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A hydrodynamic theory of premixed flame propagation within closed vessels is developed
assuming the flame is much thinner than all other fluid dynamic lengths. In this
limit, the flame is confined to a surface separating the unburned mixture from burned
combustion products, and propagates at a speed determined from the analysis of its internal
structure. Unlike freely propagating flames that propagate under nearly isobaric conditions,
combustion in a closed vessel results in continuous increases in pressure, burning rate
and flame temperature, and a progressive decrease in flame thickness. The flame speed
is shown to depend on the voluminal stretch rate, which measures the deformation of
a volume element of the flame zone, and on the rate of pressure rise. Both effects are
modulated by pressure-dependent Markstein numbers that depend on heat release and
mixture properties while capturing the effects of temperature-dependent transport and
stoichiometry. The model applies to flames of arbitrary shape propagating in general
flows, laminar or turbulent, within vessels of general configurations. The main limitation
of hydrodynamic flame theories is the assumption that variations inside the flame zone
due to chemistry or turbulence, which could potentially alter its internal structure, are
physically unresolved. Nonetheless, the theory, deduced from physical first principles,
identifies the various mechanisms involved in the combustion process as demonstrated in
detailed discussions of planar flames propagating in rectangular channels and spherically
expanding flames in spherical vessels. It also enables the construction of instructive
models to numerically simulate the evolution of multi-dimensional and corrugated flames
under confinement.
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1. Introduction

Significant advances have been achieved in recent years in understanding the structure
and motion of freely propagating premixed flames, including the role of intrinsic flame
instabilities and flame-turbulence interactions, using a hydrodynamic theory. Following
the multi-scale approach proposed by Clavin & Williams (1982), a general theory of
multi-dimensional flames in arbitrary flow fields has been derived systematically from
the general governing equations by Matalon & Matkowsky (1982, 1983), and generalized
by Matalon, Cui & Bechtold (2003) to account for salient physical properties, including
temperature-dependent transport, differential and preferential diffusion (i.e. anon-unity
and distinct Lewis numbers for the fuel and oxidizer), and effects due to stoichiometry
and reaction orders. The main assumption behind this theory is that the flame is thin
relative to all other fluid dynamic length scales and can be treated as a surface of density
discontinuity when determining the flow field. The instantaneous shape and location
of the flame surface, and expressions relating the pressure and velocities across this
surface were obtained by asymptotic matching. Of paramount importance is the flame
speed-flame stretch relation that has captivated the interest of experimentalists whose
raw data from measurements in laboratory configurations was found to correlate well
with this prediction. The hydrodynamic theory has been used in analytical and numerical
studies to successfully unravel mechanisms of flame instability, their onset and their
nonlinear growth. Moreover, since the complexity of the chemistry is captured elegantly
by fewer physicochemical parameters, the restriction on numerical time step and mesh
size in turbulent flame calculations is alleviated making it an ideal model for fundamental
understanding, which is free of turbulence modelling assumptions, empiricism and/or
ad hoc adjustable parameters. The approach was successfully implemented in two and
three dimensions for planar and spherically expanding turbulent flames (Creta & Matalon
2011; Fogla, Creta & Matalon 2015; Patyal & Matalon 2018; Mohan & Matalon 2021,
2022; Patyal & Matalon 2022), capturing many important morphological features, such
as multiply folded and disjoint surfaces, pinching of surface elements and the creation
of pockets of unburned gas, all of which are commonly observed in laboratory flames.
Additionally, predictions of flame characteristics, including the turbulent flame speed
that is arguably one of the most important properties, were found to compare well with
empirical correlations suggested in the literature (Fogla, Creta & Matalon 2017).

The objective of this study is the derivation of a hydrodynamic theory of premixed
flames propagating in closed vessels. There are significant differences when the flame
propagates in an open or closed space. Consider, for example, a flame initiated from
a small ignition source at the centre of a spherical vessel containing a combustible
mixture. The outwardly propagating flame appears at first smooth and spherical but,
after reaching a critical size, it spontaneously turns into a highly cellular structure. For
mixtures deficient in their more mobile component (sub-unity Lewis numbers), such as
lean hydrogen–air, the critical flame size at the onset of instability is of the order of the
flame thickness and the observed instability is thermo-diffusive in nature. In mixtures for
which the Lewis number is greater than one, such as rich hydrogen–air, the critical flame
size at the onset of instability is of the order of several flame thicknesses. The average
cell size of the developing flame is significantly larger, with the flame surface bearing
resemblance to that of a soccer ball. Such mixtures are thermo-diffusively stable, and
the observed instability is hydrodynamic in nature. It is the well-known Darrieus–Landau
instability (Darrieus 1938; Landau 1944) induced by gas expansion that results from the
heat released by the chemical reactions (Istratov & Librovich 1969; Bechtold & Matalon
1987; Addabbo, Bechtold & Matalon 2002). The increase in surface area of the corrugated
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Flames in closed vessels

flame, further augmented by the continuous creation of cells as the flame grows bigger,
results in enhanced fuel consumption and an increased propagation speed. In open space,
this development occurs under nearly isobaric conditions; the mean pressure remains
virtually constant and equal to the ambient pressure. In a closed vessel, the mean pressure
increases in time, the gas is compressed and its temperature rises, leading to higher flame
temperatures and a subsequent increase in propagation speed. The self-acceleration of
the flame would be significantly affected by combustion instabilities and, in a turbulent
environment, by the highly vortical field within which the flame is propagating. The
role of intrinsic combustion instabilities and flame-turbulence interactions when the
flame is propagating in a confined environment have not been thoroughly investigated.
Fundamental understanding of the flame morphology, the dependence of the burning rate
on the state of the gas, the onset of instabilities, self-wrinkling and self-acceleration of the
flame surface, and the effects of turbulence all have practical implications on the design of
engineering devices. It is also important from a safety perspective, to prevent undesirable
phenomena such as knocking or the onset of detonations.

Expanding flames in spherical chambers are frequently used in the laboratory to
ascertain the laminar flame speeds and Markstein lengths of various fuel mixtures
experimentally, owing to a well-defined stretch rate that diminishes as the flame grows
bigger. The continuously changing temperature and pressure of the unburned mixture, the
unknown effect of pressure buildup and the onset of flame instabilities poses significant
challenges in the accuracy of data reduction and limit the range of mixtures that can
be studied. Moreover, the measurements are prone to yielding widely different values of
burning velocities (Andrews & Bradley 1972). Some investigators addressed these issues
by modifying their experimental device to alleviate the rapid changes in pressure and
allowing nearly constant-pressure measurements (Tse, Zhu & Law 2000, 2004). Others
have limited measurements to the initial stages of flame propagation by assuming a
negligible pressure rise and unconfined conditions (Bradley et al. 1998). The accuracy
of the burning velocity values determined by the confined flame method compared with
those obtained from unconfined conditions were recently examined, noting that a slight
pressure rise contributes to an increase in burned gas density and an inward flow of
the expanded burned gas (Chen, Burke & Ju 2009; Omari & Tartakovsky 2016), both
of which significantly affect the measured data. Fundamental understanding of the fluid
dynamical consequences when the flame propagates in a closed vessel, the dependence of
the burning rate on pressure buildup and the onset or delay of instabilities and cellularity
will contribute greatly to the experimental effort.

