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Collisionless shocks efficiently convert the energy of the directed ion flow into their
thermal energy. Ion distributions change drastically at the magnetized shock crossing.
Even in the absence of collisions, ion dynamics within the shock front is non-integrable
and gyrophase dependent. The downstream distributions just behind the shock are not
gyrotropic but become so quickly due to the kinematic gyrophase mixing even in
laminar shocks. During the gyrotropization all information about gyrophases is lost.
Here we develop a mapping of upstream and downstream gyrotropic distributions in
terms of scattering probabilities at the shock front. An analytical expression for the
probability is derived for directly transmitted ions in the narrow shock approximation. The
dependence of the probability on the magnetic compression and the cross-shock potential
is demonstrated.
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1. Introduction

Collsionless shocks are one of the most ubiquitous phenomena in space plasmas.
Collisionless shocks have been in the focus of research for more than half a century,
largely because of their efficiency in charged particle acceleration (Axford, Leer &
Skadron 1977; Bell 1978; Achterberg & Norman 1980; Toptyghin 1980; Lee & Fisk
1982; Blandford & Eichler 1987; Zank et al. 1996; Giacalone 2003; Jokipii, Giacalone
& Kóta 2007; Zank, Li & Verkhoglyadova 2007). A collisionless shock is a multi-scale
phenomenon: the main deceleration and primary thermalization of the bulk plasma flow,
as well as ion reflection, occur on a scale of the upstream convective gyroradius or smaller
(Hudson 1965; Sckopke et al. 1983; Mellott & Greenstadt 1984; Thomsen et al. 1985;
Burgess, Wilkinson & Schwartz 1989; Sckopke et al. 1990; Bale et al. 2003). The ion
distributions at these scales are significantly non-gyrotropic (Sckopke et al. 1983, 1990;
Gedalin & Zilbersher 1995; Li et al. 1995; Gedalin 1996; Gedalin, Friedman & Balikhin
2015b; Gedalin et al. 2018). Gyrotropization occurs at larger scales due to kinematic
gyrophase mixing and wave–particle interaction (Burgess et al. 1989; Lembège et al.
2004; Bale et al. 2005; Krasnoselskikh et al. 2013; Gedalin 2015; Gedalin et al. 2015b;
Gedalin 2019a,b). At the end of the gyrotropization process, ion distributions remain
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anisotropic. Isotropization is even a slower process and depends strongly on the ion energy.
High-energy ion distributions may remain anisotropic far from the shock transition (Kirk
1988; Kirk & Heavens 1989; Kirk & Dendy 2001; Keshet 2006; Dröge et al. 2010; Keshet,
Arad & Lyubarski 2020). One of the central problems of the shock physics is finding
the relation of the upstream and downstream ion distributions. This issue is crucial for
establishing Rankine–Hugoniot (RH) relations connecting the upstream and downstream
states. the RH relations are nothing but the density, momentum and energy conservation
laws, applied in two asymptotically uniform regions. Usually, the RH relations are used
on the magnetohydrodynamic (MHD) scales where the distributions are assumed to be
isotropic and some equation of state for plasma is chosen (de Hoffmann & Teller 1950;
Sanderson 1976; Kennel 1988). In most cases the heliospheric shocks do not arrive at the
state which can be described by MHD. Near shock transitions, the conservations laws
should take into account the non-gyrotropic distributions and corresponding coherent
oscillations of the magnetic field. Farther from the shock and with some spatial and/or
temporal averaging, the distributions become gyrotropic but anisotropic. Modifications for
anisotropic plasmas have also been proposed (Abraham-Shrauner 1967; Chao & Goldstein
1972; Lyu & Kan 1986). Some of modifications invoke assumptions about the state
equations. If the anisotropic distributions were known, it would be possible to get rid of
arbitrary assumptions. Ion dynamics inside the shock transition is essentially gyrophase
dependent. The equations of motion are not integrable even if the electric and magnetic
field are time independent, and depend only on the single coordinate x along the shock
normal. In a strictly planar stationary shock, the fluxes of mass, momentum and energy
must be constant throughout, whereas the momentum vector of an ion at each point
behind the shock transition is unambiguously determined by the momentum of the ion
at the entry point. This behaviour is expected at rather low Mach numbers M � 2–3.
Here the Alfvénic Mach number is M = Vu/VA, Vu being the shock speed relative to
the plasma or, in other words, the component of the plasma flow velocity along the
shock normal in the shock frame. The speed VA = Bu/

