
Glasgow Math. J. 46 (2004) 205–210. C© 2004 Glasgow Mathematical Journal Trust.
DOI: 10.1017/S001708950300168X. Printed in the United Kingdom

ASCENT AND DESCENT OF GORENSTEIN PROPERTY
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Abstract. Let A be a commutative noetherian local ring, I an ideal of A, and
B = A/I . Assume that the André-Quillen homology functors Hn(A, B,−) = 0 for all
n ≥ 3. Then A is Gorenstein if and only if B is.

2000 Mathematics Subject Classification. 13H10, 13D03.

Let f : A → B be a surjective homomorphism of noetherian local commutative
rings. If Ker ( f ) is generated by a regular sequence, it is well known that A is complete
intersection (resp. Gorenstein, Cohen-Macaulay) if and only if B is. Another family of
homomorphisms under which these properties ascend and descend is the one of local
flat (non surjective) homomorphisms: B is complete intersection (resp. Gorenstein,
Cohen-Macaulay) if and only if A and B ⊗A k are, where k is the residue field of A.

Ascent and descent of these properties was studied, mainly by L. L. Avramov
and H.-B. Foxby, for a family of homomorphisms generalizing the two cases above:
homomorphisms of finite flat dimension (see e.g. [4], [6], [7], and, in some sense, for a
larger family of homomorphisms [5]).

Here we consider a different class of homomorphisms. Let Hn(A, B,−) be the
André-Quillen homology functors [1], [15]. If f : A → B is a surjective homomorphism
of noetherian local rings, then Ker( f ) is generated by a regular sequence if and only if
Hn(A, B,−) = 0 for all n ≥ 2. The class of homomorphisms considered in this paper is
the one satisfying Hn(A, B,−) = 0 for all n ≥ 3. In some sense it is related to complete
intersection rings as Hn(A, B,−) = 0 for all n ≥ 2 is related to regular rings: if B = k
is the residue field of A, we have [1, 6.26, 6.27]

Hn(A, k,−) = 0 for all n ≥ 2 ⇔ if A is regular
Hn(A, k,−) = 0 for all n ≥ 3 ⇔ A is complete intersection.

Moreover, this is a natural class of surjective homomorphisms under which the
complete intersection property ascends and descends. So we may ask if the same
is valid for Gorenstein and Cohen-Macaulay properties. On the other hand, this
class of homomorphisms generalizes the one whose kernel is generated by a regular
sequence in a very different way that the homomorphisms of finite flat dimension: if
Hn(A, B,−) = 0 for all n ≥ 3 and B is of finite flat dimension over A, then Ker( f ) is
generated by a regular sequence [1, 17.2]; moreover, it is easy to see that if A and B are
complete intersection rings then Hn(A, B,−) = 0 for all n ≥ 3.
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If f : A → B is a surjective homomorphism of noetherian local rings with
Hn(A, B,−) = 0 for all n ≥ 3, we prove in this paper that A is Gorenstein if and only
if B is, and if A is Cohen-Macaulay then B is Cohen-Macaulay. The main ingredients
of the proof are:

a) A result of A. Blanco, J. Majadas and A. G. Rodicio [11] characterizing this
class of homomorphisms in terms of the Koszul homology of the kernel ideal.

b) A relativization of a characterization, by Avramov and Golod, of Gorenstein
rings in terms of the Koszul complex of the maximal ideal [9]. Once we get the adequate
notion of Poincaré algebra in our context, our proof of this relativization follows closely
[9], with a little more length, due to the non rigidity of ExtA(B, A) when B is not a
field. In fact, the proof in [9] of the absolute case shows that to deduce Gorensteiness
it suffices the injectivity of ∆1 (see below for the definition of ∆i), whereas in our case
we need to assume the bijectivity of all ∆i.