Earlier hydrodynamic studies of confined flames, including the original work of
Sivashinsky (1979) and the stability analyses of McGreevy & Matalon (1994a,b), treated
the flame as a structureless surface of discontinuity. The present work is the first asymptotic
theory that resolves the structure of the thin but finite flame zone, and captures the effect
of pressure rise, flow conditions and mixture properties on the flame speed; it follows a
previous exploration by Bechtold & Matalon (2000) that sowed the seeds of this paper.
The analysis shows that the flame speed of confined flames is modified not only by flame
stretch, representing the distortion of an element of the flame surface, but also by variations
of the flame thickness that combine to describe the deformation of a volume element of
the flame zone, or the voluminal stretch. This concept, first introduced by Buckmaster
(1979) in the context of slowly varying flames, has not been apparent in the hydrodynamic
theory of freely propagating flames owing to the assumption of a constant flame thickness.
Elements of this idea, referred to as mass-based flame stretch, were exploited by de-Goey
and co-workers (van Oijen et al. 2016) in their numerical simulations. In addition to
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the voluminal stretch, the flame speed is shown to be also modified by the rate of
pressure increase. The two ingredients, voluminal stretch and pressure rise, arising from
physicochemical influences associated with the internal flame structure, are modulated
when cast in dimensional form by two pressure-dependent Markstein lengths of the order
of the flame thickness. Since the increase in burning rate as the pressure rises causes the
flame to become thinner, their effects diminish during combustion and become negligible
in the latter stages of propagation. While this assertion has been phenomenologically
recognized, it is the first time that it has been quantified in a detailed analysis.

Flame stretch is an asymptotic concept that is unambiguously defined when the flame
is confined to a surface. It measures the distortion of the flame that results from its
motion and from the fluid velocity gradient it experiences, and can be expressed in terms
of properties of the flame surface, such as curvature and propagation speed, and of the
underlying velocity field (Matalon 1983). For freely propagating flames, it may be also
expressed as a combination of the curvature of the flame front and the hydrodynamic strain
it experiences. This representation is particularly convenient in general computational
studies because the strain rate is implemented in most fluid dynamical codes. However,
it requires specifying an isosurface within the flame zone that represents the flame front,
and accommodating for the velocity divergence that, although it vanishes on either side
of the flame, is not zero within the numerically resolved flame zone due to gas expansion
(Giannakopoulos et al. 2015). It is shown that under confinement, flame stretch is not a
simple combination of the surface curvature and hydrodynamic strain, because the velocity
divergence is not zero even outside the flame zone owing to adiabatic compression. Even
in the hydrodynamic limit, when the flame is confined to a surface, the contribution of
the velocity divergence at the flame front is essential to balance the local strain rate and
properly evaluate the stretch rate.

In the freely propagating flame theory, the chemical activity is confined to a thin layer
embedded within the flame zone and centred near the location where the temperature
reaches its maximum value – the adiabatic flame temperature. For a given mixture, the
adiabatic flame temperature is a constant that depends on the total heat release. In a
closed vessel the flame temperature exceeds the adiabatic value and varies in time as a
consequence of pressure rise. Moreover, the temperature in the burned gas continues to
increase due to adiabatic compression. These conditions preclude the use of the standard
activation energy asymptotic approximation, which has greatly facilitated analyses of
combustion problems by confining the chemical activity to a reaction sheet. The temporal
change of flame temperature requires readjusting the reaction zone thickness from one
time to the next, while the continual increase in temperature in the burned gas prevents
expressing the jump in temperature gradient across the reaction sheet in closed form.
Consequently, we employ a delta-function model that has been used in the literature when
encountering similar technical difficulties (Matkowsky & Sivashinsky 1978; Buckmaster
& Ludford 1983; Margolis & Matkowsky 1983). In this approach, the reaction rate takes
the form of a Dirac delta function with a strength expressed as an Arrhenius form of
the instantaneous flame temperature. The jump conditions across the reaction sheet are
then determined by direct integration of the governing equations. We demonstrate that a
formal asymptotic approach can be carried out by adopting the Newtonian approximation
(Van Dyke 1954; Cole 1957), whereby the ratio of specific heats is assumed near unity.
In this limit the flame temperature is near its adiabatic value, delaying the aforementioned
difficulties to higher orders. The restriction placed on the ratio of specific heats leads to a
description of flame propagation that is not as rich as the more general case, but provides
justification for the delta-function model employed without this limitation.
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Flames in closed vessels

2. Governing equations

A homogeneous combustible mixture consisting of two reactants, both appearing in
small quantities relative to an abundant inert gas, resides in a closed vessel. The mass
fraction of the deficient and excess reactants in the mixture are YD0 and YE0 , respectively,
with the index i = D,E representing the deficient/excess reactant and the subscript 0
identifying conditions of the given initial mixture. In a lean mixture, the fuel is the
deficient component, while in a rich mixture the deficient component is the oxidizer.
Upon ignition, a flame separating the fresh mixture from the burned products propagates
throughout the vessel. The chemical activity is modelled by a single overall step:

νDCD + νECE → Products. (2.1)

Here Ci represents the chemical symbol and νi the stoichiometric coefficient of species i.
The reaction rate is given by

ω̃ = B
(
ρ̃YD

WD

)(
ρ̃YE

WE

)
exp(−E/RT̃), (2.2)

where ρ̃ is the density and T̃ the temperature of the mixture, Yi and Wi are the mass fraction
and molecular weight of species i, E is the overall activation energy, R is the gas constant
and B a pre-exponential factor. To allow for mixture compositions ranging from lean to
rich conditions, we introduce the excess-to-deficient reactant mass ratio

Φ = YE0/νEWE

YD0/νDWD
= YE0

νYD0

, (2.3)

where ν = νEWE/νDWD is the mass-weighted stoichiometric coefficient ratio. As defined,
Φ is always larger than one, withΦ = 1 corresponding to a stoichiometric mixture. Hence,
Φ is equal to the equivalence ratio for fuel-rich mixtures and to the reciprocal of the
equivalence ratio for fuel-lean mixtures.

