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HEIGHT ESTIMATES ON CUBIC TWISTS OF T H E

FERMAT ELLIPTIC CURVE

TOMASZ JEDRZEJAK

We give bounds for the canonical height of rational and integral points on cubic
twists of the Fermat elliptic curve. As a corollary we prove that there is no integral
arithmetic progression on certain curves in this family.

1. INTRODUCTION

A classical question in number theory is to describe the numbers m that can be

written as the sum of two rational cubes. This leads to the family of elliptic curves

(11) Em:x3 + y3 = m,

which are cubic twists of the Fermat curve x3 + y3 = 1. Clearly Emi and £m, are
isomorphic (over Q) if mi/m2 is a cube, so we can and will assume that m is cubefree
positive integer. The substitutions

y + x y + x

lead to a Weierstrass equation

(1.2) E'm : Y2 = X3 - 432m2.

It is well known that \Em(Q)\ ^ 3, for m = 1,2 and Em(Q)tora = {O}, for m ^ 3.

In this paper we consider the problem of rinding three integral points Po, Pi, P2

on the global minimal model of E'm, whose z-coordinates xt = x(Pi) form an increasing
arithmetic progression (we say that Po, Pu P2 form an integral arithmetic progression).
This problem was investigated in [2] for congruent elliptic curves.

Note that the integrality of i-coordinates may depend on the choice of a particular

equation. It does not depend, however, on the choice of a global minimal equation. Below

we shall use E™n, the global minimal Weierstrass model described in Lemma 1.

Our principal result is the following theorem

THEOREM 1. Let m = 0, ±3, ±4 (mod 9); assume that any prime factor p > 3
of m is of the form p = 5 (mod 6). Let A C £™n(Q) be a subgroup of rank 1. Then A

contains no integral arithmetic progressions.

Unfortunately our method does not work for other m's (see discussion in Section 4).
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2. H E I G H T ESTIMATES

Lang [5] has formulated the conjecture which says that the canonical height of a
non-torsion point P on an elliptic curve E should satisfy h{P) » loglAgl. Put

E •=
\ogNE '

Hindry and Silverman [4] proved the explicit estimates

h(P)^c(/3E) log \AE\.

where
c(/3E) =

Hence Lang's conjecture holds true for elliptic curves with universally bounded

One immediately checks that j3Eni < 2.91, hence

1.38 x l O - 2 7 x log|Am| .

Below we prove much sharper inequalities (Corollary to Proposition 1).

In the proof we shall use the global minimal Weierstrass model (note, however, that

our height estimates do not depend of the choice of Weierstrass model).

LEMMA 1 . The global minimal Weierstrass model E™n for E'm : Y2 - X3 - 432m2

can be described as follows:

(i) y2 = x3 - (27/4)m2 if 2 | m and 9 \ m,

(ii) y2 + y = x3 - (27m2 + l ) /4 if 2 \ m and 9 \m,

(iii) y2 = x3 - (3m12/4) if 2 | m and 9 | m,

(iv) y2 + y = x3 - (3m'2 + l ) /4 if 2 \m and 9 | m,

where m' — m/9.

PROOF: The substitutions

X = u2x + r, Y -u3y + su2x +1,

with [u,r,s,t] = [2,0,0,0], [2,0,0,4], [6,0,0,0], [6,0,0,108], respectively, lead to the
equations in (i)-(iv). Let A m denote the discriminant. In cases (i) and (ii) we have
A m = —39m4, so for any prime p ^ 3 the discriminant is 12th powerfree. The minimality
at p = 3 follows from Tate's algorithm (see [7] or [6]). In cases (iii) and (iv) Am = -35m'4

is 12th powerfree, hence the model is global minimal. D

DEFINITION: We say that m satisfies condition (*), if every prime factor of m

greather than 3 is congruent to 5 modulo 6.
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(2-1)

PROPOSITION 1 . For P e Em(<Q) \ {0} (m > 2 cubefree) we have

- log 1- - log 3 ifm — ± 3 , ± 4 (mod 9) and m satisfies (*)

- log — + — log 3 ifm = ±2 (mod 9) and m satisfies (*)

^ l o g - + —Iog3 ifm = ± 1 , ± 3 , ± 4 (mod 9)

- log — log 3 i f m s O (mod 9) and m satisfies (*),

and in general

(2.2) \ m L ifm = ° (m o d 9)-
COROLLARY 1 . For P e £m(Q) \ { 0 } fm > 2 cubefree), we have

PROOF: [Proof of Proposition 1] The proof involves an analysis of local height func-

tions hp : E(QP) —i K. Definition and basic properties of local heights may be found in

[6]. We shall consider two cases.