√
4πnumi is the Alfvén speed,

B is the magnetic field magnitude, n is the number density, mi is the ion mass and the
index u denotes the upstream quantities. In this case the density, momentum and energy
fluxes are constant throughout the shock which allows one to construct the RH relations
for non-magnetized ions as well (Gedalin & Balikhin 2008). For stationary and planar
shocks, the de Hoffman–Teller (HT) frame is well-defined. In the HT frame, the upstream
and downstream plasma flow velocities are along the uniform upstream and downstream
magnetic field vectors, respectively, whereas the motional electric field is absent. Let
p = ( p‖, p⊥, ϕ) = ( p, μ, ϕ) be ion momentum. Here the subscripts ‖ and ⊥ are used
to identify the vector components parallel and perpendicular to the local magnetic field
direction, ϕ is the gyrophase and μ is the pitch-angle cosine, p‖ = p cos μ. For stationary
planar shocks, p at any x is determined by the initial momentum pi. Individual ion motion
in the shock front depends on the initial ion velocity. The properties of the downstream
distributions depend on the initial thermal spread which is conveniently characterized by
the ratio vT/Vu, where vT = √

T/m is the ion upstream thermal speed. This parameter is
related to the often-defined sonic Mach number Ms = Vu/vs (Edmiston & Kennel 1984)
as vT/MvA = 1/Ms

√
Γ , where vs = √

Γ vT is the sound speed and Γ is the adiabatic
index. Lower vT/Vu, that is, higher Ms, correspond to fewer particles in the tail of the
distribution function and, therefore, lower probability of reflection in any part of the
shock (Gedalin 2016). Higher-Mach-number shocks are believed to be time dependent
(Lobzin et al. 2007; Lefebvre et al. 2009; Mazelle et al. 2010; Dimmock et al. 2019;
Turner et al. 2021) and/or non-planar (Lowe & Burgess 2003; Moullard et al. 2006;
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Lobzin et al. 2008; Johlander et al. 2016). In this case the fluxes are only approximately
constant throughout the shock. Upon appropriate spatial and temporal averaging the
gyrophase information is lost and magnetic oscillations are smoothed out. Gyrotropic
RH relations correspond to the equality of the upstream and downstream fluxes after
gyrophase averaging (Gedalin 2017). In oscillating, rippled or reforming shocks, or when
waves are propagating across the shock, there is no one-to-one correspondence of the
upstream momentum of an ion and its momentum at each coordinate x in the downstream
region. When the gyrophase information is lost or averaged out, an ion with the reduced
initial momentum ( pi,‖, pi,⊥) will not have a definite ( pf ,‖, pf ,⊥) at a chosen point x
but there will exist some probability of the ion having ( pf ,‖, pf ,⊥) at the point x. Such
probabilistic approach can be applied for arbitrarily turbulent shock transitions. Instead
of trying to solve the deterministic equations of motion, we can describe ion motion as
probabilistic scattering at the shock front. Unfortunately, an analytical calculation of the
scattering probability is not possible in general case, and numerical methods are to be
used. This approach has been successfully implemented already for high-energy particles
at a shock front (Gedalin, Dröge & Kartavykh 2015a, 2016a,b). In the present paper, we
develop a theoretical background for the application of such probabilistic approach for the
calculation of the moments of the distribution function and derive the probabilities for
directly transmitted ions (Gedalin 2016; Zhou et al. 2020; Gedalin 2021) in the narrow
shock approximation.