Deflagrative combustion phenomena are highly subsonic and a low-Mach-number
approximation may be employed for their description; the characteristic Mach number
Ma is defined as the ratio of the laminar flame speed to the speed of sound in the
initial fresh mixture. For Ma � 1, the pressure in the vessel is rapidly equalized such
that spatial variations remain relatively small. The pressure may then be decomposed
into the mean pressure P̃ = P̃(t) and small fluctuations of O(Ma2) that balance the small
changes in momentum. The temporal variations of the mean pressure P̃(t) are determined
by integrating the energy equation throughout the entire domain, after neglecting the small
viscous dissipation term. For impermeable walls, and in the absence of heat losses, one
finds that

1
P0

dP̃
dt

= Q
cvT0

1

Ṽ

∫
ω̃

ρ0
dV, (2.4)

where t is the time variable, P0, ρ0, T0 the pressure, density and temperature of the
fresh unburned mixture, Q the total heat release, cv the specific heat at constant volume
(assumed constant) and Ṽ the volume of the vessel. A consequence of this quasi-isobaric
approximation is the simplification of the equation of state to

ρ̃RT̃/W̄ = P̃(t), (2.5)

where W̄ is the mean molecular weight of the mixture (assumed constant).
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The equations governing the combustion process consist of the Navier–Stokes equations
supplemented by mass balance equations for the two reactants and an energy equation for
the mixture. To express these equations in dimensionless form, the hydrodynamic length
scale l is used as a unit length, the laminar flame speed SL as a unit speed and the ratio l/SL
as a unit of time. The hydrodynamic length characterizes the lateral size of the flame or the
average wavelength of corrugations evolving on its surface. Diffusion processes introduce
an additional length scale ld = Dth/SL, where Dth = λ0/ρ0cp is the thermal diffusivity
of the initial fresh mixture with λ0 the thermal conductivity and cp the specific heat at
constant pressure (assumed constant). The ratio of the diffusion-to-hydrodynamic length
scales, δ ≡ ld/l, is a representative measure of the flame thickness. Pressure, density and
temperature are scaled with respect to their values in the initial fresh mixture P0, ρ0, T0.
The transport coefficients, including the viscosity μ̃ and thermal conductivity λ̃ of the
mixture, and the diffusion coefficients ρ̃Di where Di is the molecular diffusivity of species
i (into the inert gas), depend on temperature. Scaled by their values in the initial fresh
mixture, the dimensionless coefficients

μ̃/μ0 = ρ̃Di/(ρDi)0 = λ̃/λ0 (2.6)

are assumed to have the same temperature dependence such that their ratios, consisting
of the Prandtl Pr ≡ μ̃cp/λ̃ and Lewis Lei ≡ λ̃/ρ̃Dicp numbers, remain constant. The
common transport coefficient (in dimensionless form) takes the form λ(T) = Ta, with
1/2 ≤ a ≤ 1. The laminar flame speed for a two-reactant model obeying (2.2) in the large
activation energy limit (Bechtold & Matalon 1999), is given by

SL =
√√√√4

(
ρ̃a

ρ0

)2 λ̃a

λ0

Dth(1 + β(Φ − 1)/2LeE)

β3ν−1
E ν−1

D Le−1
E Le−1

D

ρ0YD0B
νDWD

exp(−E/2RT̃a), (2.7)

where

β = E(T̃a − T0)

RT̃2
a

, T̃a = T0 + (Q/cp)YD0

νDWD
(2.8a,b)

are, respectively, the Zel’dovich number and adiabatic flame temperature. The subscript
a stands for values evaluated at the adiabatic temperature, namely λ̃a = λ̃(T̃a) and
ρ̃a/ρ0 = T0/T̃a. Below, only when the same symbols are used for both dimensional and
dimensionless variables, the dimensional quantities are distinguished by a ‘tilde’ accent.

In dimensionless form, the governing equations are

Dρ
Dt

+ ρ∇ · v = 0, (2.9)

ρ
Dv

Dt
= −∇p + δ Pr ∇ · λΣ, (2.10)

ρ
DT
Dt

− δ∇ · (λ∇T) = γ − 1
γ

dP
dt

+ qω, (2.11)

ρ
DYD

Dt
− δLe−1

D ∇ · (λ∇YD) = −YD0ω, (2.12)

ρ
DYE

Dt
− δLe−1

E ∇ · (λ∇YE) = −νYD0ω, (2.13)

ρT = P, (2.14)
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Flames in closed vessels

where D/Dt ≡ ∂/∂t + v · ∇ is the convective derivative, v is the gas velocity, Σ is the
viscous stress tensor given by

Σ = 2E − 2
3(∇ · v)I, E = 1

2((∇v)+ (∇v)T), (2.15a,b)

with E and I the strain rate and unit tensors (the superscript T denoting the transpose) and

ω = Dδ−1ρ2YDYE exp(β0/Ta − β0/T) (2.16)

the reaction rate. Consistent with the low-Mach-number approximation, the pressure has
been expressed as P(t)+ γMa2p(x, t), where P is the spatially uniform (or mean) pressure
in the vessel and p is the dynamic pressure. In view of (2.4), the overall or mean pressure
is obtained from

dP
dt

= γ q
V

∫
ω dV, (2.17)

where the integration is performed over the entire volume V expressed in units of the
hydrodynamic length l. In addition to the Prandtl number Pr and Lewis number LeD, LeE,
the parameters appearing in these equations are: the ratio of specific heats γ = cp/cv ,
the heat release parameter q = (QYD0/νDWD)/cpT0 that represents the ratio of the total
heat released per unit mass of the deficient reactant to the enthalpy of the initial mixture,
the adiabatic flame temperature Ta = 1 + q and the activation energy parameter β0 =
E/RT0 related to the Zel’dovich number β via β0 = (T2

a/q)β. The Damköhler number
D, representing the ratio of the flow to the chemical reaction times, is given by

D = Dth/S2
L

(B̃ exp(−E/RT̃a))−1
, B̃ = ρ0

WDWE

νDWD

YD0

B, (2.18a,b)

where B̃ is the scaled pre-exponential factor (in units of s−1). When substituting for the
laminar flame speed (2.7), the Damköhler number simplifies to

D = 1
4

(
ρ0

ρ̃a

)2 λ0

λ̃a

Le−1
E Le−1

D β3

(1 + β(Φ − 1)/2LeE)

Φ

YD0YE0

. (2.19)

For a stoichiometric mixture, Φ = 1, the Damköhler number depends on the Lewis
numbers of both reactants, while for a mixture remote from stoichiometry, it depends
primarily on the Lewis number of the deficient reactant.

