 (3567) = 𝑝𝐽 ,5 are elements of I𝐽 ,

Lemma 3.3 with 𝑆 = {3, 5, 6, 7}, 𝑎 = 3, 𝑏 = 5 and 𝑐 = 4 implies 𝜕3ℎ4 (3567) ∈ I𝐽 .
• Since 𝜕3ℎ4(3567), 𝜕6ℎ4 (3567) = 𝑝𝐽 ,6, and 𝜕6ℎ5(356) are elements of I𝐽 , Lemma 3.3 with

𝑆 = {3, 5, 6}, 𝑎 = 3, 𝑏 = 6 and 𝑐 = 7 implies 𝜕3ℎ5 (356) ∈ I𝐽 . This was one of the desired mem-
berships.

• Since 𝜕5ℎ4 (3567) = 𝑝𝐽 ,5, 𝜕6ℎ4(3567) = 𝑝𝐽 ,6, 𝜕6ℎ5(356) ∈ I𝐽 , Lemma 3.3 with 𝑆 = {3, 5, 6},
𝑎 = 5, 𝑏 = 6 and 𝑐 = 7 implies 𝜕5ℎ5 (356) ∈ I𝐽 . This was the remaining desired membership.

Observe that we did not use the generators 𝑝𝐽 ,1, 𝑝𝐽 ,2 ∈ I𝐽 to derive these memberships, so that in fact
we showed membership in the smaller ideal

I ′
𝐽 = (𝑝𝐽 ,3, 𝑝𝐽 ,4, 𝑝𝐽 ,5, 𝑝𝐽 ,6, 𝑝𝐽 ,7) ⊆ C[𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7] .
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Lemma 3.5. Let 𝐽 ⊆ [𝑛] with st(𝐽) = (st(𝐽)1, . . . , st(𝐽)𝑛). If 1 ∉ 𝐽, the sequence of polynomials
𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 is a regular sequence in C[x𝑛] of homogeneous degrees st(𝐽)1, . . . , st(𝐽)𝑛.

If 1 ∈ 𝐽, then 𝑝𝐽 ,1 = 𝜕1ℎ1 (𝑥1, . . . , 𝑥𝑛) = 𝜕1(𝑥1 + · · · + 𝑥𝑛) = 1 is a unit in C[x𝑛]. Correspondingly,
we have st(𝐽)1 = 0. Since members of regular sequences are required to be of positive homogeneous
degree, we must exclude this case from Lemma 3.5.

Proof. Since 1 ∉ 𝐽, the sequence st(𝐽) has positive entries. The assertion on degrees is Lemma 3.2 (2).
As in Lemma 3.4, let I𝐽 = (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) ⊆ C[x𝑛]. By Lemma 2.2, it is enough to show that the
variety V(I) ⊆ C𝑛 cut out by I consists of {0} alone. We use elimination to focus on coordinates in C𝑛
indexed by J.

Swanson and Wallach proved [37, Lem. 6.2] that that the polynomials 𝜕 𝑗ℎ𝑛−|𝐽 |+1(𝐽) for 𝑗 ∈ 𝐽 have
no common zero in C𝐽 . By Lemma 3.4, for any locus point 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ V(I𝐽 ), we must have
𝑎 𝑗 = 0 for any 𝑗 ∈ 𝐽. Setting the variables {𝑥 𝑗 : 𝑗 ∈ 𝐽} to zero in the remaining polynomials

𝑝𝐽 ,𝑖 |𝑥 𝑗→0 for 𝑗∈𝐽 (𝑖 ∉ 𝐽) (3.19)

gives a sequence of positive degree homogeneous polynomials in C[𝑥𝑖 : 𝑖 ∉ 𝐽] which are easily seen
to be triangular. We conclude that 𝑎𝑖 = 0 for 𝑖 ∉ 𝐽, so that 𝑎 = 0 as required. �

Lemma 3.5 implies that the quotient ring C[x𝑛]/(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) has Hilbert series

Hilb(C[x𝑛]/(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛); 𝑞) = [st(𝐽)1]𝑞 · · · [st(𝐽)𝑛]𝑞 . (3.20)

This formula remains true when 1 ∈ 𝐽, for then 𝑝𝐽 ,1 = 1 and C[x𝑛]/(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) = 0. In partic-
ular, there exists a set B𝑛 (𝐽) ⊆ C[x𝑛] of homogeneous polynomials with degree generating function
[st(𝐽)1]𝑞 · · · [st(𝐽)𝑛]𝑞 such that B𝑛 (𝐽) descends to a vector space basis of C[x𝑛]/(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛).

3.2. An abstract straightening lemma

The proof of Lemma 3.5 relied on a a tricky induction in Lemma 3.4 and miraculous polynomial identity
in Lemma 3.3. Our next result should persuade the reader that Lemma 3.5 was worth the effort.

Lemma 3.6. (Straightening) Let 𝐽 ⊆ [𝑛] with st(𝐽) = (st(𝐽)1, . . . , st(𝐽)𝑛). There exists a finite set
B𝑛 (𝐽) ⊆ C[x𝑛] of nonzero homogeneous polynomials with degree generating function∑

𝑚∈B𝑛 (𝐽 )
𝑞deg(𝑚) = [st(𝐽)1]𝑞 [st(𝐽)2]𝑞 · · · [st(𝐽)𝑛]𝑞 (3.21)

such that for any polynomial 𝑓 ∈ C[x𝑛], we have an expression of the form

𝑓 · 𝜃𝐽 =
���

∑
𝑚∈B𝑛 (𝐽 )

𝑐 𝑓 ,𝑚 · 𝑚 · 𝜃𝐽
��� + 𝑔 + Σ, (3.22)

where

• the 𝑐 𝑓 ,𝑚 ∈ C are constants which depend on f and m,
• the element 𝑔 ∈ 𝑆𝐼𝑛 lies in the supercoinvariant ideal, and
• the ‘error term’ Σ lies in

⊕
𝐽<Gale𝐾

C[x𝑛] · 𝜃𝐾 .

Proof. As explained after Lemma 3.5, there exists a set B𝑛 (𝐽) ⊆ C[x𝑛] of homogeneous poly-
nomials with the given degree generating function which descends to a vector space basis of
C[x𝑛]/(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛). We prove that B𝑛 (𝐽) satisfies the conditions of the lemma.
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The given polynomial 𝑓 ∈ C[x𝑛] may be written as

𝑓 =
���

∑
𝑚∈B𝑛 (𝐽 )

𝑐 𝑓 ,𝑚 · 𝑚
��� +

𝑛∑
𝑗=1

𝐴 𝑗 · 𝑝𝐽 , 𝑗 (3.23)

for some scalars 𝑐 𝑓 ,𝑚 ∈ C and polynomials 𝐴 𝑗 ∈ C[x𝑛]. Multiplying both sides of Equation (3.23) by
𝜃𝐽 yields

𝑓 · 𝜃𝐽 =
���

∑
𝑚∈B𝑛 (𝐽 )

𝑐 𝑓 ,𝑚 · 𝑚 · 𝜃𝐽
��� +

𝑛∑
𝑗=1

𝐴 𝑗 · 𝑝𝐼 , 𝑗 · 𝜃𝐽 . (3.24)

Equation (3.8) gives the relation

𝑓 · 𝜃𝐽 ≡ ���
∑

𝑚∈B𝑛 (𝐽 )
𝑐 𝑓 ,𝑚 · 𝑚 · 𝜃𝐽

��� +
𝑛∑
𝑗=1

±𝐴 𝑗 · 𝑞𝐽 , 𝑗 mod
⊕
𝐽<Gale𝐾

C[x𝑛] · 𝜃𝐾 (3.25)

modulo the linear subspace
⊕

𝐽<Gale𝐾
C[x𝑛] ·𝜃𝐾 of Ω𝑛. Finally, Lemma 3.2 (1) implies the membership

𝑔 :=
∑𝑛
𝑗=1 ±𝐴 𝑗 · 𝑞𝐽 , 𝑗 ∈ 𝑆𝐼𝑛, which completes the proof. �

Lemma 3.6 implies that the set B𝑛 ⊆ Ω𝑛 of superspace elements given by

B𝑛 :=
⊔
𝐽 ⊆[𝑛]

B𝑛 (𝐽) · 𝜃𝐽 (3.26)

descends to a spanning set in 𝑆𝑅𝑛. Indeed, if this were not the case, let 𝐽 ⊆ [𝑛] be a Gale-maximal
subset such that 𝑓 · 𝜃𝐽 ∈ Ω𝑛 does not lie in the span of B𝑛 modulo 𝑆𝐼𝑛 for some 𝑓 ∈ C[x𝑛]. Lemma 3.6
implies that

𝑓 · 𝜃𝐽 ≡ ���
∑

𝑚∈B𝑛 (𝐽 )
𝑐 𝑓 ,𝑚 · 𝑚 · 𝜃𝐽

��� + Σ mod 𝑆𝐼𝑛 (3.27)

for some constants 𝑐 𝑓 ,𝑚 ∈ C where Σ ∈
⊕

𝐽<Gale𝐾
C[x𝑛] · 𝜃𝐾 . The term in the parentheses certainly

lies in the span of B𝑛. The Gale-maximality of J implies that Σ lies in the span of B𝑛, as well, giving a
contradiction.

The straightening result of Lemma 3.6 is rather abstract in that it does not give a formula for
the polynomials in B𝑛 (𝐽). While any generic set of polynomials of the appropriate degrees will do,
the authors are unaware of an explicit formula for the set B𝑛 (𝐽). In general, objects related to 𝑆𝑅𝑛
have resisted analysis by Gröbner-theoretic techniques, which is reflected in the abstract statement of
Lemma 3.6.

Lemma 3.6 implies an upper bound for the bigraded Hilbert series of 𝑆𝑅𝑛. Given two polynomials
𝑓 (𝑞, 𝑧), 𝑔(𝑞, 𝑧) in variables 𝑞, 𝑧, we write 𝑓 ≤ 𝑔 to mean that 𝑔 − 𝑓 is a polynomial in 𝑞, 𝑧 with
nonnegative coefficients.

Proposition 3.7. The bigraded Hilbert series Hilb(𝑆𝑅𝑛; 𝑞, 𝑧) is bounded above by

Hilb(𝑆𝑅𝑛; 𝑞, 𝑧) ≤
∑
𝐽 ⊆[𝑛]

𝑧 |𝐽 |
∑

𝑓 ∈B𝑛 (𝐽 )
𝑞deg( 𝑓 ) =

𝑛∑
𝑘=1

𝑧𝑛−𝑘 · [𝑘]!𝑞 · Stir𝑞 (𝑛, 𝑘). (3.28)

Proof. As explained above, Lemma 3.6 implies that B𝑛 =
⊔
𝐽 ⊆[𝑛] B𝑛 (𝐽) descends to a spanning set of

𝑆𝑅𝑛. Since
∑
𝑚∈B𝑛 (𝐽 ) 𝑞deg(𝑚) = [st(𝐽)1]𝑞 · · · [st(𝐽)𝑛]𝑞 , the result follows from Lemma 2.1. �
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4. Differential operators and colon ideals

The straightening result of Lemma 3.6 led to the upper bound on the dimension of 𝑆𝑅𝑛 in Proposition 3.7.
Our next task is to bound this dimension from below. To this end, we define strategic differential
operators 𝔇𝐽 whose action on C[x𝑛] has Gale maximum term 𝜃𝐽 . Analysis of this leading term will
lead to finding a lower bound for quotient rings of the form C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ), where 𝐼𝑛 ⊆ C[x𝑛] is the
classical coinvariant ideal and the 𝑓𝐽 ∈ C[x𝑛] are products of linear forms determined by𝔇𝐽 . It will turn
out (Theorem 4.12) that (𝐼𝑛 : 𝑓𝐽 ) is generated by the regular sequence 𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 of Lemma 3.5.
Together with the triangularity property of the 𝔇𝐽 , this will lead to the required lower bound on 𝑆𝑅𝑛.