2. Basic definitions

The underlying assumption is that far enough from the shock transition, in the upstream
and downstream regions, the magnetic fields and plasmas are uniform and the distributions
are gyrotropic but not necessarily isotropic. The analysis will be done in HT frame where
the motional electric field is absent in both uniform regions. If a shock is stationary and
planar, there exists an electrostatic field Ex(x) inside the transition region, so that the
cross-shock potential is

φHT(x) = −
∫ x

0
Ex(x′) dx′ (2.1)

where x is the coordinate along the shock normal and Ex = 0 for x < 0. Other coordinates
are chosen so that By = 0 in both uniform regions. Hereinafter, the subscripts u and d
denote upstream and downstream, respectively. The uniform magnetic field and velocity
vectors are

B = B cos θ x̂ + B sin θ ẑ (2.2)

V = V| cos θ |x̂ + V sin θ sign(cos θ)ẑ (2.3)

Here sign(x) = 1 for x > 0 and sign(x) = −1 for x < 0, whereas x̂ and ẑ are unit vectors
in x and z directions, respectively. The sign of the plasma velocity is chosen so that
the positive direction of x is from upstream to downstream. We also refer to the normal
incidence frame (NIF), in which the upstream plasma velocity is along the shock normal.
For brevity of expressions, in what follows, we restrict ourselves with non-relativistic
velocities, including the relative velocity of the frames V NIF→HT = (0, 0, Vu tan θu), so that
for each particle vHT = vNIF + V NIF→HT :

v(HT)
x = v(NIF)

x , v(HT)
y = v(NIF)

y , v(HT)
z = v(NIF)

z + Vu tan θu (2.4a–c)

v
(HT)

‖ = v(HT)
x cos θ + v(HT)

z sin θ = v(NIF)
x cos θ + v(NIF)

z sin θ + Vu tan θu sin θ (2.5)
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FIGURE 1. The magnetic field profile (schematically). The magnetic field increase occurs
between x = 0 and x = D. The region x < 0 is the upstream region, the region x > D is the
downstream region.

and v2
⊥ = v2 − v2

‖ . However, some relations will be given in a fully relativistic form
for future use. In the chosen non-relativistic limit, the magnetic fields are the same in
both frames, whereas the electric fields are related by the expression: ENIF = EHT +
V NIF→HT × B/c. The last expression means that there exists the motional electric field
Ey,NIF = VuBu sin θu/c and that the cross-shock electrostatic fields and potentials are
different in both frames (Formisano 1982; Goodrich & Scudder 1984; Schwartz et al.
1988; Gedalin & Balikhin 2004; Baring & Summerlin 2007; Dimmock et al. 2012; Cohen
et al. 2019).

Figure 1 schematically shows the magnetic field profile and the upstream and
downstream regions. The full distribution function fu( p) is assumed independent of time
and coordinates in the upstream region. Upon crossing the shock, at x = D, the distribution
function is profoundly gyrophase dependent. Further gyrotropization occurs due to the
kinematic collisionless relaxation, without energy change of the ions (Balikhin et al.
2008; Gedalin 2015; Gedalin et al. 2015b; Gedalin, Friedman & Balikhin 2015c; Gedalin
2019a,b). Therefore, the full downstream distribution function fd( p, x) depends on the
coordinate along the shock normal until it become gyrotropic. Following our analysis
in the HT frame, we wish to replace f ( p, x) with the reduced gyrotropic distribution
function f ( p, μ), where p = mv is the total momentum and μ = p‖/p. In this approach,
all information about the gyrophase is lost. Moments are calculated by integration over the
volume dΩ = 2πp2 dp dμ in the momentum space:

n =
∫

f ( p, μ) dΩ (2.6)

nV‖=
∫

vμf ( p, μ) dΩ (2.7)

P‖‖ =
∫

pvμ2f ( p, μ) dΩ (2.8)

P⊥⊥ =
∫

pv(1 − μ2)f ( p, μ) dΩ (2.9)

P⊥‖ =
∫

pvμ
√

1 − μ2f ( p, μ) dΩ (2.10)
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Here n is the number density, V‖ is the plasma velocity along the magnetic field and
P‖‖, P⊥⊥, P⊥‖ are the components of the total pressure tensor. The speed v = p/mγ , where
γ = √

p2/m2c2 + 1. The multiplier 2π in dΩ arises from integration over φ.