An expression for the end pressure P = Pe, defined as the mean pressure in the vessel at
time t = te, namely the time when the flame has consumed all the available reactant, can
be obtained by integrating the combined energy and appropriate species equations

∂

∂t

(
ρ

(
qYD

YD0

+ T
))

+ ∇ ·
(
ρv

(
qYD

YD0

+ T
))

− δ∇ ·
(
λ∇

(
qYD

YD0

Le−1
D + T

))
= γ − 1

γ

dP
dt

(2.20)

over the entire volume. For impermeable and rigid walls, and in the absence of heat losses,
it simplifies to

d
dt

∫ [
ρ

(
qYD

YD0

+ T
)]

dV = γ − 1
γ

dP
dt

∫
dV, (2.21)

which can be integrated in time from t = 0 to t = te, to give Pe = 1 + γ q. If combustion
was to occur uniformly throughout the vessel as in a stirred reactor, such that ρ = 1, the
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final temperature would be the constant-volume adiabatic temperature 1 + γ q. However,
owing to the fluid dynamics associated with the flame propagation, neither the density
nor the temperature remain spatially uniform. It should be noted that in determining Pe
we have assumed that a flame already exists at t = 0. In other words, the theory does not
describe the short ignition event that is expected to have a minor effect on the end pressure
level.

The governing equations (2.9)–(2.17) will be analysed using a multi-scale approach that
exploits the disparity in length scales associated with the fluid dynamics, diffusion and
chemical reactions. The flame zone consisting of the region where diffusion and chemical
reactions occur may be treated as an internal layer of O(δ), with δ � 1, that separates
the unburned gas from the burned products. Consequently, the governing equations in
the hydrodynamic regions on either side of the flame zone are greatly simplified, but
they remain dependent on the instantaneous shape and location of the flame surface,
or equivalently, on the flame propagation speed. The latter, which is the focus of the
subsequent analysis, depends on the diffusion and chemical processes occurring inside
the flame zone, on the pressure buildup and on the interaction of the flame with the local
flow conditions.

In the following sections we start by examining the simplifications that result in
the hydrodynamic zones. We then analyse the physicochemical processes occurring in
the thin but finite flame zone and derive explicit expressions for the flame speed and
overall pressure rise. Following a general discussion of the results, applicable to general
time-dependent multi-dimensional flames in vessels of arbitrary geometry, we provide a
complete description of planar and spherical flames. We conclude with general comments
about and future applications of the derived hydrodynamic theory.

3. The hydrodynamic zones

In the limit δ → 0, the flame zone shrinks to a surface described by ψ(x, t) = 0 and
referred to as the flame front. It separates the unburned gas in the region ψ(x, t) < 0
from the burned products in the region ψ(x, t) > 0, and is characterized by the geometric
factors

n = ∇ψ
|∇ψ | , Vf = − 1

|∇ψ |
∂ψ

∂t
, (3.1a,b)

defined to represent the unit normal pointing towards the burned gas region and the
propagation speed (in the laboratory frame) of the flame surface back along its normal.
The determination of the instantaneous shape and location of the flame front and/or the
propagation speed depend on the diffusion and reaction processes occurring inside the
flame zone, as discussed in the next section.

To leading order in δ, diffusion and chemical reactions are negligible on either side of
the flame front, i.e. ψ(x, t) ≶ 0, and the governing equations reduce to

Dρ
Dt

+ ρ∇ · v = 0, (3.2)

ρ
Dv

Dt
= −∇p, (3.3)

ρ
DYD

Dt
= 0, ρ

DYE

Dt
= 0, (3.4a,b)
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Flames in closed vessels

ρ
DT
Dt

= γ − 1
γ

dP
dt
, (3.5)

ρT = P. (3.6)

The combination of the continuity (3.2) and energy (3.5) equations implies that the volume
dilatation rate is

∇ · v = − 1
γP

dP
dt

; (3.7)

namely, fluid elements on either side of the flame are progressively compressed.
Integrating (2.9)–(2.13) across the flame zone and taking the limit δ → 0 yield the
Rankine–Hugoniot (RH) jump conditions

[[ρ(v · n − Vf )]] = 0, (3.8)

[[n × (v × n)]] = 0 [[p + ρ(v · n − Vf )(v · n)]] = 0, (3.9)

[[YE − νYD]] = 0 [[T + qYD/YD0]] = 0, (3.10)

where the bracket [[ ]] denotes the jump across the flame front, i.e. [[Θ]] = Θ|ψ=0+ −
Θ|ψ=0− . Comments regarding the O(δ) corrections will be discussed below, following the
flame zone analysis.

Given that the fresh mixture in the vessel is initially homogeneous, and assuming that
the deficient reactant is completely consumed in the flame zone, (3.4a,b) yield

YD =
{

YD0,

0, YE =
{
νYD0Φ, ψ(x, t) < 0,
νYD0(Φ − 1), ψ(x, t) > 0. (3.11)

The energy equation (3.5), when combined with the equation of state (3.6), shows that the
function

E = T
P(γ−1)/γ = P1/γ

ρ
, (3.12)

referred to as the entropy function (the entropy of the gas is proportional to ln E), satisfies

DE
Dt

= 0, subject to [[E]] = q
P(γ−1)/γ . (3.13)

Since the state of the fresh gas is initially uniform and the entropy ahead of the flame is
conserved along particle paths, E = 1 in the unburned gas region. In the burned gas region
E = E(x, t) is determined by solving (3.13). As a consequence,

ρ =
{

P1/γ ,

P1/γ /E(x, t),
T =

{
P(γ−1)/γ , ψ(x, t) < 0,
P(γ−1)/γ E(x, t), ψ(x, t) > 0.

(3.14)

The temperature and density of the unburned gas remain spatially uniform, but their values
increase in time because of gas compression, a conclusion that remains true to all orders
in δ. By contrast, the temporally varying temperature and density at the moving front,

Tb = Ta + P(γ−1)/γ − 1, ρb = P/Tb, (3.15a,b)

are advected with the flow downstream such that the burned gas is no longer spatially
uniform. Here and below, subscripts b and u will be used to denote conditions on
the burned/unburned side of the flame front; i.e. at ψ = 0±, respectively. The flame
temperature Tf , defined as the temperature at ψ = 0+, is given to leading order by Tb and
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is seen to exceed the adiabatic flame temperature Ta as a result of adiabatic compression.
On the other hand, the extent of gas expansion across the flame,

Tb/Tu = ρu/ρb = 1 + qP−(γ−1)/γ = Eb, (3.16)

diminishes as the pressure rises.
To complete the formulation, an equation describing the evolution of the flame surface

ψ(x, t) = 0 or, equivalently, the propagation speed Vf , must be derived. It is customary to
use instead of the propagation speed, the flame speed, which is defined as the propagation
speed relative to the flow of fresh mixture, namely

Sf ≡ v∗ · n − Vf , (3.17)

where the ∗ denotes conditions at ψ = 0−. The local mass burning rate

m∗ ≡ ρu(v
∗ · n − Vf ) = ρuSf (3.18)

refers to the normal mass flux at the cold edge of the flame zone as viewed from an observer
moving with the flame front. The flame speed, burning rate and mean pressure rise depend
on the physicochemical processes occurring inside the flame zone, as discussed next.