4.1. The differential operators 𝕯𝑱

Let H be the 𝑛 × 𝑛 matrix of complete homogeneous symmetric polynomials whose row i, column j
entry is given by

H :=
(
ℎ𝑖− 𝑗 (𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛)

)
1≤𝑖≤𝑛
1≤ 𝑗≤𝑛

. (4.1)

We have ℎ0 = 1 and interpret ℎ 𝑗−𝑖 = 0 whenever 𝑖 > 𝑗 , so the matrix H is lower triangular with 1’s on
the diagonal. We use the matrix H to define a family of differential operators as follows. Given a subset
𝐾 ⊆ [𝑛], we introduce the ‘reversal’ notation

𝐾∗ := {𝑛 − 𝑘 + 1 : 𝑘 ∈ 𝐾}. (4.2)

Definition 4.1. For any subset 𝐽 ⊆ [𝑛], define a differential operator 𝔇𝐽 acting on Ω𝑛 by

𝔇𝐽 ( 𝑓 ) :=
∑

|𝐼 |= |𝐽 |
(−1)

∑
𝐼Δ [𝑛]−𝐽 , ( [𝑛]−𝐼 )∗ (H) � 𝑑𝐼 ( 𝑓 ), (4.3)

where Δ [𝑛]−𝐽 , ( [𝑛]−𝐼 )∗ (H) ∈ C[x𝑛] is the minor of H with row set [𝑛] − 𝐽 and column set ([𝑛] − 𝐼)∗.

Since the matrix H is lower triangular, the coefficient of 𝑑𝐼 in 𝔇𝐽 is zero unless we have 𝐼∗ ≤Gale 𝐽
in Gale order. As an example, when 𝑛 = 3, the matrix H is given by

H =
���

1 0 0
𝑥2 + 𝑥3 1 0

𝑥2
3 𝑥3 1

���
and we have the differential operators

𝔇12( 𝑓 ) = −Δ3,1 (H) � 𝑑12( 𝑓 ) + Δ3,2 (H) � 𝑑13 ( 𝑓 ) − Δ3,3 (H) � 𝑑23( 𝑓 )
𝔇13( 𝑓 ) = −Δ2,1 (H) � 𝑑12( 𝑓 ) + Δ2,2 (H) � 𝑑13 ( 𝑓 ) −����Δ2,3 (H) � 𝑑23( 𝑓 )
𝔇23( 𝑓 ) = −Δ1,1 (H) � 𝑑12( 𝑓 ) +����Δ1,2 (H) � 𝑑13 ( 𝑓 ) −����Δ1,3 (H) � 𝑑23( 𝑓 )

acting on superspace elements 𝑓 ∈ Ω3 where the indicated minors of H vanish for support reasons.
Applying the formula 𝑑𝑖 ( 𝑓 ) = (𝑥𝑖1 � 𝑓 )𝜃1 + (𝑥𝑖2 � 𝑓 )𝜃2 + (𝑥𝑖3 � 𝑓 )𝜃3, these operators may be expressed
in the more illuminating form

𝔇12( 𝑓 ) = (𝑥1 (𝑥1 − 𝑥2) (𝑥1 − 𝑥3)𝑥2(𝑥2 − 𝑥3)) � 𝑓 · 𝜃1𝜃2

𝔇13( 𝑓 ) = (𝑥2
1𝑥2

2 + 𝑥2
1𝑥2𝑥3 − 𝑥1𝑥2

2𝑥3 − 𝑥3
1𝑥3) � 𝑓 · 𝜃1𝜃2 − (𝑥1 (𝑥1 − 𝑥2) (𝑥1 − 𝑥3)𝑥3) � 𝑓 · 𝜃1𝜃3

𝔇23( 𝑓 ) = (𝑥2
1𝑥2 − 𝑥1𝑥2

2) � 𝑓 · 𝜃1𝜃2 + (𝑥2
1𝑥3 − 𝑥1𝑥2

3) � 𝑓 · 𝜃1𝜃3 + (𝑥2 (𝑥2 − 𝑥3)𝑥3) � 𝑓 · 𝜃2𝜃3,

which reveals a triangularity property with respect to the fermionic monomials 𝜃1𝜃2, 𝜃1𝜃3 and 𝜃2𝜃3.
Furthermore, the ‘leading coefficient’ 𝜃𝐽 involved in 𝔇𝐽 has the form 𝑓𝐽 � (−) up to a sign where the
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polynomials 𝑓𝐽 were defined in the introduction. We will show that this is a general phenomenon. Our
first lemma in this direction is a simple result on the application of the 𝑑𝐼 operator to polynomials in
C[x𝑛]; its proof is left to the reader.

Lemma 4.2. Let 𝑓 ∈ C[x𝑛] be a polynomial and let 𝐼 = {𝑖1 < · · · < 𝑖𝑟 } and 𝐾 = {𝑘1 < · · · < 𝑘𝑟 } be
two subsets of [𝑛] of the same size. The coefficient of 𝜃𝐾 in 𝑑𝐼 ( 𝑓 ) ∈ Ω𝑛 is the determinant of partial
derivatives �����������

𝜕𝑖1𝑘1
𝑓 · · · 𝜕𝑖𝑟𝑘1

𝑓

...
...

𝜕𝑖1𝑘𝑟 𝑓 · · · 𝜕𝑖𝑟𝑘𝑟 𝑓

�����������
. (4.4)

Definition 4.1 and Lemma 4.2 motivate the following family of polynomials 𝔉𝐽 ,𝐾 ∈ C[x𝑛] indexed
by pairs of subsets 𝐽, 𝐾 ⊆ [𝑛]. The definition of the 𝔉𝐽 ,𝐾 also involves the matrix H.

Definition 4.3. Let J and K be two subsets of [𝑛] of the same size. Define a polynomial 𝔉𝐽 ,𝐾 ∈ C[x𝑛]
by

𝔉𝐽 ,𝐾 :=
∑

|𝐼 |= |𝐽 |= |𝐾 |
(−1)

∑
𝐼Δ [𝑛]−𝐽 , ( [𝑛]−𝐼 )∗ (H) ·

��𝑥𝑖𝑘 �� 𝑘∈𝐾,𝑖∈𝐼 , (4.5)

where the row and column indices in the determinant
��𝑥𝑖𝑘 �� 𝑘∈𝐾,𝑖∈𝐼 are written in increasing order.

The differential operators 𝔇𝐽 and the polynomials 𝔉𝐽 ,𝐾 are related by

𝔇𝐽 ( 𝑓 ) =
∑

|𝐾 |= |𝐽 |

(
𝔉𝐽 ,𝐾 � 𝑓

)
× 𝜃𝐾 (4.6)

for all 𝑓 ∈ C[x𝑛].

Remark 4.4. The polynomial Δ [𝑛]−𝐽 , ( [𝑛]−𝐼 )∗ (H) appearing in Definition 4.3 is (up to variable reversal)
a flagged skew Schur polynomial whose flagging parameter depends on J and whose shape depends on
I and J, as may be seen from the Jacobi-Trudi formula. This is how the 𝔉𝐽 ,𝐾 were discovered, but their
matrix minor formulation is more convenient for our purposes.

We aim to show that the 𝔉𝐽 ,𝐾 are triangular with respect to Gale order. As a first step, we express
𝔉𝐽 ,𝐾 as a single 𝑛 × 𝑛 determinant.

Lemma 4.5. Let 𝐽 = { 𝑗1 < · · · < 𝑗𝑟 } and 𝐾 = {𝑘1 < · · · < 𝑘𝑟 } be two subsets of [𝑛] of the same size.
Write 𝑏(𝐽) = (𝑏(𝐽)1 < 𝑏(𝐽)2 < · · · ) for the entries in the complement [𝑛] − 𝐽 of the set J, written in
increasing order. Define an 𝑛 × 𝑛 matrix 𝐴𝐽 ,𝐾 in block form

𝐴𝐽 ,𝐾 =

(
𝐵𝐽 ,𝐾
𝐶𝐽 ,𝐾

)
, (4.7)

where the top block 𝐵𝐽 ,𝐾 has size 𝑟 × 𝑛 and entries

𝐵𝐽 ,𝐾 =
����
𝑥𝑛𝑘1

· · · 𝑥1
𝑘1

...
...

𝑥𝑛𝑘𝑟 · · · 𝑥1
𝑘𝑟

���� (4.8)
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and the bottom block 𝐶𝐽 ,𝐾 has size (𝑛 − 𝑟) × 𝑛 and entries

𝐶𝐽 ,𝐾 = (ℎ𝑏 (𝐽 )𝑖− 𝑗 (𝑥𝑏 (𝐽 )𝑖 , 𝑥𝑏 (𝐽 )𝑖+1, . . . , 𝑥𝑛))1≤𝑖≤𝑛−𝑟 , 1≤ 𝑗≤𝑛. (4.9)

We have 𝔉𝐽 ,𝐾 = ± det(𝐴𝐽 ,𝐾 ).

Proof. The determinant det(𝐴𝐽 ,𝐾 ) may be evaluated using the rule

det(𝐴𝐽 ,𝐾 ) =
∑
𝐼 ⊆[𝑛]
|𝐼 |=𝑟

(−1)
∑
𝐼−(𝑟+1

2 ) · Δ 𝐼 (𝐵𝐽 ,𝐾 ) · Δ [𝑛]−𝐼 (𝐶𝐽 ,𝐾 ), (4.10)

where Δ 𝐼 (𝐵𝐽 ,𝐾 ) is the maximal minor of 𝐵𝐽 ,𝐾 with column set I and Δ [𝑛]−𝐼 (𝐶𝐽 ,𝐾 ) is the maximal
minor of 𝐶𝐽 ,𝐾 with complementary column set [𝑛] − 𝐼. Now compare with the definition of 𝔉𝐽 ,𝐾 . �

To illustrate Lemma 4.5, we let 𝑛 = 5, 𝐽 = {1, 3}, and write 𝐾 = {𝑎, 𝑏} for 1 ≤ 𝑎 < 𝑏 ≤ 5. Lemma
(4.5) expresses 𝔉𝐽 ,𝐾 = 𝔉13,𝑎𝑏 as the following 5 × 5 determinant:

𝔉13,𝑎𝑏 = ±

�����������
𝑥5
𝑎 𝑥4

𝑎 𝑥3
𝑎 𝑥2

𝑎 𝑥1
𝑎

𝑥5
𝑏 𝑥4

𝑏 𝑥3
𝑏 𝑥2

𝑏 𝑥1
𝑏

ℎ1 (2345) 1 0 0 0
ℎ3 (45) ℎ2 (45) ℎ1 (45) 1 0
ℎ4 (5) ℎ3 (5) ℎ2(5) ℎ1(5) 1

�����������
.

The determinant in Lemma 4.5 may be evaluated to give the desired triangularity relation for the
polynomials 𝔉𝐽 ,𝐾 . Lemma 4.5 will also imply that the 𝔉𝐽 ,𝐽 are given the polynomials 𝑓𝐽 ∈ C[x𝑛]
appearing in the introduction. We reiterate their definition below.

Definition 4.6. For any subset 𝐽 ⊆ [𝑛], let 𝑓𝐽 ∈ C[x𝑛] be the polynomial

𝑓𝐽 :=
∏
𝑗∈𝐽

𝑥 𝑗
���
𝑛∏

𝑖= 𝑗+1
(𝑥 𝑗 − 𝑥𝑖)

��� . (4.11)

Observe that the f -polynomial corresponding to a set J factors 𝑓𝐽 =
∏
𝑗∈𝐽 𝑓{ 𝑗 } into f -polynomials

corresponding to singletons contained in J. The polynomials 𝑓𝐽 ∈ C[x𝑛] will have deep ties to the
supercoinvariant ring 𝑆𝑅𝑛. For later use, we record a criterion for when 𝑓𝐽 lies in the classical coinvariant
ideal 𝐼𝑛 ⊆ C[x𝑛].

Lemma 4.7. Let 𝐽 ⊆ [𝑛]. We have 𝑓𝐽 ∈ 𝐼𝑛 if and only if 1 ∈ 𝐽.