We want to point out two cases where our results are already known:
� The case where the kernel is a principal ideal (x) was obtained in [18] (in fact under

the (a priori weaker) condition that the annihilator (0 : x) is a free B-module).
� The case where A is a supplemented B-algebra (i.e., the homomorphism f : A → B

has a ring homomorphism section). In this case it is easy to show that Gorenstein
and Cohen-Macaulay properties ascend and descend (this is essentially done in
[3, Proposition 3]): we may assume that A is complete [1, 10.18]. Let B → R → A
be a Cohen factorization [8], i.e., R is a noetherian local ring, B → R is a local flat
homomorphism with regular closed fiber R ⊗B k, and R → A is surjective. We have
exact sequences [1, 5.1]

0 = H3(A, B, k) → H2(B, A, k) → H2(B, B, k) = 0

0 = H2(B, A, k) → H2(R, A, k) → H1(B, R, k)

Since H1(B, R, k) = H1(k, R ⊗B k, k) = H2(R ⊗B k, k, k) = 0 [1, 4.54, 5.1, 6.26], we
have H2(R, A, k) = 0 and so Ker (R → A) is generated by a regular sequence [1, 6.25].
Therefore A is Gorenstein (resp. Cohen-Macaulay) if and only if R is if and only if B is.

DEFINITION 1. Let B be a noetherian local ring, and

H =
n⊕

i=0

Hi

a graded (anti) commutative B-algebra of finite type. We say that H is a Poincaré
B-algebra if:

i) H0 = B;
ii) Extq

B(Hi, B) = 0 for 0 < i < n for all q > 0;
iii) Hn is a free B-module;
iv) The canonical homomorphisms induced by multiplication

∆i : Hn−i → HomB(Hi, Hn)

are all isomorphisms 0 ≤ i ≤ n.
Note that from the isomorphism ∆n, since Hn is a free B-module and H0 = B, Hn

is free of rank 1.
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The graded algebras that we are going to consider are Koszul homology algebras
associated to a set of generators of A. For the definition and basic results on the Koszul
complex, see [17, Chapitre IV.A)] or [12, Section 1.6].

LEMMA 2. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let E be
the Koszul complex associated to a finite set of generators of I. Then the fact that H(E)
is a Poincaré B-algebra does not depend on the choice of the (finite) set of generators
of I.

Proof. If I = (x1, . . . , xr) = (x1, . . . , xr, y1, . . . , ys), let E(x), E(x, y) the Koszul
complexes associated to x1, . . . , xr, and to x1, . . . , xr, y1, . . . , ys resp. Then we have
isomorphisms [12, 1.6.21]

Hp(x, y; A) =
⊕

u+v=p

∧u
B(Bs) ⊗B Hv(x; A).

compatible with the algebra structures. Having in mind the isomorphisms (since ∧u
B(Bs)

is B-free of finite type)

HomB
(∧u

B (Bs),∧s
B(Bs)

) ⊗B HomB(Hv(x; A), Hn(x; A))

= HomB
(∧u

B (Bs) ⊗B Hv(x; A),∧s
B(Bs) ⊗B Hn(x; A)

)

we deduce that H(x; A) is a Poincaré B-algebra if and only if H(x, y; A) is. If y1, . . . , ys

and x1, . . . , xr are two sets of generators of I , compare H(x; A) with H(x, y; A) and
this one with H(y; A) �

The following proposition is [9, Proposition 2] (see also [12, 3.4.6]).

PROPOSITION 3. Let A be a noetherian local ring, I an ideal of finite type of A of grade
0, and B = A/I. Let E be the Koszul complex associated to a finite set of n generators of
I. For each 0 ≤ i ≤ n, let

∆i : Hn−i(E) → HomB(Hi(E), Hn(E))

be the homomorphism induced by the algebra structure on H(E). Let Bi ⊂ Ei, Zi ⊂ Ei, be
the submodules of boundaries and cycles of E respectively. There exists an exact sequence

0 → Ext1
A(Ei−1/Bi−1, A) → Hn−i(E)

∆i→ HomB(Hi(E), Hn(E))

→ Ext1
A(Bi−1, A) → Ext1

A(Ei/Bi, A) → Ext1
A(Hi(E), A)

→ Ext2
A(Bi−1, A) → . . .

PROPOSITION 4. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let E
be the Koszul complex associated to a finite set of m generators of I. Let n = m − grade I.
The following are equivalent:

i) H(E) is a Poincaré B-algebra;
ii) Extq

A(B, A) = 0 for all q 
= grade I, Extq
B(Hi(E), B) = 0 for 0 < i < n for all

q > 0, and Hn(E) is a free B-module.