ARCHIMEDEAN CASE. We shall estimate the archimedean contribution hoc to the canon-

ical height by using Tate's series. Assume first 9 j m. The group .EJ£in(R) is connected,

and if P = (x,y) € E%in{R), then x > 3 ^ m 2 / 4 . If we take

i , z~ l + 54m2t3,

then the archimedean local height of P is given by the series

hoo{P) = ilog|x(P)| + ifyfclog|*(2fcP)| _ l l o g | A r | •1 8 t^ 12

This series converges because no point on £™in(R) has i-coordinate 0. Now

implies 0 < logz < log 9. Hence

M P ) = \ \°Mp)\+\ iog|z(P)i +1 f; 4-fc
c - 1 log i A r i,

where 0 < c ^ log 9. So using the definition of z, we obtain

(2.3) 0 ^ hco(P) - ( i l o g | x ( P ) 4 + 54m2x(P) | - ~ log \A™»\) $ 1 log3.
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When 9 | m we take

t = 1/x, w = ±t- 3m/2t4, z = l + Qm12?,

where m' = m/9. Arguing as above, we obtain:

(2.4) 0 < ftoo(P) - ( i l o g l x ^ + e m ^ F ) ! " ^ l o g | A r i ) ^ ^ I o g 3 .

NON-ARCHIMEDEAN CASE. If P belongs to the identity component E™m(Qp)° of the
Neron model (equivalently, if reduction of P modulo p is nonsigular), then the local
height of P is given by formula

(2.5) hp(P) = l- max(0, -vp(x(P))) + ±vp
V min\

where vp(x) = ordp(z)logp. £™n(Qp)° is a subgroup of finite index in E™D(QP) and by
using Tate's algorithm [7] we can find the order of the quotient group E™n(Qp)/E™n(Qp)°
(that is, the Tamagawa number c^. Of course, E™n(Qp) = ^ '"(Q,,)0 , when E™m has
good reduction at p, i e. if p ± 3 and p \ m. E1™'" has bad reduction at 2 (for an
even m), but £™in(Q2)

0 = E™n{Q2) (the Kodaira symbols are IV* or IV according as
4 | m or 2 || m). The case p = 3 is more complicated. If m = 0, ±3, ±4 (mod 9), then
reduction types at 3 are / / , //*, IV* respectively and Tamagawa number c3 = 1. For
m = ±1 (mod 9) we have type IV, but c3 = 3, so 3£™n(Q3) C E™D(Q3)°. Finally, for
m = ± (mod 9) the reduction type is / / / ' and E™n{Q3)/E™n(Q3)° ^ Z/2Z. In the
case p | m, p > 3 we have two possibilities. If p = 5 (mod 6) (equivalently (-3/p) = -1),
then the Kodaira symbol is IV or IV* according as p2 \ m or p2 \ m, and ^ '"(Qp)0

= E™n{Qp). If p = 1 (mod 6) (that is, (-3/p) = 1), then the Kodaira symbols are the
same, but Cp = 3. Another way to decide when £™in(Qp)° = F™n(Q>p) is based on [6,
Exercise 6.7a)], which says that P = (x, y) € E(QP)° if and only if

vp(3x2 + 2a2x + a4- axy) ^ 0 or vp(2y + axx + a4x + a6) ^ 0,

where E is given by minimal at p Weierstrass equation. We have checked our results
using this method for primes p for which cp = 1.

Let us summarise the above considerations:

(a) if m = 0, ±3, ±4 (mod 9) satisfies (*), then £Tn(Qp) = £™n(QP)° for all
P,

(b) if m = 0, ±2, ±3, ±4 (mod 9) satisfies (*), then 2£™n(Qp) C E™n(Qp)° for
allp,

(c) if m = 0, ±1, ±3, ±4 (mod 9), then 3££in(Qp) C E™n{Qp)° for all p,

(d) for all m and any prime p we have 6£™in(Qp) C i?™n(Qp)
0.
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The next step is to estimate the canonical height. Let Q = (x,y) e £™in(Q) be any
point satisfying Q € J5™n(Qp)° for every prime p. We may write x — a/d2 as a fraction
in lowest terms. Hence

h,{Q) = i

and after summing over all finite primes we obtain the formula

Adding this to the lower bound for we

2 a

%

get

+

+ 1

log Ml

og|d|

if 9 f

if 9 |

TO,

TO

Next, using the fact that {a/dp) ^ 3{/m2/4 (respectively a/d? ^ y/3mr2/4) we obtain

Em{Q) > < i m f
i f 9 l m -

Let P e E%ia(Q) be an arbitrary point. Then, for some k G {1,2,3,6} (which depends
on m) the reduction of kP is nonsingular modulo every prime p, so we can use the above
estimations for Q = kP. Now /iEm(A;P) = k2h,Em(P), and the assertions follows. D

The next proposition gives an estimate of the canonical height of non-torsion point
P in terms of the coordinates P.

NOTATION. For the remaining part of this paper we set M = m/9 or m according as 9
divides m or not.