Proof. Suppose 1 ∈ 𝐽, so that 𝑓{1} | 𝑓𝐽 . We claim 𝑓{1} = 𝑥1 (𝑥1 −𝑥2) (𝑥1 −𝑥3) · · · (𝑥1 −𝑥𝑛) ∈ 𝐼𝑛. Indeed,
if t is a new variable, then modulo 𝐼𝑛 we have

1 ≡ 1
(1 − 𝑡𝑥1) (1 − 𝑡𝑥2) · · · (1 − 𝑡𝑥𝑛)

mod 𝐼𝑛 (4.12)

so that

(1 − 𝑡𝑥2) · · · (1 − 𝑡𝑥𝑛) ≡
1

1 − 𝑡𝑥1
mod 𝐼𝑛, (4.13)

and taking the coefficient of 𝑡𝑑 yields

(−1)𝑑𝑒𝑑 (𝑥2, . . . , 𝑥𝑛) ≡ 𝑥𝑑1 mod 𝐼𝑛. (4.14)
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We conclude that

𝑓{1} =
𝑛−1∑
𝑑=0

(−1)𝑑𝑒𝑑 (𝑥2, . . . , 𝑥𝑛) · 𝑥𝑛−𝑑1 ≡ 𝑛 · 𝑥𝑛1 ≡ 0 mod 𝐼𝑛, (4.15)

where we used the fact that 𝑥𝑛1 ∈ 𝐼𝑛.
Now suppose 1 ∉ 𝐽. Recall that annC[x𝑛 ] (𝛿𝑛) = 𝐼𝑛 under the �-action of C[x𝑛] on itself. Therefore,

to show that 𝑓𝐽 ∉ 𝐼𝑛, it is enough to show that 𝑓𝐽 � 𝛿𝑛 ≠ 0. Since 𝑓𝐽 =
∏
𝑗∈𝐽 𝑓{ 𝑗 }, it suffices to show that

𝑓𝐽 � 𝛿𝑛 ≠ 0 when 𝐽 = 𝐽0 := {2, 3, . . . , 𝑛} is the maximal subset of [𝑛] not containing 1. By definition,
we have

𝑓𝐽0 = (𝑥2𝑥3 · · · 𝑥𝑛) ×
∏

2≤𝑟<𝑠≤𝑛
(𝑥𝑟 − 𝑥𝑠) (4.16)

so that the terms of 𝑓𝐽0 are (up to a global sign) the terms of 𝛿𝑛 in which 𝑥1 does not appear. If we use
� to denote equality up to a nonzero scalar, we therefore have

𝑓𝐽0 � 𝛿𝑛 � 𝑓𝐽0 � 𝑓𝐽0 > 0, (4.17)

where we used the fact that both 𝑓𝐽0 and 𝛿𝑛 are homogeneous of degree
(𝑛
2
)

and the fact that 𝑓 � 𝑓 > 0
for any homogeneous nonzero polynomial f. �

The determinant in Lemma 4.5 may be evaluated to give the desired triangularity relation for the
polynomials 𝔉𝐽 ,𝐾 . Lemma 4.5 will also imply that 𝔉𝐽 ,𝐽 = ± 𝑓𝐽 .

Lemma 4.8. We have 𝔉𝐽 ,𝐾 = 0 unless 𝐽 ≥Gale 𝐾 in Gale order. Furthermore, we have

𝔉𝐽 ,𝐽 = ± 𝑓𝐽 . (4.18)

Proof. We factor
∏
𝑘∈𝐾 𝑥𝑘 out of the upper block 𝐵𝐽 ,𝐾 of the determinant det(𝐴𝐽 ,𝐾 ) = ±𝔉𝐽 ,𝐾 in

Lemma 4.5. Next, we apply column operations to eliminate the ℎ𝑑 (𝑆)’s in the bottom portion 𝐶𝐽 ,𝐾 of
this determinant.

Specifically, we focus on each pivot 1 in 𝐶𝐽 ,𝐾 from bottom to top. Working to the left from a given
pivot 1, in row i of 𝐶𝐽 ,𝐾 , we subtract 𝑥𝑐 times column j of 𝐴𝐽 ,𝐾 from column 𝑗 − 1, where 𝑥𝑐 is
a variable belonging to {𝑥𝑏 (𝐽 )𝑖 , . . . , 𝑥𝑛} − {𝑥𝑏 (𝐽 )𝑖+1 , . . . , 𝑥𝑛}. Since ℎ𝑑 (𝑆) = 𝑥𝑐ℎ𝑑−1 (𝑆) + ℎ𝑑 (𝑆 − 𝑐)
whenever 𝑐 ∈ 𝑆, this eliminates the ℎ𝑑 (𝑆)’s from the bottom portion 𝐶𝐽 ,𝐾 of our determinant. After
performing these operations, the determinant det(𝐴𝐽 ,𝐾 ) is reduced to a single maximal minor of its
(new) upper portion 𝐵𝐽 ,𝐾 , from which the result follows.

To see how this works in our example 𝐽 = {1, 3} and 𝐾 = {𝑎, 𝑏}, we factor out 𝑥𝑎𝑥𝑏 from the top
two rows of our determinant to get�����������

𝑥5
𝑎 𝑥4

𝑎 𝑥3
𝑎 𝑥2

𝑎 𝑥1
𝑎

𝑥5
𝑏 𝑥4

𝑏 𝑥3
𝑏 𝑥2

𝑏 𝑥1
𝑏

ℎ1 (2345) 1 0 0 0
ℎ3 (45) ℎ2 (45) ℎ1 (45) 1 0
ℎ4 (5) ℎ3 (5) ℎ2(5) ℎ1 (5) 1

�����������
= 𝑥𝑎𝑥𝑏

�����������
𝑥4
𝑎 𝑥3

𝑎 𝑥2
𝑎 𝑥1

𝑎 1
𝑥4
𝑏 𝑥3

𝑏 𝑥2
𝑏 𝑥1

𝑏 1
ℎ1 (2345) 1 0 0 0
ℎ3 (45) ℎ2 (45) ℎ1 (45) 1 0
ℎ4 (5) ℎ3 (5) ℎ2 (5) ℎ1 (5) 1

�����������
.

Our focus shifts to the bottom three rows. Since the bottom pivot 1 is in column 5, we subtract 𝑥5 times
each column from the previous column, resulting in
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𝑥𝑎𝑥𝑏

�����������
𝑥4
𝑎 𝑥3

𝑎 𝑥2
𝑎 𝑥1

𝑎 1
𝑥4
𝑏 𝑥3

𝑏 𝑥2
𝑏 𝑥1

𝑏 1
ℎ1 (2345) 1 0 0 0
ℎ3(45) ℎ2 (45) ℎ1 (45) 1 0
ℎ4 (5) ℎ3(5) ℎ2 (5) ℎ1 (5) 1

�����������
= 𝑥𝑎𝑥𝑏

�����������
𝑥4
𝑎 − 𝑥3

𝑎𝑥5 𝑥3
𝑎 − 𝑥2

𝑎𝑥5 𝑥2
𝑎 − 𝑥𝑎𝑥5 𝑥1

𝑎 − 𝑥5 1
𝑥4
𝑏 − 𝑥3

𝑏𝑥5 𝑥3
𝑏 − 𝑥2

𝑏𝑥5 𝑥2
𝑏 − 𝑥𝑏𝑥5 𝑥1

𝑏 − 𝑥5 1
ℎ1 (234) 1 0 0 0
ℎ3 (4) ℎ2 (4) ℎ1 (4) 1 0

0 0 0 0 1

�����������
.

This has the effect of eliminating the argument 𝑥5 from the h’s. To eliminate the 𝑥4’s from the arguments
of the h’s, we focus on the pivot 1 in row 4, column 4. For each column before column 2, we subtract
𝑥4 times the subsequent column. The result is

𝑥𝑎𝑥𝑏

�����������
𝑥4
𝑎 − 𝑥3

𝑎𝑥5 − 𝑥3
𝑎𝑥4 + 𝑥2

𝑎𝑥4𝑥5 𝑥3
𝑎 − 𝑥2

𝑎𝑥5 − 𝑥2
𝑎𝑥4 + 𝑥𝑎𝑥4𝑥5 𝑥2

𝑎 − 𝑥𝑎𝑥5 − 𝑥𝑎𝑥4 + 𝑥4𝑥5 𝑥1
𝑎 − 𝑥5 1

𝑥4
𝑏 − 𝑥3

𝑏𝑥5 − 𝑥3
𝑏𝑥4 + 𝑥2

𝑏𝑥4𝑥5 𝑥3
𝑏 − 𝑥2

𝑏𝑥5 − 𝑥2
𝑏𝑥4 + 𝑥𝑏𝑥4𝑥5 𝑥2

𝑏 − 𝑥𝑏𝑥5 − 𝑥𝑏𝑥4 + 𝑥4𝑥5 𝑥1
𝑏 − 𝑥5 1

ℎ1 (23) 1 0 0 0
0 0 0 1 0
0 0 0 0 1

�����������
.

The entries of this matrix are better written using elementary symmetric polynomials, viz.

𝑥𝑎𝑥𝑏

�����������
𝑥4
𝑎 − 𝑥3

𝑎𝑒1(45) + 𝑥2
𝑎𝑒2(45) 𝑥3

𝑎 − 𝑥2
𝑎𝑒1(45) + 𝑥𝑎𝑒2(45) 𝑥2

𝑎 − 𝑥𝑎𝑒1(45) + 𝑒2(45) 𝑥𝑎 − 𝑒1(5) 1
𝑥4
𝑏 − 𝑥3

𝑏𝑒1(45) + 𝑥2
𝑏𝑒2(45) 𝑥3

𝑏 − 𝑥2
𝑏𝑒1(45) + 𝑥𝑏𝑒2(45) 𝑥2

𝑏 − 𝑥𝑏𝑒1 (45) + 𝑒2(45) 𝑥𝑏 − 𝑒1(5) 1
ℎ1 (23) 1 0 0 0

0 0 0 1 0
0 0 0 0 1

�����������
.

Continuing to pivot 1 in row 3, column 2, we multiply the second column by −𝑥2 − 𝑥3 and add it to the
first column. The result is

𝑥𝑎𝑥𝑏

����������������

𝑥4
𝑎 − 𝑥3

𝑎𝑒1 (2345) + 𝑥2
𝑎𝑒2 (2345) − 𝑥𝑎𝑒3 (2345) + 𝑒4 (2345) 𝑥3

𝑎 − 𝑥2
𝑎𝑒1 (45) + 𝑥𝑎𝑒2 (45) 𝑥2

𝑎 − 𝑥𝑎𝑒1 (45) + 𝑒2 (45) 𝑥𝑎 − 𝑒1 (5) 1

𝑥4
𝑏 − 𝑥3

𝑏𝑒1 (2345) + 𝑥2
𝑏𝑒2 (2345) − 𝑥𝑏𝑒3 (2345) + 𝑒4 (2345) 𝑥3

𝑏 − 𝑥2
𝑏𝑒1 (45) + 𝑥𝑏𝑒2 (45) 𝑥2

𝑏 − 𝑥𝑏𝑒1 (45) + 𝑒2 (45) 𝑥𝑏 − 𝑒1 (5) 1

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

����������������
.

which may be expressed as the smaller 2 × 2 determinant

𝑥𝑎𝑥𝑏

����𝑥4
𝑎 − 𝑥3

𝑎𝑒1(2345) + 𝑥2
𝑎𝑒2(2345) − 𝑥𝑎𝑒3(2345) + 𝑒4(2345) 𝑥𝑎 − 𝑒1(5)

𝑥4
𝑏 − 𝑥3

𝑏𝑒1(2345) + 𝑥2
𝑏𝑒2(2345) − 𝑥𝑏𝑒3(2345) + 𝑒4(2345) 𝑥𝑏 − 𝑒1(5)

���� .
The entries in this smaller determinant factor as

𝑥𝑎𝑥𝑏

����(𝑥𝑎 − 𝑥2) (𝑥𝑎 − 𝑥3) (𝑥𝑎 − 𝑥4) (𝑥𝑎 − 𝑥5) (𝑥𝑎 − 𝑥5)
(𝑥𝑏 − 𝑥2) (𝑥𝑏 − 𝑥3) (𝑥𝑏 − 𝑥4) (𝑥𝑏 − 𝑥5) (𝑥𝑏 − 𝑥5)

���� .
For general 𝐽 = { 𝑗1 < · · · < 𝑗𝑟 } and 𝐾 = {𝑘1 < · · · < 𝑘𝑟 }, this procedure yields the formula

𝔉𝐽 ,𝐾 = ±
∏
𝑘∈𝐾

𝑥𝑘 ·
��∏
𝑖> 𝑗𝑞 (𝑥𝑘𝑝 − 𝑥𝑖)

��
1≤𝑝,𝑞≤𝑟 , (4.19)

expressing 𝔉𝐽 ,𝐾 as an 𝑟 × 𝑟 determinant times the variables indexed by K. If 𝑘 𝑝 > 𝑗𝑞 , the (𝑝, 𝑞)-
entry of the determinant in Equation (4.19) vanishes. If 𝐽 �Gale 𝐾 , this determinant has the block form
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���� where the southwest block of zeros intersects the main diagonal, so that 𝔉𝐽 ,𝐾 = 0. If 𝐽 = 𝐾 , the

determinant in Equation (4.19) is upper triangular, and the product of diagonal entries is as described
in the statement of the lemma. �

4.2. The colon ideal (𝑰𝒏 : 𝒇𝑱 ) in C[x𝒏]

Thanks to Lemma 4.8, the differential operators 𝔇𝐽 exhibit useful triangularity with respect to the Gale
order on fermionic monomials. In order to consider their fermionic leading term 𝜃𝐽 , we will study the
colon ideals

(𝐼𝑛 : 𝑓𝐽 ) := {𝑔 ∈ C[x𝑛] : 𝑔 · 𝑓𝐽 ∈ 𝐼𝑛} ⊆ C[x𝑛], (4.20)

where 𝐼𝑛 ⊆ C[x𝑛] is the classical coinvariant ideal.
It will turn out (Theorem 4.12) that the ideal (𝐼𝑛 : 𝑓𝐽 ) has two other equivalent definitions. As a first

step to proving this, we introduce the following bigraded subspace of Ω𝑛.