3. Scattering probabilities

The probabilistic approach deals with the uniform asymptotic upstream and downstream
regions where the gyrophase information is already lost and ion distributions are
gyrotropic. The probabilities will be defined in the HT frame. Let a particle enter the
shock with the momentum pi and pitch-angle cosine μi and leave it with pf and μf . The
initial and final points are in the regions where the distributions are already gyrotropic.
Note that the entry and exit points may be on either side, i.e. the following scenarios are
possible: (a) an ion comes from upstream and proceeds to downstream (transmission),
(b) an ion comes from upstream and returns to upstream (backstreaming) and (c) and ion
comes from downstream and proceeds to upstream (leakage). The option where an ion
comes from downstream and returns to downstream does not exist for fast mode shocks
which are considered here (Toptyghin 1980). As the initial pi, μi do not unambiguously
determine the final pf , μf , we define the probability W(μi, μf ; pi, pf ) of scattering from
the initial state to the final state as follows:

ff ( pf , μf ) =
∫

W(μi, μf ; pi, pf )fi( pi, μi) dΩi (3.1)

This definition is valid separately for all three types of scattering: transmission,
backstreaming and leakage. Given the initial distribution fi( pi, μi) the contribution to the
moments of the final distribution will take the form

Pf ‖‖ =
∫

pf vf μ
2
f W(μi, μf ; pi, pf )fi( pi, μi) dΩi dΩf (3.2)

Pf ⊥⊥ =
∫

pf vf (1 − μ2
f )W(μi, μf ; pi, pf )fi( pi, μi) dΩi dΩf (3.3)

Pf ⊥‖ =
∫

pf vf μf

√
1 − μ2

f W(μi, μf ; pi, pf )fi( pi, μi) dΩi dΩf (3.4)

If the HT frame is well-defined, the energy is conserved, γf − γi = const, and pf = pf ( pi)
is a single-valued function, so that the probability can be represented as follows:

W(μi, μf ; pi, pf ) = w(μi, μf ; pi)δ( pf − pf ( pi)) (3.5)

Using the newly defined w(μi, μf ; pi) the relation between the initial and the final
distributions takes the form

ff ( pf ( pi), μf ) = C( pi)

∫
w(μi, μf ; pi)fi( pi, μi) dμi (3.6)

C( pi) = 2πp2
i

∣∣∣∣dpf

dpi

∣∣∣∣−1

= 2πmγipivf (3.7)

where we have used the relations

pf

pi

dpf

dpi
= γf

γi

dγf

dγi
⇒

∣∣∣∣dpf

dpi

∣∣∣∣−1

=
∣∣∣∣vf

vi

∣∣∣∣ (3.8)

In the non-relativistic regime the coefficient C reduces to C = 2πm2vivf .
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4. Scattering probabilities for transmitted ions in the narrow shock approximation

The main objective of the present paper is to illustrate our reformulation of the problem
of the determination of the ion distribution in the simplest case where an analytical
treatment is possible. We assume that the shock is planar, stationary and narrow, see
figure 1. We will be treating only transmitted ions which enter the shock from upstream at
x = 0 and leave it at x = D to proceed further downstream. As the downstream region is
uniform, the momentum, magnitude and pitch angle of an ion does not change any longer
for x > D. Let f ( pd, μd, ϕd) be the gyrophase-dependent distribution at x = D. From the
Vlasov equation

fd(μd, ϕd; vu) = fu(μ̃u(μd, ϕd); vd) (4.1)

where it is taken into account that the upstream distribution function is gyrotropic,
fu = fu(μu; vu), and μu = μ̃u(μd, ϕd; vu) is the function expressing the initial μu in terms
of the final μd and ϕd. The upstream and downstream speeds are related by the energy
conservation mv2

d/2 = mv2
u/2 − qφHT . Dependence on the speed will be omitted for

brevity in all calculations and restored in the end, if needed. The downstream gyrotropic
distribution is obtained by the gyrophase averaging

fd(μd) = 1
2π

∫ 2π

0
dϕd fd(μd, ϕd) = 1

2π

∫ 2π

0
dϕd fu(μ̃u(μd, ϕd)) (4.2)

In order to find the probability we use (3.6) with fi( pi, μ) = δ(μ − μi) which gives

Cw(μi, μf ; pi) = ff ( pf ( pi), μf ) (4.3)