4. The flame zone

It is convenient in the following analysis to introduce a curvilinear coordinate system
attached to the flame front, as shown in figure 1. The flame front is parametrized by
the surface coordinates (ξ1, ξ2) aligned with the principal directions of curvature at each
point of the surface, and e1, e2 denote unit vectors tangential to the parametric curves
ξ2 = const. and ξ1 = const., respectively. The three vectors e1, e2,n, with n = e1 × e2,
form an orthogonal triad of unit vectors and (ξ1, ξ2, n) may be taken as the coordinates of
an arbitrary point P in space at time t. The vector position r of the point P with respect to
the fixed rectangular coordinate system may be expressed in terms of the distance n from
the flame front and the position vector rf of the projection of P on the surface, namely

r(x1, x2, x3, t) = rf (ξ1, ξ2, t)+ nn(ξ1, ξ2, t), (4.1)

which serves as the transformation from the rectangular to the moving intrinsic surface
coordinate system. The unit vectors e1 and e2 are given by

e1 = 1
a1

∂rf

∂ξ1
, e2 = 1

a2

∂rf

∂ξ2
, (4.2a,b)

where ai = |∂rf /∂ξi|. The gas velocity may be decomposed as v = v⊥ + vnn, where vn
is the velocity component oriented normal to the flame surface and v⊥ = v1e1 + v2e2.
Consequently, m ≡ ρ(vn − Vf ) is the normal mass flux. Computation of the vector
differential operators involve the scale factors

l1 = a1(1 − nκ1), l2 = a2(1 − nκ2), l3 = 1, (4.3a–c)

where κ1 and κ2 are the principal curvatures in the ξ1 and ξ2 directions, respectively. The
sum κ = κ1 + κ2 is referred below as the curvature of the flame surface. The gradient
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Unburned gas

Burned gas

n

ξ1
ξ2

x1

x2

x3

P

r

rf

Flame surface

vn Vf

n

e2 e1

Figure 1. The intrinsic curvilinear coordinates (ξ1, ξ2, n) to the flame surface. The blue and magenta vectors
correspond to the normal component of the gas velocity vnn and normal propagation velocity −Vf n,
respectively.

operator then takes the form

∇ = n
∂

∂n
+ ∇s, ∇s = e1

1
l1

∂

∂ξ1
+ e2

1
l2

∂

∂ξ2
, (4.4a,b)

where ∇s is its surface component. The divergence of a vector b, with components
(b1, b2, b3) in the directions e1, e2 and n respectively, is given by

∇ · b = 1
l1l2

{
∂(l2b1)

∂ξ1
+ ∂(l1b2)

∂ξ2
+ ∂(l1l2b3)

∂n

}
, (4.5)

and the Laplacian of a scalar ϕ is

∇2ϕ = 1
l1l2

{
∂

∂ξ1

(
l2
l1

∂ϕ

∂ξ1

)
+ ∂

∂ξ2

(
l1
l2

∂ϕ

∂ξ2

)
+ ∂

∂n

(
l1l2

∂ϕ

∂n

)}
. (4.6)

Transforming the governing equations also requires expressing time derivatives in the
moving frame, using

∂

∂t
	→ ∂

∂t
+ ξ̇ · ∇s − Vf

∂

∂n
, (4.7)

with ξ̇ = l1ξ̇1e1 + l2ξ̇2e2, where the ‘dot’ corresponds to differentiation with respect to
time, and Vf = −∂n/∂t. We will avoid writing the general equations in the moving
curvilinear system and express only the relevant terms at each stage of the analysis. Further
details can be found in Matalon et al. (2003, appendix B).

To examine the internal structure of the flame zone, centred near the surface along which
n = 0, we introduce the stretched conductivity-weighted coordinate

η =
∫ n/δ

0

1
λ

dn′ (4.8)

with δ � 1, and seek solutions that match those in the hydrodynamic zones as η → ∓∞.
Although it is straightforward to simplify the governing equations in the flame zone
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using this transformation, they remain intractable analytically due to the highly nonlinear
reaction rate term. A common simplification that has paved the way to most of the
theoretical advances in combustion is the activation energy asymptotic approximation. The
activation energy of chemical reactions occurring in combustion systems is typically large
compared with the thermal energy of the fresh mixture, such that β0  1 or, equivalently,
the Zel’dovich number β = qβ0/T2

a  1 (in the following analysis it is more convenient
to use β0). As a result, the chemical activity is confined to a thin layer embedded within
the flame zone and centred about the location where the temperature is near its maximum
value – the flame temperature Tf . In the limit β0 → ∞, the reaction rate ω takes the form
of a Dirac delta function of strength ∼ exp (−β0/Tf ); i.e. an Arrhenius form of temperature
Tf . This approximation has been implemented in one of two ways: as a formal asymptotic
approach, in which the solution is expressed in terms of gauge functions that depend on β0,
or as a model – the delta-function model with β0 treated as a finite parameter (Matkowsky
& Sivashinsky 1978; Buckmaster & Ludford 1983; Margolis & Matkowsky 1983). The
latter, which captures the essence of activation energy asymptotics, was used primarily
when encountering technical difficulties that prevented the use of a formal approach.

A systematic asymptotic approach was used to describe the dynamics of freely
propagating flames (Matalon & Matkowsky 1982; Matalon et al. 2003). In this case, the
flame temperature is constant and equal to Ta and the reaction zone spans the region
where T − Ta = O(1/β0) such that ω = O(1). The reaction rate (2.16) is exponentially
small, and hence, negligible in the preheat zone where T < Ta, and vanishes identically in
the post-reaction zone where the deficient reactant or both reactants for a stoichiometric
mixture are completely consumed. The solution in the reaction zone that constitutes a
balance between the diffusion and chemical reaction rates provides, through asymptotic
matching, jump conditions across the reaction sheet that can be used to facilitate the
determination of the solution in the flame zone. The analysis also requires adopting
a near-equidiffusion formulation (Buckmaster & Ludford 1982), whereby Le−1

i = 1 −
lei/β0, and a near-stoichiometric mixture limit (Bechtold & Matalon 1999) where YE0 −
νYD0 = O(1/β0), such thatΦ = 1 + ϕ/β0 with ϕ = O(1) representing the deviation from
stoichiometry.