Definition 4.9. Let 𝑆𝐻 ′
𝑛 be the smallest linear subspace of Ω𝑛 which

• contains the superspace Vandermonde 𝛿𝑛,
• is closed under all bosonic partial derivatives 𝜕1, . . . , 𝜕𝑛, and
• is closed under the action of the higher Euler operators 𝑑𝑖 for 𝑖 ≥ 1.

Swanson and Wallach showed [37] that 𝑆𝐻 ′
𝑛 is annihilated by the supercoinvariant ideal 𝑆𝐼𝑛 ⊆ Ω𝑛

under the �-action, so that 𝑆𝐻 ′
𝑛 ⊆ 𝑆𝐻𝑛 is a subset of the superharmonic space. We will show (Theorem

5.1) that in fact 𝑆𝐻 ′
𝑛 = 𝑆𝐻𝑛. For now, we can use 𝑆𝐻 ′

𝑛 and our triangularity results (Lemmas 3.2 and
4.8) to show that the polynomials 𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 from Section 3 lie in (𝐼𝑛 : 𝑓𝐽 ).

Lemma 4.10. Let 𝐽 ⊆ [𝑛]. For any 1 ≤ 𝑖 ≤ 𝑛, we have 𝑝𝐽 ,𝑖 ∈ (𝐼𝑛 : 𝑓𝐽 ).

Proof. Let 𝑞𝐽 ,𝑖 ∈ 𝑆𝐼𝑛 be the supercoinvariant ideal element associated to 𝑝𝐽 ,𝑖 . By Lemma 3.2 (3), we
have

𝑞𝐽 ,𝑖 = 𝑝𝐽 ,𝑖 · 𝜃𝐽 +
∑

𝐽<Gale𝐿

𝐴𝐿 · 𝜃𝐿 (4.21)

for some polynomials 𝐴𝐿 ∈ C[x𝑛]. However, Lemma 4.8 implies that

𝔇𝐽 (𝛿𝑛) � ( 𝑓𝐽 � 𝛿𝑛) · 𝜃𝐽 +
∑

𝐾<Gale𝐽

𝐵𝐾 · 𝜃𝐾 (4.22)

for some 𝐵𝐾 ∈ C[x𝑛], where � denotes equality up to a nonzero scalar. Since𝔇𝐽 is a linear combination
of 𝑑𝐼 operators with coefficients in 𝜕1, . . . , 𝜕𝑛, we have

𝔇𝐽 (𝛿𝑛) ∈ 𝑆𝐻 ′
𝑛 ⊆ 𝑆𝐻𝑛, (4.23)

where the ⊆ is justified by the work of Swanson and Wallach [37]. Since 𝑆𝐼𝑛 annihilates 𝑆𝐻𝑛 under the
�-action and 𝑞𝐽 ,𝑖 ∈ 𝑆𝐼𝑛, we have

𝑞𝐽 ,𝑖 �𝔇𝐽 (𝛿𝑛) = 0. (4.24)

The triangularity relations (4.21) and (4.22) force

(𝑝𝐽 ,𝑖 · 𝑓𝐽 ) � 𝛿𝑛 = 𝑝𝐽 ,𝑖 � ( 𝑓𝐽 � 𝛿𝑛) = 0. (4.25)

Since annC[x𝑛 ] (𝛿𝑛) = 𝐼𝑛, this implies that 𝑝𝐽 ,𝑖 · 𝑓𝐽 ∈ 𝐼𝑛, or equivalently, 𝑝𝐽 ,𝑖 ∈ (𝐼𝑛 : 𝑓𝐽 ). �
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The colon ideals (𝐼𝑛 : 𝑓𝐽 ) are connected to a class of permutations in 𝔖𝑛. If 1 ≤ 𝑗 ≤ 𝑛,
a permutation 𝑤 ∈ 𝔖𝑛 is called j-resentful if 𝑤( 𝑗) = 𝑛, or the value 𝑤( 𝑗) + 1 appears among
𝑤( 𝑗 + 1), 𝑤( 𝑗 + 2), . . . , 𝑤(𝑛).4 The permutation w is j-Nietzschean if it is not j-resentful.5

If 𝐽 ⊆ [𝑛] is a subset, a permutation 𝑤 ∈ 𝔖𝑛 is J-Nietzschean if it is j-Nietzschean for all 𝑗 ∈ 𝐽. We
write

𝔑𝐽 := {𝑤 ∈ 𝔖𝑛 : 𝑤 is 𝐽-Nietzschean} (4.26)

for the set of all J-Nietszschean permutations in𝔖𝑛. Nietzschean permutations are counted by a simple
product formula.

Proposition 4.11. Let 𝐽 ⊆ [𝑛]. The number of J-Nietzschean permutations in 𝔖𝑛 is given by

|𝔑𝐽 | =
𝑛∏
𝑖=1

st(𝐽)𝑖 , (4.27)

where st(𝐽) = (st(𝐽)1, . . . , st(𝐽)𝑛) is the J-staircase.

Proof. We consider decomposing the one-line notation of permutations 𝑤 = [𝑤(1), . . . , 𝑤(𝑛)] ∈ 𝔖𝑛
to the permutation [1] ∈ 𝔖1 by iteratively removing the last letter 𝑤(𝑛) and ‘standardizing’ to the
unique order-isomorphic permutation in 𝔖𝑛−1. For example, the permutation [6, 3, 5, 1, 4, 7, 2] ∈ 𝔖7
decomposes as follows:

[6, 3, 5, 1, 4, 7, 2]
[5, 2, 4, 1, 3, 6]
[5, 2, 4, 1, 3]
[4, 2, 3, 1]
[3, 1, 2]
[2, 1]
[1]

Reversing this process, we can build up from [1] ∈ 𝔖1 to a permutation in 𝔖𝑛 by appending a new
letter to the end at each stage. In order for the resulting permutation 𝑤 = [𝑤(1), . . . , 𝑤(𝑛)] ∈ 𝔖𝑛 to
be J-Nietzschean, suppose we have a permutation [𝑣(1), . . . , 𝑣(𝑘 − 1)] ∈ 𝔖𝑘−1 at some intermediate
stage and we want to build a permutation in 𝔖𝑘 . We may append any of the numbers in {1, . . . , 𝑘} to
[𝑣(1), . . . , 𝑣(𝑘 − 1)], except the following.

• If 𝑘 ∈ 𝐽 is a Nietzschean position, we cannot append k, since this would ultimately force 𝑤(𝑘) = 𝑛 or
force an entry 1 larger than 𝑤(𝑘) to appear among 𝑤(𝑘 +1), . . . , 𝑤(𝑛), so that w would be k-resentful.

• Whether or not k is a Nietzschean position, we cannot append a value 𝑣( 𝑗) + 1 for any Nietzschean
position 𝑗 ∈ 𝐽 satisfying 𝑗 < 𝑘 , since this would ultimately force 𝑤( 𝑗) + 1 to appear among
𝑤( 𝑗 + 1), . . . , 𝑤(𝑛), so that w would be j-resentful. The value 𝑣( 𝑗) at a Nietzschean position 𝑗 < 𝑘
inductively satisfies 𝑣( 𝑗) < 𝑘 − 1.

In general, the conditions above imply that the number of choices to append to [𝑣(1), . . . , 𝑣(𝑘 − 1)] is

𝑘 + 1 − |{ 𝑗 ∈ 𝐽 : 𝑗 ≤ 𝑘}|, (4.28)

which yields the claimed product formula. �

4We think of the one-line notation 𝑤 = [𝑤 (1) , . . . , 𝑤 (𝑛) ] as recording the scores of n musicians performing in a competition;
after their performance, they sit down and join the audience. If the 𝑗𝑡ℎ contestant scores best (i.e., 𝑤 ( 𝑗) = 𝑛) or is beaten by 1
by an later contestant, this creates feelings of resentment (on behalf of the other contestants or the 𝑗𝑡ℎ constant, respectively).

5The creator of The Superman should have some avatar in superspace.
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We will see that |𝔑𝐽 | = dimC[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ), so J-Nietzschean permutations enumerate bases of
C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). However, the connection between Nietzschean permutations and colon ideals goes
deeper than this. To explain, we recall the powerful theory of orbit harmonics.

For any subset 𝑍 ⊆ C𝑛, let I(𝑍) ⊆ C[x𝑛] be the ideal of polynomials which vanish on Z:

I(𝑍) := { 𝑓 ∈ C[x𝑛] : 𝑓 (z) = 0 for all z ∈ 𝑍}. (4.29)

The quotient ring C[𝑍] := C[x𝑛]/I(𝑍) is the coordinate ring of Z and has a natural identification with
the family of polynomial functions 𝑍 −→ C. If we assume the locus 𝑍 ⊆ C𝑛 is finite (as we will from
here on), by Lagrange interpolation any function 𝑍 −→ C is the restriction of a polynomial in C[x𝑛],
so we may identify C[𝑍] with the vector space formal C-linear combinations of elements of Z.

The quotient ring C[𝑍] = C[x𝑛]/I(𝑍) is almost never graded, but there is a way to produce a graded
quotient of C[x𝑛] from I(𝑍). For any nonzero polynomial 𝑓 ∈ C[x𝑛], let 𝜏( 𝑓 ) be the highest degree
homogeneous component of f. That is, if 𝑓 = 𝑓𝑑 + · · · + 𝑓1 + 𝑓0 where 𝑓𝑖 is homogeneous of degree i
and 𝑓𝑑 ≠ 0, we have 𝜏( 𝑓 ) = 𝑓𝑑 . We define a new ideal gr I(𝑍) ⊆ C[x𝑛] by

gr I(𝑍) := (𝜏( 𝑓 ) : 𝑓 ∈ I(𝑍), 𝑓 ≠ 0) ⊆ C[x𝑛] . (4.30)

The ideal gr I(𝑍) is homogeneous by construction. We have an isomorphism of vector spaces

C[𝑍] = C[x𝑛]/I(𝑍) � C[x𝑛]/gr I(𝑍), (4.31)

where the latter quotient C[x𝑛]/gr I(𝑍) is a graded vector space. The Hilbert series of C[x𝑛]/gr I(𝑍)
may be regarded as a q-enumerator of Z which depends in a subtle way on the embedding of Z insideC𝑛.

As an example, if 𝑍 = 𝔖𝑛 is the set of points in C𝑛 of the form [𝑤(1), . . . , 𝑤(𝑛)] for 𝑤 ∈ 𝔖𝑛, then
gr I(𝔖𝑛) = 𝐼𝑛 is the classical coinvariant ideal and the coinvariant ring 𝑅𝑛 = C[x𝑛]/𝐼𝑛 is obtained in
this way. The following result states that the colon ideals (𝐼𝑛 : 𝑓𝐽 ) also arise via orbit harmonics.

Theorem 4.12. For any subset 𝐽 ⊆ [𝑛], the following three ideals in C[x𝑛] are equal.

1. The colon ideal (𝐼𝑛 : 𝑓𝐽 ).
2. The ideal (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) generated by the homogeneous polynomials 𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 ∈ C[x𝑛].
3. The homogeneous ideal gr I(𝔑𝐽 ) attached to the locus 𝔑𝐽 ⊆ C𝑛 of J-Nietzschean permutations in

𝔖𝑛. Here we consider 𝔖𝑛 ⊆ C𝑛 as the set of rearrangements of the specific point (1, 2, . . . , 𝑛) ∈ C𝑛.

If I𝐽 ⊆ C[x𝑛] denotes this common ideal, the Hilbert series of C[x𝑛]/I𝐽 is given by

Hilb (C[x𝑛]/I𝐽 ; 𝑞) =
𝑛∏
𝑖=1

[st(𝐽)𝑖]𝑞 , (4.32)

where st(𝐽) = (st(𝐽)1, . . . , st(𝐽)𝑛) is the J-staircase.

