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ON THE NUMBER OF PLANAR MAPS 

NICHOLAS C. WORMALD 

1. Introduction. In a survey of methods in enumerative map theory 
[14], W. T. Tutte pointed out that little has been done towards enumer­
ating unrooted maps other than plane trees. A notable exception is to be 
found in the work of Brown, who took the initial step in this direction 
by enumerating non-separable maps up to sense-preserving homeo-
morphisms of the plane [2]. He then took a further step, allowing sense-
reversing homeomorphisms, by counting triangulations and quad-
rangulations of the disc [3, 4]. In all these problems, however, there is a 
fixed outer region of the plane. This can be considered as a certain type 
of rooting of a planar map, which is normally regarded as lying on the 
sphere or closed plane. It is our object here to find an expression for the 
number of unrooted planar maps in a given set, in terms of the numbers 
of maps in that set which have been rooted in a special way. 

The principal methods used in enumerating unlabelled graphs involve 
a suitable application of Burnside's Lemma, either explicitly or implicitly 
in the guise of the elegant counting theorem developed by Pôlya [11]. 
Abundant examples of this technique are to be found in [9], along with 
similar techniques based on extensions or implications of Burnside's 
Lemma. However, if Burnside's Lemma is to be used to enumerate a set 
of configurations, the configurations must fall into equivalence classes 
defined by the orbits of some group of permutations of the ''labelled" 
configurations. The point of the labelling is to destroy all non-trivial 
automorphisms of a configuration. In the graphical case, the p points 
of a graph are labelled with the numbers from 1 to p to obtain a labelled 
graph. The group which is used corresponds to the group of permutations 
of the labels. In the case of maps, the natural choice for the "labelling" is 
the rooting of a map; that is, the specification of an edge, together with 
a direction along that edge and a direction across the edge. However, it 
is difficult to find a suitable group of permutations with which to work. 
We have overcome this obstacle, but in the process the part played by 
Burnside's Lemma has become so insignificant that an elementary 
argument seems more appropriate. Nevertheless, the main theorem in 
Section 3 retains a strong resemblance to Burnside's Lemma. The result 
is manipulated in Section 4 into a form which is more complicated but 
more useful in specific applications. The enumeration of maps possessing 
a sense-reversing symmetry is discussed in Section 5. 
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The quest for a formula giving, or at least an algorithm for calculating, 
the number of combinatorially distinct convex polyhedra with p vertices 
has a long history, which apparently began with Euler and was recently 
surveyed in [6]. On the other hand, the problem of finding the number 
of planar graphs on p points was first posed relatively recently in [7], and 
has remained a tantalizing unsolved problem in its own right. Both these 
problems can be solved by applying the formulae of the present paper, 
but the mechanism of such applications, as well as the application to 
enumerating all planar maps, has little to do with our present objective 
and will be treated elsewhere. 

2. Preliminaries. The basis for a rigorous combinatorial theory of 
maps was established by Tutte [13], but this approach is rather unwieldy 
for our present purposes. We prefer to retain a mixture of combinatorial 
and topological concepts. 

The graph theoretic notation of [8] is assumed, whilst for fundamental 
planarity concepts we follow the approach of [12]. In particular, a planar 
map M is the dissestion of a 2-sphere (or, alternatively, a closed plane) II 
determined by a proper drawing of a connected pseudograph G. By this 
it is meant that the points and lines of G are disjoint subsets of II, called 
respectively the vertices and edges of M, such that a line x of G is an open 
arc in II whose endpoints are the points of G incident with x. We refer 
to M simply as a map, and to G as the pseudograph of M. The faces of M 
are the components of the subset of II formed on deletion of all vertices 
and edges of M, each face being homeomorphic to an open disc. 

The vertices, faces and edges of M are its cells, two of which are 
incident if one is contained in the boundary of the other. A loop of M is 
an edge corresponding to a loop of G; that is, an edge whose endpoints 
coincide. A bridge of M is an edge corresponding to a bridge of G (a line 
whose removal disconnects G). The valency of a vertex v is the number 
of edges with which v is incident, where a loop adjacent to v is counted 
twice. Similarly, the valency of a face/ is the number of edges with which 
/ is incident, where a bridge incident wi th / is counted twice. The valency 
of an edge is 2. 