Proof. First, we will see that we can assume grade I = 0. If grade I = g > 0, let
x1, . . . , xg be a regular sequence in I . By Lemma 2 and its proof, the conditions
i) and ii) of the proposition do not depend on the set of generators of I . Let then
I = (x1, . . . , xg, y1, . . . , yt) and let E be the Koszul complex associated to this set of
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generators of I . Let A′ = A/(x1, . . . , xg), I ′ = I/(x1, . . . , xg). Let E′ be the Koszul
complex over A′ associated to the set of generators (y′

1, . . . , y′
t) of I ′. We have H(E) =

H(E′) [12, 1.6.13] and Extq
A(B, A) = Extq−g

A′ (B, A′) for all q [16] (or [17, p. IV-13]. Thus
replacing (A, I) by (A′, I ′), we can assume grade I = 0.

i) ⇒ ii) By Proposition 3, if ∆1 is injective, we have Ext1
A(B, A) = 0. If ∆2 is

injective, we have Ext1
A(E1/B1, A) = 0, and so, if moreover ∆1 is surjective, we obtain

Ext1
A(B0, A) = 0, i.e., Ext2

A(B, A) = 0.
Let r ≥ 3 and assume we have Extj

A(B, A) = 0 for all 1 ≤ j ≤ r − 1. Since
Extq

B(Hi(E), B) = 0 for all q > 0 and all i, and Ext0
A(B, A) = HomA(B, A) = Hn(E)

is a free B-module by hypothesis, in the spectral sequence

Ep,q
2 = Extp

B

(
Hi(E), Extq

A(B, A)
) ⇒ Extp+q

A (Hi(E), A)

we have Ep,q
2 = 0 if 1 ≤ p + q ≤ r − 1 and so Extj

A(Hi(E), A) = 0 for 1 ≤ j ≤ r − 1.
Therefore, from the exact sequences 0 → Hi(E) → Ei/Bi → Bi−1 → 0, 0 → Bi →
Ei → Ei/Bi → 0, we obtain Extq

A(Bi, A) = Extq+1
A (Bi−1, A) for all 1 ≤ q ≤ r − 2. If ∆r

is injective, from Proposition 3 we deduce Ext1
A(Er−1/Br−1, A) = 0 and so, using that

∆r−1 is surjective, we obtain Ext1
A(Br−2, A) = 0. Thus Extr

A(B, A) = Extr−1
A (B0, A) =

Ext1
A(Br−2, A) = 0. This completes the induction step.
ii) ⇒ i) Since Ext0

A(B, A) = Hn(E) is a free B-module, Extq
B(Hi(E), B) = 0 for all

q > 0 and all i, and Extq
A(B, A) = 0 for all q > 0, the spectral sequence

Ep,q
2 = Extp

B

(
Hi(E), Extq

A(B, A)
) ⇒ Extp+q

A (Hi(E), A)

says that Extq
A(Hi(E), A) = 0 for all q > 0 for all i. So from the exact

sequences 0 → Hi(E) → Ei/Bi → Bi−1 → 0, 0 → Bi → Ei → Ei/Bi → 0, 0 → B0 →
E0 → B → 0, and from the hypothesis Extq

A(B, A) = 0 for all q > 0, we obtain, by
recurrence on r, Extq

A(Br, A) = 0, and Extq
A(Er/Br, A) = 0 for all r ≥ 0 and all q > 0. So

from the exact sequence of Proposition 3 with i = r we deduce that∆r is an isomorphism
for all r ≥ 0. �

COROLLARY 5. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let
E be the Koszul complex associated to a finite set of generators of I. Assume that H(E)
is a Poincaré B-algebra. Then

i) A is Gorenstein if and only if B is,
ii) If A is Cohen-Macaulay, so is B.

Proof. i) It follows from Proposition 4 and from the spectral sequence

Ep,q
2 = Extp

B

(
k, Extq

A(B, A)
) ⇒ Extp+q

A (k, A)

where k is the residue field of A and B, since, with the notation as in the proof of
Proposition 4, if g = grade I, Extg

A(B, A) = Ext0
A′ (B, A′) = HomA′ (B, A′) = Hn(E′) =

Hn(E) is a free B-module of rank 1.
ii) The same spectral sequence

Ep,q
2 = Extp

B

(
k, Extq

A(B, A)
) ⇒ Extp+q

A (k, A)

gives an isomorphism Extp
B(k, B) = Extp+g

A (k, A) for all p, and so depth A =
g + depth B = grade I + depth B = ht(I) + depth B, since A is Cohen-Macaulay, and
depth A = dim A = ht(I) + dim B. Thus depth B = dim B. �
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COROLLARY 6. Let A be a noetherian local ring, I an ideal of A, and B = A/I.
Assume that the André-Quillen homology functors Hn(A, B,−) = 0 for all n ≥ 3. Then

i) A is Gorenstein if and only if B is
ii) If A is Cohen-Macaulay, so is B.