Proof. Suppose 1 ∈ 𝐽. Lemma 4.7 states that 𝑓𝐽 ∈ 𝐼𝑛, so that (𝐼𝑛 : 𝑓𝐽 ) = C[x𝑛]. Furthermore, we
have 𝑝𝐽 ,1 = 𝜕1ℎ1 (𝑥1, . . . , 𝑥𝑛) = 1, so that (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) = C[x𝑛]. Finally, since every permutation
𝑤 ∈ 𝔖𝑛 is 1-resentful, we have 𝔑𝐽 = ∅ so that gr I(𝔑𝐽 ) = C[x𝑛]. Since st(𝐽)1 = 0, we are done in this
case and assume that 1 ∉ 𝐽 going forward.

Lemma 4.10 yields the containment of ideals

(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) ⊆ (𝐼𝑛 : 𝑓𝐽 ) (4.33)

so that (2) ⊆ (1). We apply Lemma 2.3 with 𝔞 = 𝐼𝑛, 𝔞′ = (𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛), and 𝑓 = 𝑓𝐽 . We check the
conditions of this lemma.
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• The ideal 𝐼𝑛 is generated by the regular sequence 𝑒1, . . . , 𝑒𝑛 ∈ C[x𝑛]. The Artinian quotient
C[x𝑛]/(𝑒1, . . . , 𝑒𝑛) is a complete intersection, and hence Gorenstein. Artinian Gorenstein graded
quotients of C[x𝑛] are Poincaré duality algebras; see, for example, [24, Prop. 2.1]. The socle degree
of 𝐼𝑛 is

(𝑛
2
)
.6

• Since 1 ∉ 𝐽, Lemma 3.5 implies that 𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛 is a regular sequence, so that the quotient
C[x𝑛]/(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) is also a Poincaré duality algebra. The socle degree of this algebra is deg 𝑝𝐽 ,1+
· · · + deg 𝑝𝐽 ,𝑛 − 𝑛 = st(𝐽)1 + · · · + st(𝐽)𝑛 − 𝑛.

• Since 1 ∉ 𝐽, Lemma 4.7 implies 𝑓𝐽 ∉ 𝐼𝑛. Furthermore, the polynomial 𝑓𝐽 has degree deg 𝑓𝐽 =∑𝑛
𝑖=1(𝑖 − st(𝐽)𝑖).

Since we have

st(𝐽)1 + · · · + st(𝐽)𝑛 − 𝑛 +
𝑛∑
𝑖=1

(𝑖 − st(𝐽)𝑖) =
(
𝑛

2

)
, (4.34)

we may apply Lemma 2.3 to conclude

(𝑝𝐽 ,1, . . . , 𝑝𝐽 ,𝑛) = (𝐼𝑛 : 𝑓𝐽 ) (4.35)

so that (1) = (2). This also implies that the claimed Hilbert series formula holds for I𝐽 = (1) or (2).
For any radical ideals I,J ⊆ C[x𝑛], the colon ideal (I : J ) = { 𝑓 ∈ C[x𝑛] : 𝑓 · J ⊆ I} has the

interpretation

V(I : J ) = V(I) − V(J ) (4.36)

in terms of varieties in C𝑛, where the bar stands for Zariski closure. If V(I) is a finite locus of points,
the bar can be removed.

Write ℜ𝐽 := 𝔖𝑛 −𝔑𝐽 for the resentful complement of the J-Nietzschean permutations in𝔖𝑛. Recall
that we take the specific embedding of 𝔖𝑛 ⊂ C𝑛 by taking all rearrangements of the coordinates of
(1, 2, . . . , 𝑛) ∈ C𝑛. This also embeds ℜ𝐽 and 𝔑𝐽 inside C𝑛.

The (inhomogeneous) polynomial

𝑓𝐽 :=
∏
𝑗∈𝐽

(𝑥 𝑗 − 𝑛)
∏
𝑖> 𝑗

(𝑥 𝑗 − 𝑥𝑖 + 1) (4.37)

vanishes on ℜ𝐽 . In fact, we have

𝔑𝐽 = 𝔖𝑛 − V( 𝑓𝐽 ) = V(𝐼𝑛) − V( 𝑓𝐽 ), (4.38)

where 𝐼𝑛 is the ‘deformed version’ of the classical coinvariant ideal

𝐼𝑛 := 〈𝑒𝑑 (𝑥1, . . . , 𝑥𝑛) − 𝑒𝑑 (1, . . . , 𝑛) : 1 ≤ 𝑑 ≤ 𝑛〉. (4.39)

Since 𝐼𝑛 is radical and 𝑓𝐽 has no repeated factors, the Nullstellensatz implies

I(𝔑𝐽 ) = I(V(𝐼𝑛) − V( 𝑓𝐽 )) = I(V(𝐼𝑛 : 𝑓𝐽 )) =
√
(𝐼𝑛 : 𝑓𝐽 ) = (𝐼𝑛 : 𝑓𝐽 ), (4.40)

where √· stands for the radical of an ideal. Taking associated graded ideals gives

gr I(𝔑𝐽 ) = gr (𝐼𝑛 : 𝑓𝐽 ) ⊆ (gr 𝐼𝑛 : 𝑓𝐽 ) = (𝐼𝑛 : 𝑓𝐽 ), (4.41)

6The ring 𝑅𝑛 = C[x𝑛 ]/𝐼𝑛 is also a Poincaré duality algebra because it presents the cohomology of a compact smooth complex
projective variety: the flag variety.
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where the containment ⊆ is justified by considering the leading term of a polynomial �̃� ∈ C[x𝑛] such
that �̃� · 𝑓𝐽 ∈ 𝐼𝑛.

For arbitrary ideals I and polynomials f, the containment gr (I : 𝑓 ) ⊆ (gr I : 𝜏( 𝑓 )) can certainly be
strict. However, in our setting, Proposition 4.11 and the fact that

dimC[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) =
𝑛∏
𝑖=1

st(𝐽)𝑖 = |𝔑𝐽 | (4.42)

imply

|𝔑𝐽 | = dimC[x𝑛]/gr I(𝔑𝐽 ) ≤ dimC[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) = |𝔑𝐽 |, (4.43)

which forces gr I(𝔑𝐽 ) = (𝐼𝑛 : 𝑓𝐽 ) so that (1) = (3) and the theorem is proved. �

5. Operator theorem and Hilbert series

5.1. Operator theorem

We are ready to give our characterization of the harmonic space 𝑆𝐻𝑛 = 𝑆𝐼⊥𝑛 ⊆ Ω𝑛. The following result
was conjectured by Swanson and Wallach [37], and was previously conjectured by N. Bergeron, Li,
Machacek, Sulzgruber and Zabrocki (unpublished).

Theorem 5.1. (Operator Theorem) The superharmonic space 𝑆𝐻𝑛 ⊆ Ω𝑛 is generated as a C[x𝑛]-
module under the �-action by 𝑑𝐼 (𝛿𝑛) for subsets 𝐼 ⊆ [𝑛 − 1]. In symbols, we have

𝑆𝐻𝑛 =
∑

𝐼 ⊆[𝑛−1]
C[x𝑛] � 𝑑𝐼 (𝛿𝑛). (5.1)

The sum appearing in Theorem 5.1 is not direct. Since 𝑑𝑖 (𝛿𝑛) = 0 whenever 𝑖 > 𝑛 and we have
𝑑𝑖𝑑 𝑗 = −𝑑 𝑗𝑑𝑖 , Theorem 5.1 may be rephrased as follows.

The superharmonic space 𝑆𝐻𝑛 is the smallest linear subspace of Ω𝑛 which

• contains the Vandermonde determinant 𝛿𝑛,
• is closed under the differentiation operators 𝜕1, . . . , 𝜕𝑛 acting on the x-variables, and
• is closed under the higher derivative operators 𝑑𝑖 for 𝑖 ≥ 1.

Proof. Observe that the sum on the RHS of Equation (5.1) is the space 𝑆𝐻 ′
𝑛 of Definition 4.9. As

explained after Definition 4.9, Swanson and Wallach proved [37] that 𝑆𝐻 ′
𝑛 ⊆ 𝑆𝐻𝑛. Since 𝑆𝑅𝑛 � 𝑆𝐻𝑛,

Corollary 3.7 gives an upper bound on the dimension of 𝑆𝐻𝑛. In order to show that this containment is
an equality, we use the 𝔇𝐽 operators and the colon ideals (𝐼𝑛 : 𝑓𝐽 ) to show that the dimension of 𝑆𝐻 ′

𝑛

is sufficiently large.
Let 𝐽 ⊆ [𝑛]. Applying the differential operator 𝔇𝐽 to 𝛿𝑛 yields an element 𝔇𝐽 (𝛿𝑛) ∈ 𝑆𝐻 ′

𝑛. We use
our lemmata to derive the following facts about the superspace element 𝔇𝐽 (𝛿𝑛).

• By Lemma 4.2 and the vanishing assertion of Lemma 4.8, the coefficient of 𝜃𝐾 in 𝔇𝐽 (𝛿𝑛) is zero
unless 𝐾 ≤Gale 𝐽.

• By Lemma 4.2 and the product formula in Lemma 4.8, the coefficient of 𝜃𝐽 in 𝔇𝐽 (𝛿𝑛) is ± 𝑓𝐽 � 𝛿𝑛.

For any element 𝑓 ∈ Ω𝑛, the annihilator

annC[x𝑛 ] 𝑓 = {𝑔 ∈ C[x𝑛] : 𝑔 � 𝑓 = 0} ⊆ C[x𝑛] (5.2)

is an ideal in the polynomial ring C[x𝑛]. For any subset 𝐽 ⊆ [𝑛], we calculate

annC[x𝑛 ] ( 𝑓𝐽 � 𝛿𝑛) = (annC[x𝑛 ]𝛿𝑛 : 𝑓𝐽 ) = (𝐼𝑛 : 𝑓𝐽 ), (5.3)
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where we used the fact that the annihilator of the Vandermonde 𝛿𝑛 is the classical coinvariant ideal 𝐼𝑛.
We claim that there exists a set B𝑛 (𝐽) ⊆ C[x𝑛] of homogeneous polynomials such that

• the set B𝑛 (𝐽) has degree generating function
∑
𝑔∈B (𝐽 ) 𝑞deg(𝑔) =

∏𝑛
𝑖=1 [st(𝐽)𝑖]𝑞 and

• the set {𝑔 � ( 𝑓𝐽 � 𝛿𝑛) : 𝑔 ∈ B𝑛 (𝐽)} of polynomials in C[x𝑛] is linearly independent.

Indeed, Theorem 4.12 implies that there exists a set B𝑛 (𝐽) ⊆ C[x𝑛] of homogeneous polynomials with
the given degree generating function which descends to a linearly independent subset ofC[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ).
Since annC[x𝑛 ] (𝛿𝑛) = 𝐼𝑛, for any such B𝑛 (𝐽), the set of polynomials {𝑔 � ( 𝑓𝐽 � 𝛿𝑛) : 𝑔 ∈ B𝑛 (𝐽)} will
be linearly independent in C[x𝑛].

We combine our observations to prove the theorem. Suppose that some linear combination∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈B𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 ) ∈ Ω𝑛 (5.4)

(where the 𝑐𝐽 ,𝑔𝐽 ∈ C are scalars) annihilates the space 𝑆𝐻 ′
𝑛 as a differential operator:

���
∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈B𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 )
��� � 𝑆𝐻 ′

𝑛 = 0. (5.5)

By fermionic homogeneity, we may as well assume that

(★) for all 𝐽 ⊆ [𝑛] such that there is some 𝑐𝐽 ,𝑔𝐽 ≠ 0, the set J has a fixed size.