A homeomorphism of a map Mi onto a map M2 is a homeomorphism of 
II onto itself which maps the vertices, edges and faces of Mi onto the 
vertices, edges and faces respectively of M2. If two maps are homeo­
morphic to one another, we shall henceforth consider them to be the 
same map. 

For any map M, another map M* can be constructed subject to the 
following conditions: 

(i) the vertices of M* are contained in the faces of M, one in each face; 
(ii) each edge of M has nonempty intersection with just one edge of M* ; 
(iii) the above two conditions with M and M* interchanged. 

https://doi.org/10.4153/CJM-1981-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-001-6


PLANAR MAPS 3 

Such a map M* is called the dual of M: the facts that M has a unique 
dual M*, and that the dual of M* is ikf, are readily proved using the 
Jordan Curve Theorem together with elementary topological arguments. 
In this paper we shall often omit such proofs. 

An end of an edge x of a map can be regarded as a connected portion 
of x in a (sufficiently small) neighbourhood of one of the incident vertices 
of x. Thus each edge, even a loop, has two distinct ends. An edge x is 
directed by specifying one of its ends. It simplifies our discussion if we 
assume that II has been oriented. This assumption has no effect on our 
enumerative results, because two maps are considered the same whenever 
there is a sense-reversing homeomorphism from one to the other. With 
respect to the given orientation of II we may refer to the right and left 
sides of a directed edge. An arrow of a map M is an ordered triplet 
A = {x, x', x"} where x is an edge of M, x' is an end of x and x" is a side 
of x. L e t / be the face of M which is incident with x and lies on the x" 
side of x, and let v be the vertex which lies at the x' end of x. Then A is 
said to be incident with x, with / and with v. 

A map with e edges has 4e arrows. A rooted map is a map in which one 
of these arrows, called root arrow, has been distinguished from the rest; 
that is, there is a specified edge with a specified side and a specified end. 
The vertex, edge and face incident with the root arrow are called the 
root vertex, root edge and root face respectively. 

Two homeomorphisms hi and h2 of a map M onto itself are considered 
equivalent if hi h2~

l maps each arrow of M onto itself. The equivalence 
classes of this relation are called automorphisms of M. Each automorphism 
a of i f is thus a set of homeomorphisms of II, and a can be represented 
as an isomorphism of the set of arrows of M onto itself. An automorphism 
of M induces an isomorphism of each of the following sets onto itself: the 
sides of the edges of M ; the ends of the edges of M; the edges of M ; the 
vertices of M; the faces of M. 

Two arrows A\ and A2 of a map M are similar if there is an auto­
morphism of M which maps A i onto A2. A map becomes twice-rooted if an 
ordered pair {Ai, A2} of similar (but not necessarily distinct) arrows are 
distinguished. The arrows A1 and A2 are called the primary and secondary 
root arrows respectively. The underlying rooted map of a twice-rooted map 
is the rooted map obtained by distinguishing the primary root arrow 
alone. The underlying map of a twice-rooted map, or a rooted map for 
that matter, is just the unrooted version of the map. 

For maps with distinguished arrows, the additional requirement is 
adjoined to the definition of a homeomorphism, that it must preserve 
the set of distinguished arrows. In the case of twice-rooted maps, the 
ordering of the distinguished arrows must also be preserved. 

A rooted map can be represented in a drawing by placing a diagram­
matical arrow on the specified side of the root edge, pointing towards 
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the specified end. For example, the four ways to root one of the maps 
with one edge are shown in Figure 1. All four rootings produce the same 
rooted map. 

o o o—T— o 

o±z Q o i±-o 
FIGURE 1. The four rootings of a map. 

The following result is well-known and was apparently first used in 
full generality in [12]. 

LEMMA 1 (Tutte). The only automorphism of a rooted map is the identity. 

This has an immediate consequence for twice-rooted maps. 

LEMMA 2. The only automorphism of a twice-rooted map is the identity. 

3. The main theorem. If ^ is a set of m a p s , ^ 7 " ^ ) is defined to be 
the set of all twice-rooted maps whose underlying maps are elements 
of ^. We denote the cardinality of ^ by | ^ | . 

THEOREM 1. Let *$ be a set of distinct maps having e ^ 1 edges each. Then 

\V\=±\*-(V)\. 