Proof. Let E be the Koszul complex associated to a finite set of generators of I .
By [11, Corollary 3′], H1(E) is a free B-module and the canonical homomorphism
∧BH1(E) → H(E) is an isomorphism. Therefore H(E) is a Poincaré B-algebra, and
Corollary 5 applies. �

REMARK 7. Let A be a noetherian local ring, I an ideal of A, and B = A/I . Let
E be the Koszul complex associated to a finite set of generators of I . If A and B are
Gorenstein, then Extq

A(B, A) = 0 for all q 
= grade I, Hn(E) = HomA(B, A) is a free
B-module of rank 1, but the condition Extq

B(Hi(E), B) = 0 for 0 < i < n for all q > 0
does not hold in general:

i) Extq
A(B, A) = 0 for all q 
= grade I . This follows, replacing A by A′ as in the

proof of Proposition 4, from [2, 4.20, 4.12]
ii) Hn(E) = HomA(B, A) is a free B-module of rank 1. In effect, if I contains a

regular element, HomA(B, A) = 0. If not, grade I = 0 and since A is Cohen-Macaulay,
dim A = ht(I) + dim B = grade I + dim B = dim B. Since Extq

A(B, A) = 0 for all q > 0
by i), we have a spectral sequence

Ep,q
2 = Extp

A

(
Extq

B(k, B), A
) ⇒ TorB

q−p(HomA(B, A), k)

where k is the residue field of A, which is convergent since A is local Gorenstein. As
Extq

B(k, B) = 0 for q 
= dim B and = k for q = dim B, and the same holds for Extp
A(k, A),

the spectral sequence gives TorB
t (HomA(B, A), k) = k for t = 0 and is equal to 0 for

t > 0. Hence HomA(B, A) is a free B-module of rank 1.
iii) We cannot deduce the condition Extq

B(Hi(E), B) = 0 for 0 < i < n for all q > 0.
In fact, in this case, this condition is equivalent to the Cohen-Macaulayness of the B-
modules Hi(E) (it is said that I is a strongly Cohen-Macaulay ideal; see [14]), since
Extq

B(Hi(E), B) = 0 for all q > 0 ⇔ depth Hi(E) = depth B = dim B [2, 4.20, 4.12], and
dim Hi(E) = dim B (see [14, Remark 1.3], sketch of proof: for the last non-vanishing
Koszul homology module Hn−g(E) is easy. Then, for the others, localize at associated
prime ideals of Hn−g(E) and use the rigidity of Koszul homology). In fact, under this
additional hypothesis of a strongly Cohen-Macaulay ideal I , the Poincaré duality was
already proved by J. Herzog (see [10, Proposition 2.3]).

REMARK 8. Our results give some (little) evidence on a conjecture of Rodicio (an
analogue of the theorem of Ferrand-Vasconcelos in “higher dimension”), which says
that Hn(A, B,−) = 0 for all n ≥ 3 if and only if the complete intersection dimension
of the A-module B is finite and H1(E) is a free B-module (see [19, Conjecture 11].
The unproved part of the conjecture is that if Hn(A, B,−) = 0 for all n ≥ 3 then
the complete intersection dimension of B is finite. We deduce from Proposition 4
that if Hn(A, B,−) = 0 for all n ≥ 3 then the Gorenstein dimension of B over A is
finite. For, if A′ is as in the proof of Proposition 4, G-dimAB < ∞ (G-dimAB denotes
the Gorenstein dimension of the A-module B, see [2]) if and only if G-dimA′B < ∞
[2, 4.33]. And the condition ii) of Proposition 4 says that Extq

A′ (B, A′) = 0 for all
q > 0 and HomA′(B, A′) = Hn(E) = B. Therefore B is reflexive as an A′-module
(see e.g. [13, 1.1.9]) and G-dimA′B = 0 [2, 3.8(C)].
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In fact, with the terminology of [5], having in mind also the proof of Corollary 5
and [1, 5.27], we have proven that if Hn(A, B,−) = 0 for all n ≥ 3 then A → B is
quasi-Gorenstein.
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