In particular, for any 𝐾 ⊆ [𝑛], we have

���
∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈B𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 )
��� �𝔇𝐾 (𝛿𝑛) = 0. (5.6)

Working toward a contradiction, assume that at least one of the scalars 𝑐𝐽 ,𝑔𝐽 ∈ C is nonzero. Choose
𝐽0 ⊆ [𝑛] minimal under the Gale order such that at least one 𝑐𝐽0 ,𝑔𝐽0

is nonzero. Letting 𝐾 = 𝐽0, we have

0 =
���

∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈B𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 )
��� �𝔇𝐽0 (𝛿𝑛) (5.7)

� ���
∑

𝑔𝐽0 ∈B𝑛 (𝐽0)
𝑐𝐽0 ,𝑔𝐽0

· 𝑔𝐽0
��� � (coefficient of 𝜃𝐽0 in 𝔇𝐽0 (𝛿𝑛)) (5.8)

=
∑

𝑔𝐽0 ∈B𝑛 (𝐽0)
𝑐𝐽0 ,𝑔𝐽0

· 𝑔𝐽0 �
[
± 𝑓𝐽0 � 𝛿𝑛

]
, (5.9)

where the second equality follows from the homogeneity assumption (★) and our Gale minimality
assumption and � denotes equality up to a nonzero scalar. The linear independence of the set {𝑔𝐽0 �
( 𝑓𝐽0 � 𝛿𝑛) : 𝑔𝐽0 ∈ B𝑛 (𝐽0)} forces 𝑐𝐽0 ,𝑔𝐽0

= 0 for all 𝑔𝐽0 ∈ B𝑛 (𝐽0), which is a contradiction.
We have the chain of inequalities∑

𝐽

|B𝑛 (𝐽) | ≤ dim 𝑆𝐻 ′
𝑛 ≤ dim 𝑆𝐻𝑛 = dim 𝑆𝑅𝑛 ≤

∑
𝐽

|B𝑛 (𝐽) |, (5.10)

where the first inequality comes from the last paragraph, the second inequality follows because
𝑆𝐻 ′

𝑛 ⊆ 𝑆𝐻𝑛, the equality holds because 𝑆𝐻𝑛 is the harmonic space to the quotient 𝑆𝑅𝑛, and the last
inequality holds because of Corollary 3.7. These are all equalities, forcing 𝑆𝐻𝑛 = 𝑆𝐻 ′

𝑛. �
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5.2. Hilbert series

Our goal in this subsection is to calculate the Hilbert series of 𝑆𝑅𝑛 and describe a method for producing
bases of 𝑆𝑅𝑛. The key to our approach is the following general linear independence criterion.

Lemma 5.2. Suppose that for each 𝐽 ⊆ [𝑛], we have a set C𝑛 (𝐽) ⊆ C[x𝑛] of homogeneous polynomials
such that C𝑛 (𝐽) descends to a linearly independent subset of C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). Then the set C𝑛 ⊆ Ω𝑛
given by

C𝑛 :=
⊔
𝐽 ⊆[𝑛]

C𝑛 (𝐽) · 𝜃𝐽 (5.11)

descends to a linearly independent subset of 𝑆𝑅𝑛.

The proof of Lemma 5.2 is quite similar to the proof of Theorem 5.1.

Proof. If not, we could find scalars 𝑐𝐽 ,𝑔𝐽 ∈ C not all zero so that∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈C𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 ) = 0 in 𝑆𝑅𝑛 (5.12)

or equivalently,

���
∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈C𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 )
��� � 𝑆𝐻𝑛 = 0. (5.13)

If we choose 𝐽0 ⊆ [𝑛] to be Gale-minimal such that 𝑐𝐽0 ,𝑔𝐽0
≠ 0 for some 𝑔𝐽0 ∈ C𝑛 (𝐽0), the relation

���
∑
𝐽 ⊆[𝑛]

∑
𝑔𝐽 ∈C𝑛 (𝐽 )

𝑐𝐽 ,𝑔𝐽 (𝑔𝐽 · 𝜃𝐽 )
��� �𝔇𝐽0 (𝛿𝑛) = 0 (5.14)

implies (just as in the proof of Theorem 5.1) that∑
𝑔𝐽0 ∈C𝑛 (𝐽0)

𝑐𝐽0 ,𝑔𝐽0
· 𝑔𝐽0 � ( 𝑓𝐽0 � 𝛿𝑛) = 0, (5.15)

which contradicts the linear independence of C𝑛 (𝐽0) in C[x𝑛]/(𝐼𝑛 : 𝑓𝐽0). �

We have all the tools necessary to calculate the Hilbert series of 𝑆𝑅𝑛. This proves a conjecture
[33, Conj. 6.5] of Sagan and Swanson.

Theorem 5.3. The bigraded Hilbert series of 𝑆𝑅𝑛 is

Hilb(𝑆𝑅𝑛; 𝑞, 𝑧) =
𝑛∑
𝑘=1

𝑧𝑛−𝑘 · [𝑘]!𝑞 · Stir𝑞 (𝑛, 𝑘). (5.16)

Proof. For all subsets 𝐽 ⊆ [𝑛], let 𝐵𝑛 (𝐽) ⊆ C[x𝑛] be a family of homogeneous polynomials which
descends to a basis ofC[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). By Theorem 4.12, the degree generating function for polynomials
in B𝑛 (𝐽) is ∑

𝑔𝐽 ∈B𝑛 (𝐽 )
𝑞deg(𝑔𝐽 ) = [st(𝐽)1]𝑞 · · · [st(𝐽)𝑛]𝑞 . (5.17)
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Lemma 5.2 guarantees that B𝑛 :=
⊔
𝐽 ⊆[𝑛] B𝑛 (𝐽) · 𝜃𝐽 descends to a linearly independent subset of 𝑆𝑅𝑛.

However, Lemma 2.1 shows that

Hilb(𝑆𝑅𝑛; 𝑞, 𝑧) ≥
∑
𝐽 ⊆[𝑛]

���
∑

𝑔𝐽 ∈B𝑛 (𝐽 )
𝑞deg(𝑔𝐽 )��� · 𝑧 |𝐽 |

=
𝑛∑
𝑘=1

𝑧𝑛−𝑘 · [𝑘]!𝑞 · Stir𝑞 (𝑛, 𝑘) ≥ Hilb(𝑆𝑅𝑛; 𝑞, 𝑧), (5.18)

where the inequality is a consequence of Proposition 3.7. This forces the linearly independent subset
B𝑛 ⊆ 𝑆𝑅𝑛 to be a basis and the inequalities to be equalities. �

We present a recipe for building bases of 𝑆𝑅𝑛 from bases of the various commutative quotients
C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). We also show how bases of the quotients C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) induce bases of the
superharmonic space 𝑆𝐻𝑛. Since Ω𝑛 = 𝑆𝐻𝑛 ⊕ 𝑆𝐼𝑛, bases of 𝑆𝐻𝑛 automatically descend to bases of
𝑆𝑅𝑛 = Ω𝑛/𝑆𝐼𝑛. Working in 𝑆𝐻𝑛 can be useful for machine computations since we do not need to
consider cosets 𝑓 + 𝑆𝐼𝑛 ∈ 𝑆𝑅𝑛.

Theorem 5.4. Suppose that, for every subset 𝐽 ⊆ [𝑛], we have a set B𝑛 (𝐽) ⊆ C[x𝑛] of polynomials. Let

B𝑛 :=
⊔
𝐽 ⊆[𝑛]

B𝑛 (𝐽) · 𝜃𝐽 . (5.19)

The following are equivalent.

1. For all 𝐽 ⊆ [𝑛], the set B𝑛 (𝐽) descends to a basis of the quotient ring C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ).
2. We have a basis of the superharmonic space 𝑆𝐻𝑛 given by⊔

𝐽 ⊆[𝑛]
{(𝑏𝐽 · 𝜃𝐽 �𝔇𝐽 (𝛿𝑛)) �𝔇𝐽 (𝛿𝑛) : 𝑏𝐽 ∈ B𝑛 (𝐽)} . (5.20)

Either of (1) or (2) implies the following.

1. The set B𝑛 descends to a basis of 𝑆𝑅𝑛.

Proof. The proof of Theorem 5.3 shows that (1) implies (3), so it is enough to verify that (1) and (2)
are equivalent.

We define a map Ψ of vector spaces

Ψ :
⊕
𝐽 ⊆[𝑛]

C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) −→ 𝑆𝐻𝑛 (5.21)

by the formula

Ψ : (ℎ𝐽 )𝐽 ⊆[𝑛] ↦−→
∑
𝐽 ⊆[𝑛]

(ℎ𝐽 · 𝜃𝐽 �𝔇𝐽 (𝛿𝑛)) �𝔇𝐽 (𝛿𝑛). (5.22)

Since the coefficient of 𝜃𝐽 in 𝔇𝐽 (𝛿𝑛) is ±( 𝑓𝐽 � 𝛿𝑛), we have

[(𝐼𝑛 : 𝑓𝐽 ) · 𝜃𝐽 ] �𝔇𝐽 (𝛿𝑛) = 0 (5.23)

so that Ψ is well-defined.
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We claim that Ψ is a bijection. Theorems 4.12 and 5.3 imply that the domain and codomain of Ψ
have the same dimension, so it is enough to show that Ψ is a surjection. Indeed, Lemma 4.8 implies
𝔇𝐽 (𝛿𝑛) = ( 𝑓𝐽 � 𝛿𝑛) · 𝜃𝐽 + Σ, where Σ ∈

⊕
𝐾<Gale𝐽

C[x𝑛] · 𝜃𝐾 . As a consequence, we have

(C[x𝑛] · 𝜃𝐽 ) �𝔇𝐽 (𝛿𝑛) = C[x𝑛] � ( 𝑓𝐽 � 𝛿𝑛) (5.24)

for each 𝐽 ⊆ [𝑛]. However, Theorem 4.12 implies that C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) is Artinian Gorenstein with
socle spanned by 𝑓𝐽 � 𝛿𝑛. It follows that

C[x𝑛] � ( 𝑓𝐽 � 𝛿𝑛) = (𝐼𝑛 : 𝑓𝐽 )⊥ (5.25)

as ideals in C[x𝑛]. Working modulo the subspace
⊕

𝐾<Gale𝐽
C[x𝑛] · 𝜃𝐾 , we have

[(C[x𝑛] · 𝜃𝐽 ) �𝔇𝐽 (𝛿𝑛)] �𝔇𝐽 (𝛿𝑛) = (𝐼𝑛 : 𝑓𝐽 )⊥ �𝔇𝐽 (𝛿𝑛)

≡ C[x𝑛] �𝔇𝐽 (𝛿𝑛) mod
⊕
𝐾<Gale𝐽

C[x𝑛] · 𝜃𝐾 . (5.26)

The surjectivity of Ψ follows from induction on Gale order and Theorem 5.1. �

5.3. Superspace Artin monomials

Theorem 5.4 gives a recipe for finding bases B𝑛 of 𝑆𝑅𝑛 from bases B𝑛 (𝐽) of the commutative quotients
C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). Although a generic set B𝑛 (𝐽) ⊆ C[x𝑛] of polynomials of the appropriate degrees
will descend to a basis of C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ), the complexity of the ideals (𝐼𝑛 : 𝑓𝐽 ) ⊆ C[x𝑛] has so far
obstructed progress on finding non-generic bases B𝑛 (𝐽) of C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). We present a conjecture in
this direction.

Define the set of J-Artin monomials by

A𝑛 (𝐽) :=
{
𝑥𝑎1

1 · · · 𝑥𝑎𝑛𝑛 : 𝑎𝑖 < st(𝐽)𝑖
}

. (5.27)

That is, the set A𝑛 (𝐽) consists of monomials in C[x𝑛] whose exponent sequences fit below the J-
staircase. We have A𝑛 (𝐽) = ∅ whenever 1 ∈ 𝐽. If 𝐽 = ∅, then A𝑛 (∅) = {𝑥𝑎1

1 · · · 𝑥𝑎𝑛𝑛 : 𝑎𝑖 < 𝑖} was
proven by E. Artin [4] to descend to a basis of 𝑅𝑛.

Conjecture 5.5. For any subset 𝐽 ⊆ [𝑛], the J-Artin monomials A𝑛 (𝐽) descend to a basis of
C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ).

Artin’s result [4] proves Conjecture 5.5 when 𝐽 = ∅. By Theorem 5.4, if Conjecture 5.5 is true,
then

A𝑛 =
⊔
𝐽 ⊆[𝑛]

A𝑛 (𝐽) · 𝜃𝐽 (5.28)

would descend to a basis for 𝑆𝑅𝑛. This would prove a conjecture [33, Conj. 6.7] of Sagan and Swanson.7
Thanks to Theorem 4.12, for any given J it would suffice to prove that A𝑛 (𝐽) is linearly independent in
or spans C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ).

We will give evidence for Conjecture 5.5 by showing that it holds when 𝐽 = {𝑟 + 1, . . . , 𝑛 − 1, 𝑛} is
Gale-maximal. This requires a preparatory lemma on certain ideals J𝑟 , 𝑝,𝑛 ⊆ C[x𝑛] generated by partial
derivatives of h-polynomials.