PROPOSITION 2 . Let m > 2 be cubefree, and let P 6 E™n{Q) \ {O}. Let
x(P) = a/d2, where {a,d) = 1. Then

a 4 + 54
M3ad*

m 1 2 l 0 g 3 '

PROOF: AS previously we shall the use local height function. But in this cases we
must evaluate the local p-adic height at points which after the reduction modulo p are
singular. To do this, we shall use [6, Excercises 6.7a) and 6.8] (note that Em has good or
additive reduction). Of course, it is enough to consider the cases p = 3 (with m = ±1, ±2
(mod 9)), and p a prime factor of m which is congruent to 1 modulo 6 (in remaining
cases we can use the formula (2.5))
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Let P e £?f (Q) \ {0} and let x(P) = a/cP, with (o, d) = 1. We obtain for
P i iCn(Q3)°:

{ 2
- - l o g 3 , ifm = ± l (mod 9)I
- - I o g 3 , i f m s ± 2 (mod 9).

Note, that for those points v3(d) = 0. For m not divisible by 3, we have

1
so after some calculation we get

o, ()
° = ± l (mod 9)

= ±2 (mod 9).

Hence

(2-6) -\ Iog3 ̂  h3(P) - v3(d) - ~v3(Ar) ^ 0,

for all m and any P £ E™n(Q) \ {O}.
Next, assume that P $. E™n(Qp)°, where p > 3 and p \ m. We obtain

i fp 2 |m

As before we can write

f , i f P € £™in(Qp)°,

vp(A™) - \ i m W

12 \±

1

12

Of course, E™n(Q2)° = £1™n(Q2). Hence the above formula is true for every prime p / 3,
and we obtain

(2-7) -\vP{m) ^ hp{P) - vp(d) - ^ y p ( A r ) < 0.

Now, adding the estimates (2.4), (2.6), (2.7) over 2 ̂  p ̂  oo we obtain the bounds (i)
and (ii). D

COROLLARY 2 . Let P, as in Proposition 2, be an integral point (that is,
x(P) = a). Then

(2-8) hEm{P)>\\oga-\\ogM-\\og2>

and

(2-9) £ £ ^ ±
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P R O O F : The first estimation is a straightforward application of the lower bound for
/ iE m(P) in Proposition 2. Since a > {/(27m2)/4 if 9 f m and a ^ ^/(3m'2)/4 if 9 | m,
the second inequality follows immediately from the upper bound of the canonical height
in the Proposition 2. D

3. INTEGRAL A R I T H M E T I C PROGRESSION ON E™in

In this section we shall prove the main theorem. We start with estimates for the
difference between heights of two points satisfying certain relations.

LEMMA 2 . Let Pu P2 be integral points on E™n(Q). Assume that x(Px)

< x(P2) < 2x(P1). Then

(3.1) - | l o g M y l o g 3 < f t E m ( P 2 ) f t £ m ( P 1 ) < | l o g M + y l o g 3 +

PROOF: We consider only the case M = m (the second is similar). Write x, = x(Pi),

i = 1,2. By (2.8) and the fact that 0 < x\ < x2, we have

2 3 ^ 1 ^ 1
- - l o g r o - -log3 < hBm{P2) - -logx2 < hEm(P2) - -logxx.

On other hand, by (2.9) and 2xi > x2 > 0,

- log3 ^ hEJP2) - - logx2 > hEm{P2) - - Iog2x!

= hErn{P2) - -logxx - -Iog2,

and hence

(3.2) - - l o g m - - l o g 3 < £ £ m ( P 2 ) - - l o g x x < -log3 + -log2.

Now using (2.8), (2.9) for Pi, together with (3.2) we obtain the required inequality. D

COROLLARY 3 . Let Q € E™a(Q) be a point of infinite order (notice that then

|^m'n(Q)tora| = U, and let Pi, P2 be integral points belonging to the group {Q) generated

by Q. Assume that x(Pi) < x(P2) < 2 x ^ 0 , and write Pt = r^Q, i = 1,2. Tien

-21ogM-^log3 2 _ , 21ogM + (ll/2)log3 + (3/2)log2

Alog2 + 51og3 2 l Alogm - A\og2 +B\og3 '

where
A = 1, B = 9/4 if mm ±3, ±4 (mod 9) satisfies {*) (case 1)

A = 1/4, B = 9/16 ifm = ±2 (mod 9) satisfies (*) (case 2)

A = 1/9, B = 1/4 ifm = ±1, ±3, ±4 (mod 9) (case 3)

A = 1/36, B = 1/16 ifm = ±2 (mod 9) does not satisfy (*) (case 4)

A = l, B = -3/4 if m = 0 (mod 9) satisfies (•) (case 5)