When propagating in a closed vessel, the flame temperature Tf varies in time and
exceeds the adiabatic flame temperature Ta. The reaction rate may then be expressed in
the form

ω = Dδ−1ρ2YDYE exp(β0/Ta − β0/Tf ) exp(β0/Tf − β0/T), (4.9)

ensuring that the chemical reaction remains confined to a thin layer where T − Tf =
O(1/β0). Retaining a reaction–diffusion balance inside the thin reaction layer, however,
requires rescaling the equations from one time to the next by readjusting the reaction zone
thickness with an exponentially small scale that balances the factor exp (β0/Ta − β0/Tf ).
This constitutes a technical difficulty that prevents the use of a formal asymptotic
approach. A resolution can be obtained if one adopts a Newtonian approximation (Van
Dyke 1954; Cole 1957), whereby (γ − 1)/γ is treated as a small parameter. In this limit,
Tf ∼ Ta and the factor exp (β0/Ta − β0/Tf ) remains, to leading order, an O(1) quantity.
This approach is implemented in § 7. Although the Newtonian approximation accounts
for gas compression, the increase in density translates entirely into a pressure rise, with
the temperature minimally affected. To allow for gas compression to modify both the
temperature and pressure, as anticipated physically, and circumvent the aforementioned
difficulty, we use instead the delta-function approach.
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Flames in closed vessels

The reaction rate in the governing equations is now replaced by the Dirac delta
function of strength ∼ exp (−β0/Tf ), and β0 is subsequently treated as a finite parameter.
The chemical reaction is now confined to a surface located, without loss of generality,
at η = 0. For consistency with earlier studies, we retain the near-equidiffusion and
near-stoichiometric assumptions and use the same scaling for the temperature–mass
fraction coupling functions, namely

T + qYD/YD0 = H + β−1
0 hD + · · · ,

T + qYE/νYD0 = H + β−1
0 (hE + qϕ)+ · · · ,

}
(4.10)

where the enthalpy functions satisfy

ρ
DH
Dt

− δ∇ · (λ∇H) = γ − 1
γ

dP
dt
,

ρ
Dhi

Dt
− δ∇ · (λ∇hi) = −δlei∇ · (λ∇(H − T)).

⎫⎪⎪⎬⎪⎪⎭ (4.11)

The enthalpy perturbations hD and hE may then be used as the dependent variables
replacing the mass fractions. Since the deficient reactant is depleted by the chemical
reaction,

YD = 0, T = H + 1
β0

hD, YE = νYD0

qβ0
(hE + qϕ − hD) (4.12a–c)

in the burned gas region (η ≥ 0). At the reaction sheet (η = 0),

Tf = H|η=0 + 1
β0

h∗
D, YE|η=0 = νYD0

qβ0
(h∗

E + qϕ − h∗
D), (4.13a,b)

representing, respectively, the flame temperature and the mass of unconsumed reactant
leaking through the reaction sheet. A direct integration of the governing equations across
η = 0 yields the following jump relations:

[ρ] = [T] = [H] = [hi] = [v] = 0,

[p] = 4
3

Pr
[
λ
∂vn

∂η

]
,

[
∂v⊥
∂η

]
= 0,[

∂H
∂η

]
= 0,

[
∂hi

∂η

]
= −lei

[
∂T
∂η

]
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.14)

[
∂T
∂η

]
= −qP

(
Tf

Ta

)2
√
λb

λa

√
1 + (h∗

E − h∗
D + qϕ)/2T2

f

1 + qϕ/2T2
a

exp
(
β0

2Ta
− β0

2Tf

)
. (4.15)

Here λb = λ(Tb) and the bracket [ ] denotes the jump, i.e. [Θ] = Θ|η=0+ −Θ|η=0− . To
avoid confusion, we note the distinction between the single brackets [ ] used here to
represent the jump across the reaction zone from the double brackets [[ ]] used earlier
that represent the jump across the entire flame zone. The relations (4.14)–(4.15) constitute
an obvious generalization of those derived systematically in the Newtonian limit (§ 7),
and reduce to the corresponding relations for freely propagation flames (Matalon et al.
2003) when P = 1. Although the jump in temperature gradient includes the factor
exp (β0/2Ta − β0/2Tf ), which is exponentially large when β0 is formally treated as a
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large parameter, this factor is quite moderate, approximately 1–2 for practical values of
the physical parameters.

To describe the combustion field in the flame zone (−∞ < η < ∞), all variables are
expanded in power series of δ, namely

m = m(0)(η, ξ1, ξ2, t)+ δm(1)(η, ξ1, ξ2, t)+ · · · ,
T = T(0)(η, ξ1, ξ2, t)+ δT(1)(η, ξ1, ξ2, t)+ · · · ,
H = H(0)(η, ξ1, ξ2, t)+ δH(1)(η, ξ1, ξ2, t)+ · · · ,
hi = h(0)i (η, ξ1, ξ2, t)+ δh(1)i (η, ξ1, ξ2, t)+ · · · ,
vn = v(0)n (η, ξ1, ξ2, t)+ δv(1)n (η, ξ1, ξ2, t)+ · · · ,
v⊥ = v

(0)
⊥ (η, ξ1, ξ2, t)+ δv

(1)
⊥ (η, ξ1, ξ2, t)+ · · · ,

p = p(0)(η, ξ1, ξ2, t)+ δp(1)(η, ξ1, ξ2, t)+ · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

The mean pressure P(t) has not been explicitly expanded, but it too will be determined
to O(δ) when evaluating the integral in (2.17). The equations that need to be solved at
each order are obtained by applying the transformation (n, ξ1, ξ2, t) 	→ (η, ξ1, ξ2, t) to the
governing equations, noting that

λ
∂

∂n
= 1
δ

∂

∂η
,

∂

∂t
= ∂

∂t
+ ∂η

∂t
∂

∂η
, ∇s = ∇s + ∇sη

∂

∂η
. (4.17a–c)

They must be solved for η ≶ 0 subject to the jump conditions (4.14) across η = 0. The
matching conditions for the state variables are readily available from (3.11) and (3.14),
namely

YD ∼
{

YD0,

0, YE ∼
{

YE0 as η → −∞,

νYD0ϕ/β0 as η → +∞,

ρ ∼
{

P1/γ ,
P/Tb,

T ∼
{

P(γ−1)/γ as η → −∞,

Tb as η → +∞,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.18)

where Tb = T(0)b (t)+ δT(1)b (t)+ · · · , with T(0)b = P(γ−1)/γ + q. Consequently, H ∼ Tb as
η → ±∞, but the enthalpy perturbations that satisfy hD = hE ∼ 0 as η → −∞ remain to
be determined on the burned side as η → +∞.