7While this paper was under review, Conjecture 5.5 was proven by Angarone, Commins, Karn, Murai and Rhoades [3] using
derivation modules of free hyperplane arrangements.
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Lemma 5.6. Let 𝑟 ≥ 1, let 1 ≤ 𝑝 ≤ 𝑛 + 1, and consider the ideal

J𝑟 , 𝑝,𝑛 :=
(
𝜕1ℎ𝑟 , 𝜕2ℎ𝑟 , . . . , 𝜕𝑝−1ℎ𝑟 , 𝜕𝑝ℎ𝑟+1, . . . , 𝜕𝑛−1ℎ𝑟+1, 𝜕𝑛ℎ𝑟+1

)
⊆ C[x𝑛] (5.29)

generated by n partial derivatives of homogeneous symmetric polynomials in the full variable set x𝑛.
The set of monomials

M𝑟 , 𝑝,𝑛 :=
{
𝑥𝑏1

1 · · · 𝑥𝑏𝑛𝑛 : 𝑏𝑖 < 𝑟 − 1 for 𝑖 < 𝑝 and 𝑏𝑖 < 𝑟 for 𝑖 ≥ 𝑝
}

(5.30)

descends to a basis for J𝑟 , 𝑝,𝑛.

Lemma 5.6 says that C[x𝑛]/J𝑟 , 𝑝,𝑛 shares the same monomial basis as the quotient by variable
powers C[x𝑛]/(𝑥𝑟−1

1 , . . . , 𝑥𝑟−1
𝑝−1, 𝑥𝑟𝑝 , . . . , 𝑥𝑟𝑛). Since J𝑟 , 𝑝,𝑛 has inscrutable Gröbner theory, our proof of

Lemma 5.6 relies on exact sequences. Harada, Horiguchi, Murai, Precup and Tymoczko used a similar
style of argument to prove an analogous result [19, Thm. 7.1] on an Artin-like basis for the cohomology
rings of regular nilpotent Hessenberg varieties.

Proof. If 𝑟 = 1 and 𝑝 > 1, then 𝜕1ℎ1 = 𝜕1(𝑥1 + · · · + 𝑥𝑛) = 1 ∈ J𝑟 , 𝑝,𝑛 so that J𝑟 , 𝑝,𝑛 = C[x𝑛] is the unit
ideal. Since M1, 𝑝,𝑛 = ∅, the result is true in this case. We assume that 𝑟 > 1 or 𝑟 = 1 and 𝑝 = 1 going
forward.

We leave it to the reader to verify the formula

𝑥1𝜕1ℎ𝑟 + · · · + 𝑥𝑝−1𝜕𝑝−1ℎ𝑟 + 𝜕𝑝ℎ𝑟+1 + · · · + 𝜕𝑛ℎ𝑟+1 = 𝐶 · ℎ𝑟 , (5.31)

where 𝐶 = 𝑟 +𝑛− 𝑝+1. Since 1 ≤ 𝑝 ≤ 𝑛+1 and 𝑟 ≥ 1, we have 𝐶 > 0, and Equation (5.31) implies that

ℎ𝑟 ∈ J𝑟 , 𝑝,𝑛. (5.32)

In particular, if we let 𝑆 = [𝑛] − {𝑝}, we have

𝜕𝑝ℎ𝑟+1 = 𝜕𝑝
(
𝑥𝑝ℎ𝑟 + ℎ𝑟+1(𝑆)

)
= ℎ𝑟 + 𝑥𝑝 · 𝜕𝑝ℎ𝑟 ∈ J𝑟 , 𝑝,𝑛 (5.33)

so that J𝑟 , 𝑝+1,𝑛 ⊆ J𝑟 , 𝑝,𝑛 and V(J𝑟 , 𝑝,𝑛) ⊆ V(J𝑟 , 𝑝+1,𝑛). Swanson and Wallach [37, Lem. 6.2] showed
that V(J𝑟 ,𝑛+1,𝑛) = {0}, so that V(J𝑟 , 𝑝,𝑛) = {0} (our assumptions on r and p guarantee that the
generators of J𝑟 , 𝑝,𝑛 have positive degree). Lemma 2.2 shows that the generating set of J𝑟 , 𝑝,𝑛 is a
regular sequence, so that

Hilb
(
C[x𝑛]/J𝑟 , 𝑝,𝑛; 𝑞

)
= [𝑟 − 1] 𝑝−1

𝑞 · [𝑟]𝑛−𝑝+1
𝑞 . (5.34)

The memberships (5.32) and (5.33) imply that 𝑥𝑝 · 𝜕𝑝ℎ𝑟 ∈ J𝑟 , 𝑝,𝑛, so that 𝑥𝑝 · J𝑟 , 𝑝+1,𝑛 ⊆ J𝑟 , 𝑝,𝑛.
We therefore have an exact sequence

C[x𝑛]
J𝑟 , 𝑝+1,𝑛

× 𝑥𝑝−−−−−→ C[x𝑛]
J𝑟 , 𝑝,𝑛

can.−−−−→ C[x𝑛]
J𝑟 , 𝑝,𝑛 + (𝑥𝑝)

→ 0, (5.35)

where the first map is induced by multiplication by 𝑥𝑝 and the second map is the canonical projection.
The next step is to identify the target of the second map in this sequence in terms of a smaller variable set.

Let x̄𝑛−1 = (𝑥1, . . . , 𝑥𝑝−1, 𝑥𝑝+1, . . . , 𝑥𝑛) be the variable set x𝑛 with 𝑥𝑝 removed. Let

𝜋 : C[x𝑛] � C[x̄𝑛−1] (5.36)
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be the surjection defined by 𝜋(𝑥𝑖) = 𝑥𝑖 for 𝑖 ≠ 𝑝 and 𝜋(𝑥𝑝) = 0. Let J̄𝑟 , 𝑝,𝑛−1 ⊆ C[x̄𝑛−1] be the ideal
with the same generating set as J𝑟 , 𝑝,𝑛−1, but in the variable set x̄𝑛−1. Writing 𝑆 = [𝑛] − {𝑝}, for any
𝑑 > 0 and any 𝑖 ≠ 𝑝, we have the evaluation

𝜋 : 𝜕𝑖ℎ𝑑 ↦→ [𝜕𝑖ℎ𝑑]𝑥𝑝 → 0 =
[
𝜕𝑖 (𝑥𝑝 · ℎ𝑑−1 + ℎ𝑑 (𝑆))

]
𝑥𝑝 → 0

=
[
𝑥𝑝 · 𝜕𝑖 (ℎ𝑑−1 + ℎ𝑑 (𝑆))

]
𝑥𝑝 → 0 = 𝜕𝑖ℎ𝑑 (𝑆). (5.37)

Furthermore, we have

𝜋 : 𝜕𝑝ℎ𝑑 ↦→
[
𝜕𝑝ℎ𝑑

]
𝑥𝑝 → 0 =

[
𝜕𝑝 (𝑥𝑝 · ℎ𝑑−1 + ℎ𝑑 (𝑆))

]
𝑥𝑝 → 0 = ℎ𝑑−1 (𝑆). (5.38)

Comparing the generators of J𝑟 , 𝑝,𝑛 with those of J̄𝑟 , 𝑝,𝑛−1 and using ℎ𝑟 (𝑆) ∈ J̄𝑟 , 𝑝,𝑛−1, we conclude
that

𝜋
(
J𝑟 , 𝑝,𝑛 + (𝑥𝑝)

)
= J̄𝑟 , 𝑝,𝑛−1 (5.39)

so that the exact sequence (5.35) induces a new exact sequence

C[x𝑛]
J𝑟 , 𝑝+1,𝑛

× 𝑥𝑝−−−−−→ C[x𝑛]
J𝑟 , 𝑝,𝑛

𝜓
−−→ C[x̄𝑛−1]

J̄𝑟 , 𝑝,𝑛−1
→ 0, (5.40)

where the surjection 𝜓 is induced by 𝜋. The Hilbert series formula (5.34) implies that the dimensions
of the vector spaces on either side of (5.40) add to the dimension of the vector space in the middle, so
the first map in (5.40) is injective, and we have a short exact sequence

0 → C[x𝑛]
J𝑟 , 𝑝+1,𝑛

× 𝑥𝑝−−−−−→ C[x𝑛]
J𝑟 , 𝑝,𝑛

𝜓
−−→ C[x̄𝑛−1]

J̄𝑟 , 𝑝,𝑛−1
→ 0. (5.41)

By induction, we may assume that M𝑟 , 𝑝+1,𝑛 descends to a basis of C[x𝑛]/J𝑟 , 𝑝+1,𝑛 and that

M̄𝑟 , 𝑝,𝑛−1 :=
{
𝑥𝑏1

1 · · · 𝑥𝑏𝑝−1
𝑝−1 𝑥

𝑏𝑝+1
𝑝+1 · · · 𝑥𝑏𝑛𝑛 : 𝑏𝑖 < 𝑟 − 1 for 𝑖 < 𝑝 and 𝑏𝑖 < 𝑟 for 𝑖 > 𝑝

}
(5.42)

descends to a basis of C[x̄𝑛−1]/J̄𝑟 , 𝑝,𝑛−1. The exactness of (5.41) and the observation

M𝑟 , 𝑝,𝑛 = 𝑥𝑝 ·M𝑟 , 𝑝+1,𝑛 � M̄𝑟 , 𝑝,𝑛−1 (5.43)

guarantee that M𝑟 , 𝑝,𝑛 descends to a basis for C[x𝑛]/J𝑟 , 𝑝,𝑛, which completes the proof. �

Proposition 5.7. Conjecture 5.5 is true when 𝐽 = {𝑟 + 1, . . . , 𝑛 − 1, 𝑛} is a Gale-maximal subset of [𝑛].

Proof. By Theorem 4.12, the generators of (𝐼𝑛 : 𝑓𝐽 ) ⊆ C[x𝑛] are

ℎ1 (𝑥1, . . . , 𝑥𝑛), ℎ2 (𝑥1, . . . , 𝑥𝑛), . . . ℎ𝑟 (𝑥𝑟 , . . . , 𝑥𝑛),
𝜕𝑟+1ℎ𝑟+1(𝑥𝑟+1, . . . , 𝑥𝑛), 𝜕𝑟+2ℎ𝑟+1(𝑥𝑟+1, . . . , 𝑥𝑛), . . . 𝜕𝑛ℎ𝑟+1(𝑥𝑟+1, . . . , 𝑥𝑛). (5.44)

Since ℎ𝑑 (𝑥𝑑 , . . . , 𝑥𝑛) = 𝑥𝑑𝑑+Σ, whereΣ is a linear combination of terms which are > 𝑥𝑑𝑑 in lexicographial
order, we see thatC[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) is spanned by monomials of the form 𝑥𝑏1

1 · · · 𝑥𝑏𝑛𝑛 where 𝑏𝑖 < 𝑖 for 𝑖 ≤ 𝑟 .
The generators 𝜕𝑖ℎ𝑟+1(𝑥𝑟+1, . . . , 𝑥𝑛) of (𝐼𝑛 : 𝑓𝐽 ) and Lemma 5.6 (applied over the set {𝑥𝑟+1, . . . , 𝑥𝑛} of
variables indexed by J) imply that A𝑛 (𝐽) descends to a spanning set of C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). This spanning
set must be a basis by Theorem 4.12. �

Given Proposition 5.7, a natural strategy for proving Conjecture 5.5 would be to induct on the position
of J in Gale order. The base case of J Gale-maximal is handled by Proposition 5.7. If 𝑖 ∉ 𝐽 and 𝑖 +1 ∈ 𝐽,

https://doi.org/10.1017/fmp.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.14


32 B. Rhoades and A. T. Wilson

we have 𝑠𝑖 · 𝐽 <Gale 𝐽, where 𝑠𝑖 = (𝑖, 𝑖+1) is the adjacent transposition in𝔖𝑛. Furthermore, the property
(𝔞 : 𝑓 𝑔) = ((𝔞 : 𝑓 ) : 𝑔) of colon ideals gives rise to a natural injection

0 → C[x𝑛]
(𝐼𝑛 : 𝑓𝑠𝑖 ·𝐽 )

𝜑
−−→ C[x𝑛]

(𝐼𝑛 : 𝑓𝐽 )
, (5.45)

where 𝜑( 𝑓 ) := (𝑥𝑖 − 𝑥𝑖+1) × 𝑠𝑖 · 𝑓 is defined by swapping the variables 𝑥𝑖 ↔ 𝑥𝑖+1 and multiplying by
𝑥𝑖 −𝑥𝑖+1. Unfortunately, the map 𝜑 does not relate to the structure of monomials in A𝑛 (𝑠𝑖 · 𝐽) and A𝑛 (𝐽)
in an obvious way; this has made Conjecture 5.5 resistant to inductive attack.