Cw(μu, μd) = 1
2π

∫ 2π

0
dϕd δ(μu − μ̃u(μd, ϕd)) = 1

2π

∑
s

∣∣∣∣∂μ̃u

∂ϕd

∣∣∣∣−1

s

(4.4)

where the summation is over all solutions of the equation

μu = μ̃u(μd, ϕd) (4.5)

for which the ion enters from the upstream region, vu,x > 0, vd,x > 0. The coefficient C
from (3.7) depends only on vu. Thus, the problem is reduced to finding μ̃u(μd, ϕd). The
equations of motion for an ion inside the shock transition are

dvx

dt
= q

mc

(
cEx + vyBz − vzBy

)
(4.6)

dvy

dt
= q

mc
(vzBx − vxBz) (4.7)

dvz

dt
= q

mc

(
vxBy − vyBx

)
(4.8)

In what follows we shall assume that all ions cross the shock without stopping inside,
so that vx > 0 in the region 0 < x < D. This assumption is justified when vT/Vu is not
large and the cross-shock potential is not exceptionally high or low (Schwartz et al.
1988; Dimmock et al. 2012). Ions which are reflected require special treatment. Here we
restrict ourselves with the directly transmitted ions for approximate analytical treatment.
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Then d/dt = vx(d/dx) and one has

Δ

(
v2

x

2

)
= − q

m
φHT + q

mc

∫ D

0

(
vyBz − vzBy

)
dx (4.9)

Δvy = q
mc

∫ D

0

(
vzBx

vx
− Bz

)
dx (4.10)

Δvz = q
mc

∫ D

0

(
By − vyBx

vx

)
(4.11)

The energy conservation gives

Δ

(
mv2

2

)
= −qφHT (4.12)

Note that (Goodrich & Scudder 1984)

Vu tan θu

c

∫ D

0
By dx = φNIF − φHT (4.13)

In the narrow shock approximation, D → 0, one has

Δvy = vd,y − vu,y = 0 (4.14)

Δvz = vd,z − vu,z = q(φNIF − φHT)

mVu tan θu
(4.15)

In what follows it will be convenient to use the normalized variables v/Vu, B/Bu, and
s = 2qφ/mV2

u . Thus,

vu,y = vd,y (4.16)

vu,z = vd,z − s̄, s̄ = sNIF − sHT

2 tan θu
(4.17a,b)

The remaining component of the velocity is obtained from energy conservation:

v2
u = v2

d + sHT (4.18)

vu,x =
√

v2
d,x + v2

d,z + sHT − (
vd,z − s̄

)2 (4.19)

=
√

v2
d,x + 2vd,zs̄ + sHT − s̄2 (4.20)

Note that a shock is essentially a discontinuity in this approximation. The corrections
depending on the shock width are given in Gedalin (1997). In terms of the pitch-angle
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cosine one has

vd,x = vd

(
μd cos θd +

√
1 − μ2

d cos ϕd sin θd

)
(4.21)

vd,y = vd

√
1 − μ2

d sin ϕd (4.22)

vd,z = vd

(
μd sin θd −

√
1 − μ2

d cos ϕd cos θd

)
(4.23)

where ϕd is the gyrophase of the ion at the exit point. The upstream pitch angle cosine is
then

μu = vu,x cos θu + vu,z sin θu√
v2

d + sHT

(4.24)

vu,x =
[
v2

d

(
μd cos θd +

√
1 − μ2

d cos ϕd sin θd

)2

+ 2vd

(
μd sin θd −

√
1 − μ2

d cos ϕd cos θd

)
s̄ + sHT − s̄2

]1/2

(4.25)

vu,z = vd

(
μd sin θd −

√
1 − μ2

d cos ϕd cos θd

)
− s̄ (4.26)

cos θu

cos θd
= Bd

Bu
≡ R (4.27)

These expressions determine μu as a function of vd, μd, ϕd.

5. Effect of the magnetic field rotation

The dependence μu = μ̃u(μd, ϕd) results from the global change of the magnetic field
and the cross-shock potential. It is instructive to show separately the effect of the rotation
of the magnetic field vector at the shock crossing, when sNIF = sHT = 0. In this case vu,x =
vd,x, vu,z = vd,z and

μu =
(

μd cos θd +
√

1 − μ2
d cos ϕd sin θd

)
cos θu (5.1)

+
(

μd sin θd −
√

1 − μ2
d cos ϕd cos θd

)
sin θu (5.2)

= μd cos Δ +
√

1 − μ2
d sin Δ cos ϕd (5.3)

Δ = θd − θu (5.4)