998 A59-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.919


Flames in closed vessels

To leading order,

∂m(0)

∂η
= 0,

m(0)
∂T(0)

∂η
− ∂2T(0)

∂η2 = 0,

m(0)
∂H(0)

∂η
− ∂2H(0)

∂η2 = 0,

m(0)
∂h(0)i
∂η

− ∂2h(0)i

∂η2 = −lei

(
∂2H(0)

∂η2 − ∂2T(0)

∂η2

)
,

m(0)
∂v
(0)
n

∂η
− 4

3
Pr
∂2v

(0)
n

∂η2 = −∂p(0)

∂η
,

m(0)
∂v
(0)
⊥
∂η

− Pr
∂2v

(0)
⊥

∂η2 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.19)

Conservation of mass implies that m(0) = M independent of η. The solution of the state
variables that satisfies the jump relations at η = 0 and the matching conditions as η →
±∞ is

T(0) =
{

P(γ−1)/γ + q eMη

P(γ−1)/γ + q
, h(0)i = lei

{−qηM eMη

0 , ρ(0) = P
T(0)

, (4.20a–c)

with H(0) = T(0)b independent of η. The top and bottom expressions correspond to η < 0
and η > 0, respectively, a notation that is also kept below. The solution of the velocity and
pressure that satisfies the jump relations at η = 0 is given by

v(0)n = v(0)n |η=−∞ + 1
P

{
qM eMη

qM , v
(0)
⊥ = v

(0)
⊥ |η=−∞,

p(0) = p(0)|η=−∞ + 1
P

⎧⎨⎩
(

4
3

Pr −1
)

qM2 eMη,

−qM2,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.21)

where it can be verified that the behaviour as η → ±∞ confirms the RH relations across
the flame. Finally, the jump relation for the temperature gradient yields an expression for
the burning rate, given by

M = P
(

Tf

Ta

)2
√
λb

λa

√
1 + qϕ/2T2

f

1 + qϕ/2T2
a

exp
(
β0

2Ta
− β0

2Tf

)
, (4.22)

where here, Tf = T(0)b . Below, we will use Tf and T(0)b interchangeably when only the
leading order of flame temperature is needed in a given expression. Equation (4.22) shows
that, to leading order, the burning rate depends only on time and simplifies to M = 1 for a
freely propagating flame, as it should.

We now proceed to the next order in the perturbation scheme. Before writing the
simplified equations to O(δ) we note that since λ = λ(T) and T ∼ T(0)(η, t), the
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transformation (4.17a–c) implies that

∂

∂t
= ∂

∂t
+ ∂η

∂t
∂

∂η
+ O(δ), ∇s = ∇s + O(δ),

λ
∂η

∂t
=
∫ 0

η

λT
∂T
∂t

dη′ =

⎧⎪⎨⎪⎩Ṫf

∫ 0

η

λT dη′ − Ṁ
M

(
λη +

∫ 0

η

λ dη′
)
,

−λT Ṫf η,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.23)

where λT = dλ/dT and the ‘dot’, here and thereafter, signifies differentiation with respect
to t.

The continuity equation takes the form

1
λ

∂m(1)

∂η
= −∂ρ

(0)

∂t
− ∂η

∂t
∂ρ(0)

∂η
+ Mκ − ρ(0)K, (4.24)

where κ is the local curvature of the flame surface taken to be positive when the surface is
concave towards the burned gas, as per the convention adopted earlier, and

K = −Vf κ + 1
a1a2

(
∂(a2v1)

∂ξ1
+ ∂(a1v2)

∂ξ2

)
︸ ︷︷ ︸

∇s · v⊥

(4.25)

is the (dimensionless) stretch rate experienced by the flame (Matalon et al. 2003,
appendix A), both being independent of η. Its influence on the flame propagation will
be discussed in § 5. The solution of (4.24), which satisfies continuity at η = 0, takes the
form

m(1) = A +

⎧⎪⎨⎪⎩
g(η),

λb

(
Mκ − P

Tf
K − Ṗ

Tf
+ γ − 1

γ

TuṖ

T2
f

)
η,

(4.26)

where A = A(ξ1, ξ2, t) remains to be determined, and

g(η) =
(

Mκ − ṀP
Mϑ(η)

)
J1(η)+

(
ṀP
M

− PK − Ṗ
)
J2(η)

+ γ − 1
γ

ṖTu

(J3(η)

ϑ
− J4(η)

)
. (4.27)

Here

J1(η) =
∫ η

0
λ(η′) dη′, J2(η) =

∫ η

0

λ(η′)
ϑ(η′)

dη′,

J3(η) =
∫ η

0

d
dϑ
(λ(η′)) dη′, J4(η) =

∫ η

0

d
dϑ

(
λ(η′)
ϑ(η′)

)
dη′,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.28)

where ϑ is the leading-order temperature in the preheat zone, namely ϑ(η) = Tu + q eMη,
and Tu = P(γ−1)/γ is the temperature on the unburned side of the flame zone. For
simplicity of notation, we have displayed explicitly only the dependence on η, which is
needed for integration, although g is a function of ξ1, ξ2, η and t and the integrals Ji
depend on both η and t. The same notation is adopted below.
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Flames in closed vessels

The remaining equations describing the combustion field are

M
∂T(1)

∂η
− ∂2 T(1)

∂η2 = −(m(1) + λκ)∂T(0)

∂η
− λρ(0)

(
∂T(0)

∂t
+ ∂η

∂t
∂T(0)

∂η

)
+ λγ − 1

γ
Ṗ,

(4.29)

M
∂H(1)

∂η
− ∂2H(1)

∂η2 = −λρ(0) ∂H(0)

∂t
+ λγ − 1

γ
Ṗ (4.30)

and

M
∂h(1)i
∂η

− ∂2h(1)i

∂η2 = −(m(1) + λκ)∂h(0)i
∂η

− λρ(0)
(
∂h(0)i
∂t

+ ∂η

∂t
∂h(0)i
∂η

)

+ lei

(
∂2 T(1)

∂η2 − ∂2H(1)

∂η2 − λκ ∂T(0)

∂η

)
, (4.31)

for h(1)D and h(1)E . They must satisfy the O(δ) contributions of the jump relations (4.14)
across η = 0, namely

[T(1)] = [H(1)] = [h(1)i ] = 0,[
∂H(1)