Proof. Let i f be a map in fé7, and let S& be the family (with multi­
plicities retained) of rooted maps obtained by distinguishing the arrows 
of M one by one. If R is a rooted version of M, the number n(R) of times 
that R appears in S? is just the number of arrows of R which are similar 
to its distinguished arrow. By Lemma 2, this in turn is equal to the 
number of twice-rooted maps whose underlying rooted map is R. Summing 
over all rooted versions R of M, we obtain 

4 e = | ^ | = 2 n{R) = \^{{M})\, 

so that 

l = ^ | ^ - ( { M j ) | . 

The theorem follows upon summation of this equation over all M in *&. 
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4. Special maps. An arrow A = {x, x', x"} is said to have positive 
sense if x" is the right side of the directed edge obtained by specifying 
the x' end of x, and negative sense otherwise. A sense-preserving homeo-
morphism of a map M will map each arrow onto one of the same sense, 
whilst a sense-reversing homeomorphism will negate the sense of every 
arrow. We may speak of an automorphism as being sense-preserving or 
sense-reversing, according to the same rule. 

A cell c of a map M is an invariant of an automorphism a of M if 
a(c) = c. The following result has been used from time to time, in one 
form or another, for various classes of maps; for examples, see [1] and [15]. 

LEMMA Z. If a is a sense-preserving automorphism of a map M, then 
either a has just two invariants or a is the identity. 

Proof. It is shown in [10] and [5] that every non-identity sense-preserv­
ing transformation of the sphere with finite period is topologically 
equivalent to a rotation. In particular, this implies that any such trans­
formation / has precisely two fixed points. Given an automorphism a of 
M, it is not difficult to define a homeomorphism / in the equivalence 
class a such t h a t / has just one fixed point in a cell c whenever c is an 
invariant of a. The lemma follows. 

The equation given in Theorem 1 can be manipulated, via Lemma 3, 
into a form which is much harder to express but easier to apply. We first 
introduce the necessary notation. 

A fully-rooted map (M,s/) consists of an underlying map M together 
with a distinguished set s/ of arrows of M, such that s/ is an orbit of 
some automorphism of M. This fully-rooted map is sensed if all arrows 
in sé have the same sense, and unsensed otherwise. A sensed special map 
(M, s/y c) is a sensed fully-rooted map (M,szf) with a distinguished 
cell c, called the root of the special map, such that each arrow in s/ is 
incident with the root. If s/ contains just one arrow, the restriction is 
imposed that the root must be the incident edge. An unsensed special map 
(MjS/y Ci, c2) is an unsensed fully-rooted map (M,s/) with two (un­
ordered) distinguished cells C\ and c2 of the same dimension, called the 
roots of the special map, such that each arrow inJ^ is incident with C\ or c2 

or both. If s/ contains just two arrows, the further restriction is imposed 
that the roots must be the incident edges. The roots may coincide. 

A sensed special map is classified as type 1 if it has just one distinguished 
arrow, in which case the special map can be regarded as an ordinary 
rooted map. A sensed special map F = {M,sé, c) in which stf contains 
more than one arrow is classified as type 2 (type 3 or type 4) if c is a face 
(edge or vertex, respectively) of M. 

Note that a sensed fully-rooted map will correspond to more than one 
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special map whenever more than one cell is eligible to be specified as the 
root. Of course, the resulting special maps must be of different "types". 
One such fully-rooted map is exhibited in Figure 2 (iii). 

A A 
( i ) ( i i ) 

( i i i ) ( iv ) 
FIGURE 2. Four types of sensed special maps. The root is denoted "*". 

The number of distinguished arrows in an unsensed special map 
F = (M,s/, ci, c2) is a multiple of 2. We classify Fas type 1 \is/ contains 
just two arrows, and otherwise F is type 2 {type 3 or type 4) if the roots 
Ci and c2 are faces (edges or vertices, respectively) of M. 

An (s, k)-special map is a sensed or unsensed special map of type 2, 3 
or 4 in which the roots have valency s, and precisely k distinguished 
arrows are incident with each root. 