Now

fd(μd) = 1
2π

∫ 2π

0
dϕd fu

(
μd cos Δ +

√
1 − μ2

d sin Δ cos ϕd

)
(5.5)
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and for fu = δ(μd cos Δ +
√

1 − μ2
d sin Δ cos ϕd − μu) one has

fd(μd) = 1
π

1

|
√

1 − μ2
d sin Δ sin ϕd|

(5.6)

where

cos ϕd = μu − μd cos Δ√
1 − μ2

d sin Δ
(5.7)

The factor 1/2 disappears because there are two solutions sin ϕd = ±
√

1 − cos2 ϕd with
the same absolute value. After some algebra, we find that the rotation of the magnetic field
results in the scattering at the shock front described by the probability

Cw(μu, μd) = 1

π
[
(1 − μ2

u)(1 − μ2
d) − (μuμd − cos Δ)2

]1/2 (5.8)

provided

(1 − μ2
u)(1 − μ2

d) − (μuμd − cos Δ)2 > 0 (5.9)

μu sin θd − μd sin θu > 0 (5.10)

The first requirement is the condition of existence of φd for given μu, μd. The second
requirement means that the ion moves toward the downstream region from the ramp
and not in the opposite direction. It is obvious also that μu > 0, μd > 0. In this case
C = 2πm2v2

u .

6. Effect of the cross-shock potential

Analytical expressions can also be written in the narrow shock approximation for
nonzero s. However, they become too lengthy and difficult for qualitative understanding
of the behaviour of the probabilities. Instead, we present several plots of Cw(μi, μd). In
the case sHT = sNIF = 0 the probability (5.8) does not depend on the speed (apart of the
multiplier C). For nonzero s this is not so. For visualization we chose vu = 1/ cos θu which
is the flow speed in HT frame. If the upstream distribution were cold, all ions would have
this upstream speed and μu = 1. If the upstream thermal speed vT 	 1, the pitch-angle
cosines remain in the vicinity of μ = 1, so that in the plots we restrict ourselves with
the range 0.9 ≤ μu ≤ 1, 0.9 ≤ μd ≤ 1. Figure 2 shows the probability Cw(μi, μd), on a
logarithmic scale, for θ = 70◦ and two values of the magnetic compression, R = 1.5 and
R = 2.5, both for zero s and nonzero s. The thin black lines in each plot correspond to the
approximation of the magnetic moment conservation (1 − μ2

d) = R(1 − μ2
u). It is seen that

the magnetic moment is not conserved. The downstream μd is no longer a single-valued
function of μu. The main effect is that a sudden change of the magnetic field direction
immediately causes substantial gyration of an ion around the downstream magnetic field
vector. The cross-shock potential reduces the ion energy and, therefore, moderates the
gyration.

7. Conclusions

In summary, we have reformulated the problem of finding the downstream distribution
function in terms of the scattering probability. This approach is not restricted to only
stationary and planar shocks but can be applied to rippled and reforming shocks as well,
because the scattering probabilities connect the asymptotic upstream and downstream
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(a) (b)

(c) (d )

FIGURE 2. Filled contour plots for the probability Cw(μi, μd) for θ = 70◦ and four cases. For
the top row R = 1.5, for the bottom row R = 2.5. For the left column sHT = sNIF = 0, for the
right column sHT = 0, 1, sNIF = 0.4. The thin black line shows the widely used assumption of
the magnetic moment conservation.

regions, where the fields are uniform and time independent whereas the distributions
are gyrotropic and also uniform and time independent. In general, finding the scattering
probabilities is not an easy problem. However, they can be found numerically using
test particle analysis in a model or measured shock front. When using a model no
consistency of the chosen shock profile with the particle distribution is required. Indeed,
the probabilities are determined by the fields upon spatial and temporal averaging. In the
present paper the scattering probability of directly transmitted ions was found analytically
in the limit of a narrow shock. The approach is applicable to the core of the solar
wind in a planar stationary shock, even if the shock is super-critical, provided the
downstream magnetic oscillations damp quickly behind the ramp (Gedalin et al. 2020).
The approximation is directly applicable to laminar and nearly laminar low-Mach shocks
where kinematic collisionless relaxation is observed (Balikhin et al. 2008; Russell et al.
2009; Pope, Gedalin & Balikhin 2019; Pope 2020).
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