6. Conclusion

The most glaring open problem of our work is to enhance the Hilbert series result of Theorem 5.3 and
prove the Fields Conjecture 1.9 on the bigraded 𝔖𝑛-structure of 𝑆𝑅𝑛. One way to achieve this would be
to show that the composite linear map

𝜑 :
𝑛⊕
𝑘=1

𝑉𝑛,𝑘 ↩→ Ω𝑛 � 𝑆𝑅𝑛 (6.1)

is bijective, where 𝑉𝑛,𝑘 ⊆ Ω𝑛 are the spaces constructed by the authors [30] and described in the
introduction. Thanks to Theorem 5.3 and [30], we know that the domain and target of 𝜑 have the same
vector space dimension, so we are asking that 𝜑 have a generic property. Unfortunately, much like in the
case of Conjecture 5.5, proving that 𝜑 satisfies this generic property has exhibited resistance to direct
attack.

Various ideas in this paper have made appearances in the theory of Hessenberg varieties. Lemma 2.3
on the realization of colon ideals (𝔞 : 𝑓 ) by complete intersections was used by Abe, Horiguchi, Ma-
suda, Murai and Sato [2] to relate the cohomology rings of Hessenberg varieties to derivation modules
of hyperplane arrangements associated to down-closed sets in positive root posets. The polynomials
𝑓𝐽 ∈ C[x𝑛] appearing in this paper factor into products

∏
𝑗∈𝐽 𝑓{ 𝑗 } labeled by singletons. In turn,

the polynomials 𝑓{ 𝑗 } labeled by singletons resemble members of a family 𝑓 𝑗 ,𝑖 ∈ C[x𝑛] of polyno-
mials appearing in the work of Abe, Harada, Horiguchi and Masuda [1]. The polynomials 𝑓 𝑗 ,𝑖 were
used to present the cohomology of regular nilpotent Hessenberg varieties using a GKM-style exci-
sion which bears combinatorial resemblance to removing J-resentful permutations from 𝔖𝑛 to arrive
at J-Nietzschean permutations. An Artin-like basis of these cohomology rings was proven by Harada,
Horiguchi, Murai, Precup and Tymoczko [19]; we use similar techniques in the proof of Lemma 5.6 to
show in Proposition 5.7 that the Artin monomials attached to terminal subsets 𝐽 = {𝑟, 𝑟+1, . . . , 𝑛} ⊆ [𝑛]
descend to a basis of the quotient rings C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ). Given these technical parallels, the authors
suspect that there is a deeper connection between the supercoinvariant ring 𝑆𝑅𝑛 and Hessenberg theory.
We present a conjecture in this direction as follows.

Recall that a finite-dimensional graded C-algebra 𝐴 =
⊕𝑑

𝑖=0 𝐴𝑖 with 𝐴𝑑 ≠ 0 satisfies Poincaré
Duality if 𝐴𝑑 � C is 1-dimensional and if the multiplication 𝐴𝑖 ⊗ 𝐴𝑑−𝑖 → 𝐴𝑑 � C is a perfect paring
for all 0 ≤ 𝑖 ≤ 𝑑. If A satisfies Poincaré Duality, an element ℓ ∈ 𝐴1 of homogeneous degree 1 is a
Lefschetz element if, for all 𝑖 < 𝑑/2, the map

ℓ𝑑−2𝑖 × (−) : 𝐴𝑖 −→ 𝐴𝑑−𝑖 (6.2)

of multiplication by ℓ𝑑−2𝑖 is a bijection. If a Lefschetz element ℓ ∈ 𝐴1 exists, the algebra A is said to
satisfy the Hard Lefschetz property.

Algebras A which satisfy PD and HL arise naturally in geometry. If X is a smooth closed complex
projective variety, its cohomology ring 𝐴 = 𝐻•(𝑋) satisfies PD and HL (here we double the grading
by setting 𝐴𝑖 := 𝐻2𝑖 (𝑋)). For example, the coinvariant ring 𝑅𝑛 = C[x𝑛]/𝐼𝑛 = 𝐻•(Fl(𝑛)) satisfies PD
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and HL. Maeno, Numata and Wachi proved [25] that a linear form ℓ = 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛 is a Lefschetz
element of 𝑅𝑛 if and only if the coefficients 𝑐1, . . . , 𝑐𝑛 ∈ C are distinct.

Even if a variety X is not smooth, its cohomology ring 𝐻•(𝑋) can still satisfy PD and HL. Abe,
Horiguchi, Masuda, Murai and Sato proved [2, Thm. 12.1] that 𝐻•(𝑋) satisfies PD and HL when
X is a regular nilpotent Hessenberg variety, despite the fact that these varieties are usually singular.
Furthermore, a graded algebra 𝐴 =

⊕𝑑
𝑖=0 𝐴𝑖 can still satisfy PD and HL, and so behave like the

cohomology ring of a hypothetical smooth compact variety X. As we have seen, the quotients C[x𝑛]/
(𝐼𝑛 : 𝑓𝐽 ) satisfy PD since they are complete intersections. For the next conjecture, we adopt the
convention that the zero ring 0 = 𝐻•(∅) satisfies HL.

Conjecture 6.1. For any 𝐽 ⊆ [𝑛], the quotient ring C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ) satisfies the Hard Lefschetz
property.

Conjecture 6.1 has been tested for 𝑛 ≤ 7. Computational data suggests that the linear forms
ℓ = 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛 continue to serve as Lefschetz elements, provided 𝑐1, . . . , 𝑐𝑛 ∈ C are distinct. We
suspect that the Hodge-Riemann relations hold for C[x𝑛]/(𝐼𝑛 : 𝑓𝐽 ), as well (see [2, Sec. 12]).

One of the most aesthetically pleasing aspects of 𝑆𝑅𝑛 is its direct extension to general complex
reflection groups. An element 𝑔 ∈ 𝐺𝐿𝑛 (C) is a pseudoreflection if g is conjugate to a diagonal matrix
of the form diag(𝜁, 1, . . . , 1), where 𝜁 ∈ C× is a root-of-unity of finite order. A finite subgroup
𝐺 ⊆ 𝐺𝐿𝑛 (C) is a complex reflection group if G is generated by pseudoreflections.

The natural action of a complex reflection group 𝐺 ⊆ 𝐺𝐿𝑛 (C) on C𝑛 induces actions of G on
C[x𝑛] and Ω𝑛 by linear substitutions. Chevalley proved [10] that the invariant subring C[x𝑛]𝐺 admits
a set 𝑓1, . . . , 𝑓𝑛 of algebraically independent homogeneous generators of positive degrees, so that
C[x𝑛]𝐺 = C[ 𝑓1, . . . , 𝑓𝑛] is itself a polynomial ring. Although the 𝑓𝑖 are not unique, their degrees
𝑑1, . . . , 𝑑𝑛 are uniquely determined by G. Solomon [34] proved that the superspace invariants (Ω𝑛)𝐺
are a free C[x𝑛]𝐺-module and described a basis for this module as follows.

Theorem 6.2. (Solomon [34]) Let 𝑓1, . . . , 𝑓𝑛 ∈ C[x𝑛]𝔖𝑛 be any list of algebraically independent
homogeneous generators of C[x𝑛]𝔖𝑛 . The space (Ω𝑛)𝔖𝑛 is a free module over C[x𝑛]𝔖𝑛 with basis

{𝑑𝑓𝑖1 · · · 𝑑𝑓𝑖𝑟 : 0 ≤ 𝑟 ≤ 𝑛, 1 ≤ 𝑖1 < · · · < 𝑖𝑟 ≤ 𝑛}. (6.3)

Solomon’s Theorem 6.2 describes the space (Ω𝑛)𝐺 of G-invariants as a C[x𝑛]𝐺-module. Any funda-
mental system of invariants 𝑓1, . . . , 𝑓𝑛 ∈ C[x𝑛]𝐺 gives rise to a generating set for the G-supercoinvariant
ideal 𝑆𝐼𝐺 generated by (Ω𝑛)𝐺+ . We have 𝑆𝐼𝐺 = ( 𝑓1, . . . , 𝑓𝑛, 𝑑𝑓1, . . . , 𝑑𝑓𝑛) and may use this presentation
to study the quotient 𝑆𝑅𝐺 := Ω𝑛/𝑆𝐼𝐺 as a bigraded G-module.

Solomon used Theorem 6.2 to give a uniform proof of the product formula∑
𝑔∈𝐺

𝑡dim Fix(𝑔) = (𝑡 + 𝑑1 − 1) · · · (𝑡 + 𝑑𝑛 − 1), (6.4)

where Fix(𝑔) = {𝑣 ∈ C𝑛 : 𝑔 · 𝑣 = 𝑣} is the fixed subspace of C𝑛 attached to g. In type A, this is
equivalent to the factorization

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘) · 𝑡𝑘 = 𝑡 (𝑡 + 1) · · · (𝑡 + 𝑛 − 1), (6.5)

where 𝑐(𝑛, 𝑘) is the Stirling number of the first kind counting permutations 𝑤 ∈ 𝔖𝑛 with k cycles.
However, the algebra of 𝑆𝑅𝑛 = Ω𝑛/𝑆𝐼𝑛 is governed by ordered set partitions, which relate to Stirling
numbers of the second kind.

Ordered set partitions of [𝑛] are in bijective correspondence with faces in the type A Coxeter
complex. All available data in types BCD suggest that the fermionic degree k piece of 𝑆𝑅𝐺 := Ω𝑛/𝑆𝐼𝐺
has dimension equal to the number of codimension k faces in the corresponding Coxeter complex
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(in type A this is a consequence of Theorem 5.3). We also have agreement in type H3. However, in type
F4, these quantities disagree. The bigraded Hilbert series of 𝑆𝑅F4 is given by

Hilb(𝑆𝑅F4 ; 𝑞, 𝑧) =(
1 + 4𝑞 + 9𝑞2 + 16𝑞3 + 25𝑞4 + 36𝑞5 + 48𝑞6 + 60𝑞7 + 71𝑞8 + 80𝑞9 + 87𝑞10 + 92𝑞11 + 94𝑞12+

92𝑞13 + 87𝑞14 + 80𝑞15 + 71𝑞16 + 60𝑞17 + 48𝑞18 + 36𝑞19 + 25𝑞20 + 16𝑞21 + 9𝑞224 + 𝑞23 + 𝑞24

)
· 𝑧0+(

4 + 15𝑞 + 32𝑞2 + 55𝑞3 + 84𝑞4 + 118𝑞5 + 152𝑞6 + 182𝑞7 + 204𝑞8 + 215𝑞9 + 216𝑞10 + 207𝑞11+
188𝑞12 + 161𝑞13 + 132𝑞14 + 105𝑞15 + 80𝑞16 + 58𝑞17 + 40𝑞18 + 26𝑞19 + 16𝑞20 + 9𝑞21 + 4𝑞22 + 𝑞23

)
· 𝑧1+(

6 + 20𝑞 + 39𝑞2 + 64𝑞3 + 95𝑞4 + 128𝑞5 + 154𝑞6 + 168𝑞7 + 164𝑞8 + 140𝑞9+
122𝑞10 + 100𝑞11 + 75𝑞12 + 52𝑞13 + 34𝑞14 + 20𝑞15 + 10𝑞16 + 4𝑞17 + 𝑞18

)
· 𝑧2

+
(

4 + 10𝑞 + 16𝑞2 + 25𝑞3 + 36𝑞4 + 43𝑞5+
44𝑞6 + 36𝑞7 + 16𝑞8 + 9𝑞9 + 4𝑞10 + 𝑞11

)
· 𝑧3 + 𝑧4, (6.6)

and this expression has 𝑞 → 1 specialization

Hilb(𝑆𝑅F4 ; 1, 𝑧) = 1152 · 𝑧0 + 2304 · 𝑧1 + 1396 · 𝑧2 + 244 · 𝑧3 + 𝑧4. (6.7)

This coefficient sequence is almost the same as the reversed f -vector (1152, 2304, 1392, 240, 1) of the
type F4 Coxeter complex, but the coefficients of 𝑧2 and 𝑧3 are too large by 4. Finding a precise invariant-
theoretic description of the Hilbert series of 𝑆𝑅𝐺 would likely be very interesting.
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