Let ^ be a set of maps, and let ^ denote the set of special maps 
whose underlying maps are elements of ^ . We denote by affi) the 
number of type i sensed special maps in #" , and b^) is defined the 
same way for unsensed special maps. For i ^ 1, the number of type i 
sensed (or unsensed) {s, fc)-special maps incF is denoted a f ( ^ ; 5, k) (or 
biifê; s, k) respectively). Finally, let 

(1) a(V;s,k) = Z a , ( ^ ; s , £ ) 
i=2 
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* 
^ 

- — < l 

J* * 
o 

- T - Ô 

( i ) ( i i ) 

( i l l ) ( iv) 
FIGURE 3. The four types of unsensed special maps. 

and 

(2) b(V;s,k) = Ê W ; * , * ) . 
f=2 

THEOREM 2. Le/ ^ be a set of distinct maps having e ^ 1 edges each. Then 

m = h [aim + hW)] + x; j- z i*(*)o(̂ ; 5, *) 

+ <j>(2k)b(tf;s,k)] 
where <f> denotes the Ruler junction. 

Proof. Given a map M in *% and a twice-rooted map T in ^~{{M\), by 
Lemma 1 there is a unique automorphism aT of ikf which maps the 
primary root arrow of T onto its secondary root arrow. We partition 
3T ({M}) into four par ts^"\ by placing T in 
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3TX if aT is the identity, 
Ĵ ~2 if OLT is sense-preserving but not the identity, 
3TZ if aT is sense-reversing and aT

2 is the identity, 
J^ 4 otherwise. 

We have by Theorem 1 that 

(3) Ae= Y.\? tr 

Suppose we choose an element T of 37~2. Then by Lemma 3, aT has just 
two invariants. We choose one of these invariants, say c. Let 5 be the set 
of arrows of M incident with c. Then |5| = 2s, where 5 is the valency of c. 
The set 5 is a union of orbits of aT. These orbits contain k arrows each, 
where k is the order of aT. Denote the orbits by s/\y ...,<$/2s/k. We now 
draw a picture of each of the sensed (s, &)-special maps (M,s/U c), ..., 
(M,s/2snc, c) and assign a weight of \k/ s to each of the drawings so 
obtained. The whole process is performed once for each of the 2\^~ 2\ 
choices for the twice-rooted map T in ^ 2 and the invariant c of aT. The 
sum, w say, of the weights of the drawings we have made is given by 

(4) w = 2 | ^ 2 | . 

Given a sensed (s, k)-special map F = {M,sé, c), there are just 4>(k) 
automorphisms /3 of F such that s/ is an orbit of 0. As each such auto­
morphism leaves c fixed and has 4e/& orbits, the number of times we 
have drawn 7? is just 4t<t>(k)e/k. The number of arrows in 5 with a given 
sense is just si so that k\s and s ^ 2. Hence, on summing the weights of 
the drawings for each 5 and k, we obtain 

(5) w= EK^)a( (¥ ) ;a ) . 2e 

reversing, nei 
variant of aT 

particular, C\ 
be incident w 
either C\ or c2. 
of c2. The orb 
Denote the oi 
make a drawing 
assign a weight 
the process is 
that the sum 

S k\s 
k^2 

Suppose welchoose an element T of J^~4. Then by Lemma 3, aT
2 has just 

two invariants, say C\ and c2. Since aT
2 is not the identity and aT is sense-

ther C\ nor c2 is an invariant of aT. Since aT(Ci) is an in-
for each i, it follows that aT interchanges C\ and c2. In 

j^nd c2 have the same dimension, so that no arrow of M can 
th both C\ and c2. Let S be the set of arrows incident with 
Then S contains 4s arrows, where 5 is the valency of C\ and 
ts of aT contain 2k arrows each, where k is the order of aT

2. 
bits of aT contained in 5 by s/\, ..., S$2s/k. As before, we 

of each of the (s, &)-special maps (M,s/iy cu c2) and 
of \kls to each of the drawings so obtained. This time, 

performed just once for each element T of ^""4. It follows 
lof the weights of the drawings is |^~4|. 
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Let F = (M,j/, Ci, c2) be any sensed (s, &)-special map whose under­
lying map is M. Then s/ is an orbit of some sense-reversing automorphism 
a of M. As the roots C\ and c2 are each incident with an arrow in s/, 
neither root can be an invariant of a; otherwise a2 would be the identity. 
Hence C\ 9e c2 and a interchanges C\ and c2. It follows that the number 
of times we have drawn F is 2<t)(2k)e/k, so we have 

(6) \ri\ = 'E-Tl<t>(2k)b({M};s,k). 
s=2 S ]c\s 

k^2 

As |^M = ai({M}) and | ^ 3 | = &i(W)» equations (3) through (6) 
imply 

Ae = ax({M}) + b1({M}) + Z - Z [4>(k)a(\M) ; s, k) 
s=2 S ic\s 

k^2 

+ 4>(2k)b([M};s,k)]. 