A = 1/9, B = -1/12 ifm = 0 (mod 9) does not satisfy (*). (case 6)
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P R O O F : Using 7tBm{kQ) = k2liErn(Q) and (3.1) we find that

- ( 2 / 3 ) log M- (11/6) log3 ^ 2 , (2/3) log M + (11/6) log3 + (1/2) log2
•""" ^ v . Tin — TZi < ^ .

hEm(Q)

The assertion now follows from Proposition 1. D

Notice that , when m -> oo the right hand side of (3.3) goes to 2 / A Similarly, the

left hand side goes to —2/A. Since n^ — n\ € Z, we can in each case find m0 such that,

for all m~^ mQ,

with choices g € {2,8,18,72}. Unfortunately, the bound m0 is rather big. Below we

write down our evaluation of mo

9
2

8

18
72
2

mo
6

224085
« 1013

« 1054

1395

case
1

2

3
4

5

(3.4)

18 « 1023 6

In cases 2 and 5 we can reduce mo by taking slightly bigger bound than g, for example

(3.5) \n\ - n\\ ^ 10 for m > 20 as in case 2

(3.6) \n\ - nf | < 4 for m > 36 as in case 5

PROOF OF THEOREM 1: Suppose that x—coordinates of three integral points Po,
Pi, P2, belonging to the group (Q) generated by a fixed non-torsion point Q € E™in(<Q>),
form an increasing arithmetic progression. Write z(Pj) = xt and Pt = riiQ, i = 0,1, 2.
We may assume that m <S N (x(P) = x(-P)) and n0 < ni < n2 (group £™in(Q) is
torsionfree). Notice that Pi, P2 satisfy the assumption of the last Corollary because
2x\ = XQ + x% > X2 (remember that Xi > 0 on these curves). Therefore, we have a bound
for i%2 (and hence for n0, n\ too); more precisely, if \n\ — n\\ ^ 2k, then n2 < k.

Suppose that m = ±3, ±4 (mod 9) satisfies (*). By the above calculation and (3.4),
we obtain n2 — n\ < 2 for m ^ 6, which is impossible because nx ^ n2. For m ^ 5 we
have rank(£'™'n(Q)) = 0 (use Cremona's mwrank [3]). Hence, for such m's there is no
integral arithmetic progression in a subgroup of rank 1 of E™m(Q).

Suppose that m = 0 (mod 9) satisfies (*). Then, by (3.6) and the beginning of
the proof, for m ^ 36 we obtain 0 < no < n\ < n2 ^ 2; a contradition. Therefore to
complete the proof we have to consider the cases m = 9, 18. Again, using mwrank we
obtain rank(£j8in(<Q)) = 0. On the other hand rank(££""(Q)) = 1, but the only integer
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solutions of y2 + y = x3 - 1 are (1,0), ( l , - l ) c (7,-19), (7,18) tht is, P, -P, 2 P ,
—2P. Indeed, x3 — y2 + y + 1 = (y — w){y — w), where ui = e27"/3 is a primitive root
of unity. One can check that y — w and y — TD are relatively prime in Z[w]. Since Z[u>]
is a UFD, we obtain y — u = ux(a + bw)3, where a, b € Z and is u is an unit (that is,
u = ±1,±UJ,±U>2). Therefore the problem of finding all integer solutions of y2+y = x3 — l

is reduced to the problem of determining all representations of unity by the binary cubic
form: x3 — 3xy2 +y3. It is known (see for example, [1]) that 1 has only six representations
by this form, so we can easily find all of them. And the assertion follows. Q

4. CONCLUDING REMARKS

It turns out that our method does not work for other m's. Take for example
m = ±2 (mod 9) satisfying (*). Then n2 — n\ ^ 10, (for every m > 20) so n2 ^ 5
and

(n0,nx,n2) € {(1,2,3), (1,3,4), (2,3,4), (1,4,5), (2,4,5), (3 ,4,5)}.

Since 2xL = x0 + x2 that is,

(4.1) 2x{niQ) = x{n0Q) + x(n2Q),

so puting Q = (t, s) € £'™in(Q) and substituting multiplication formulas for nQ into (4.1)
we obtain, for each particular choice of n0, n\, n2, an integral polynomial equation in
two variables t and m (we have used Mathematica for our symbolic computations). Now
it is suggested to test whether it has rational solution (t, m) G <Q> x Z. Unfortunately, in
comparison with [2] our polynomial is non-homogeneous, hence investigation of its roots
is more complicated. For m like in cases 3, 4, 6 the situation is even worse; first of all
the bound m0 is very large, so even after investigation of Em for m ^ m0 we shall still
have enormous number (at level of 1054) curves, that are to be checked with difference
methods; for example, find all integral points. Secondly when the bound for \n2 - n i l is
18 or 72 we have to use the formula for nQ with n ^ 9 or n ^ 36, respectively, which
introduces polynomials of high degree consisting of many elements.
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