On dividing by 4e and summing over all M in (tf1 we obtain the theorem. 

We say ^ is closed under duality if the dual of each map in ^ is also 
in cif. For such a set of maps, it is not necessary to consider the type 4 
special maps. 

THEOREM 3. Let ^ be a set of distinct maps with e ̂  1 edges each, 
which is closed under duality. Then 

\V\ = i M*0 + W ) ] + f a.(tf) + \ W ) 

+ Z f Z [*(*)o«( ;̂ *> *) + 4>(2k)b2(^; s, k)]. 
s=2 *S ]c\s 

k^2 

Proof. Duality provides a one-to-one correspondence between the type 
2 sensed (s, k)-special maps whose underlying maps are in ^ , and those 
of type 4. The same holds for the unsensed varieties. Hence a2 (fë ; s, k) = 
a 4 ( ^ ; s, k) and b2(

cé?; s, k) = 6 4 ( ^ ; s, &)• We also observe that 

**&•'*>» =\0 otherwise 

and a corresponding observation can be made of bz(^ ; s, k). The theorem 
now follows from Theorem 2. 

Suppose we wish to enumerate a set *$ of unrooted maps. Theorems 2 
and 3 express the number of maps in *$ which have e edges in terms of 
the numbers of various classes of special maps with e edges. The advantage 
of these results over Theorem 1 is due to the fact that if all the edges 
incident with the distinguished arrows of a special map F are merged 
with their incident faces, the resulting object retains the automorphisms 
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of F. For certain sets ^ , this enables the calculation of the numbers of 
special maps in terms of the numbers of special maps with smaller 
numbers of edges, thereby producing a recurrence relation for these 
numbers. 

5. Achiral maps. A map is chiral if all its automorphisms are sense-
preserving, and achiral otherwise. A sensed map consists of an under­
lying map M in which the set of positive arrows of M is specified. 
(Alternatively, it is possible to arrive at the notion of a sensed map by 
regarding two planar maps as the same only if there is a sense-preserving 
homeomorphism from one to the other.) This definition does not clash 
with the definition of a sensed special map F = (M, j / , c) if we specify 
that the arrows in se, and all others with the same sense, are positive. 

If fé7 is a set of maps, let r(97) be the number of sensed maps whose 
underlying maps are elements of ^ , and n(^€) the number of achiral 
maps in *$. The following result allows one to find nifé?), given \cé\ 
and r(^f). 

LEMMA 4. The number of maps in *$ is \(r(fio) + n(^ê)). 

Proof. Every chiral map is the underlying map of two sensed maps, 
and every achiral map is the underlying map of just one sensed map. 
Hence if d(f&) is the number of chiral maps in ^ , we have 

r ( X ) = n(&) + 2d(tf) 

and 

We next examine the calculation of r(fio) for a given set ^ . Minor 
modifications of the arguments in Sections 3 and 4 allow us to make the 
following assertion of a set ^ of distinct maps having e ^ 1 edges each. 

THEOREM 4. The number of sensed maps whose underlying maps are in *$ 
is given by 

r(V) = ^ ai(V) + E | X <t>(k)a(tf; s, k). 
^e s=2 AS k\s 

Just as riftû) is obtained in terms of the as, when Lemma 4 and 
Theorems 2 and 4 are combined we obtain n(^€) in terms of the b}s. 

THEOREM 5. The number of achiral maps in ^ is given by 

n{V) = ~ i x ( ^ ) + E 5- E 4>(2k)b(V; s, k). 
^e s==2 *s k\s 

k^2 

Of course, results corresponding to Theorem 3 hold for both r(^€) 
a n d w ( ^ ) . 
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