∂η

]
= 0,

[
∂h(1)i
∂η

]
= −lei

[
∂T(1)

∂η

]
,[

∂T(1)

∂η

]
= − qM

2T2
f

(
h∗

D
(1) + h∗

E
(1) − h∗

D
(1)

2 + qϕ/T2
f

)
− q

∂M
∂Tf

T(1)b ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.32)

and the matching conditions H(1) = T(1) = h(1)i ∼ 0 as η → −∞, where

∂M
∂Tf

= M

{
2
Tf

+ 1
2λb
λT

∣∣∣∣
Tf

−
qϕ/2T3

f

1 + qϕ/2T2
f

+ β0

2T2
f

}
. (4.33)

We note that the equations for h(1)D and h(1)E combine naturally into a single equation when
introducing

H = hD + hE − hD

2 + qϕ/T2
f
, leeff = leD + leE − leD

2 + qϕ/T2
f

(4.34a,b)

as the effective enthalpy and (reduced) Lewis number of the mixture. Then

H (0) = leeff

{−qMη eMη,
0, (4.35)

M
∂H (1)

∂η
− ∂2H (1)

∂η2 = −(m(1) + λκ)∂H (0)

∂η
− λρ(0)

(
∂H (0)

∂t
+ ∂η

∂t
∂H (0)

∂η

)

+ leeff

(
∂2 T(1)

∂η2 − ∂2H(1)

∂η2 − λκ ∂T(0)

∂η

)
, (4.36)
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and the jump relations across η = 0 simplify to

[T(1)] = [H (1)] = 0,

[
∂T(1)

∂η

]
= − qM

2T2
f

H∗(1) − q
∂M
∂Tf

T(1)b ,

[
∂H (1)

∂η

]
= −leeff

[
∂T(1)

∂η

]
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.37)

We are left to address (4.29)–(4.36) for T(1),H(1) and H (1), respectively, subject to the
jump relations (4.37).

The solution in the burned gas region (η > 0) is

T(1) = T(1)b + qλb
γ − 1
γ

Ṗ
MTf

η,

H(1) = T(1), H (1) = B,

⎫⎪⎬⎪⎭ (4.38)

where T(1)b and B remain to be determined. In the preheat zone (η < 0) the temperature
equation (4.29) takes the form

M
∂T(1)

∂η
− ∂2 T(1)

∂η2 = −AqM eMη − qs(η)M eMη,

s(η) = g(η)+ κλ(η)− γ − 1
γ

Ṗ
M
λ(η)

ϑ(η)
+ Ṁ

M
P
ϑ(η)

J1(η)− γ − 1
γ

TuṖ
ϑ(η)

J3(η),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.39)

and the general solution that satisfies continuity at η = 0 is

T(1) = T(1)b + D(eMη − 1)+ Aqη eMη + q
∫ 0

η

s(η′)(eMη′ − eMη) dη′. (4.40)

Similarly, the solution of (4.30) that is continuous and smooth at η = 0 is

H(1) = T(1)b + γ − 1
γ

qλbṖ
M2Tf

{
(eMη − 1)+ MTf

λb

∫ 0

η

λ(η′)
ϑ(η′)

(eMη − eMη′
) dη′

}
. (4.41)

Matching as η → −∞ yields

T(1)b = γ − 1
γ

qλbṖ
M2Tf

(
1 + MTf

λb

∫ 0

−∞
λ(η′)
ϑ(η′)

eMη′
dη′
)
,

D = T(1)b + q
∫ 0

−∞
s(η′) eMη′

dη′.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.42)

Although an explicit solution can also be written for H (1), it suffices for our purpose
to integrate (4.36) from η = −∞ to η = 0− and use the matching condition H (1) ∼ 0 as
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Flames in closed vessels

η → −∞ and the jump conditions (4.37). One finds that

MB = qleeff

{∫ 0

−∞

(
s(η′)+ γ − 1

γ

Ṗ
M
λ(η′)
ϑ(η′)

)
(1 + Mη′)M eMη′

dη′

−Mκ
∫ 0

−∞
λ(η′) eMη′

dη′
}
,

qM

2T2
f

B = −γ − 1
γ

qλb

MTf
Ṗ + MD + qA − q

∂M
∂Tf

T(1)b .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.43)

This results in the determination of all the unknown functions

T(1)b = γ − 1
γ

Ṗ
M2

{
J1 + qλb

Tf

}
,

B = −leeff
P

M2

{
J2

(
K + Ṗ

P
− Ṁ

M

)
− ṪuJ3

}
,

D = T(1)b + P
M2

{
J1

(
K + Ṗ

P
− Ṁ

M

)
−
(
λu

Tu
− λb

Tf

)
Ṫu

}
,

A = ∂M
∂Tf

T(1)b −
(

P
M

K + d
dt

(
P
M

))(
J1

q
− leeff

2 T2
f

J3

)
− ṪuP

qM

(
λb

Tf
− λu

Tu
− qleeff

2T2
f

J3

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.44)

expressed in terms of the (convergent) definite integrals

J1 =
∫ Tf

Tu

λ(x)
x

dx, J2 =
∫ Tf

Tu

λ(x)
x

ln
(

q
x − Tu

)
dx,

J3 = −
∫ Tf

Tu

d
dx

(
λ(x)

x

)
ln
(

q
x − Tu

)
= − J̇2

Ṫu
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.45)

Note that J1, J2 > 0 and J3 > 0 for λ(T) = Ta for a < 1. For λ(T) = T , they can be
evaluated such that J1 = J2 = q and J3 = 0. At the initial time, the limits of integration
are from 1 to Ta and the corresponding integrals will be denoted with the accent ‘hat’,
i.e. Ĵ1 and Ĵ2. They are identical to the integrals appearing in a similar context in the freely
propagating flame theory.

We have now obtained solutions correct to O(δ) for the state variables ρ, T , the enthalpy
functions H,H , or equivalently the mass fractions YD, YE, and mass flux m inside the
flame zone. The latter, which determines the burning rate, is the primary focus of this
study. Although one can also solve the fluid mechanics equations to the same order, the
algebra is rather lengthy and beyond the scope of this paper.

5. Flame speed and pressure rise

We proceed in deriving explicit expressions for the burning rate and/or flame speed, the
flame temperature and the overall pressure rise in the vessel.
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5.1. The flame speed
The burning rate m∗, as defined in (3.18), is obtained by matching the hydrodynamic
solution mhyd = m(0)hyd + δm(1)hyd at n = 0− with the corresponding solution in the flame
zone, namely m ∼ m(0) + δm(1) as η → −∞. Evidently, to leading order,

mhyd ∼ m(0)hyd|n=0− = lim
η→−∞ m(0) = M. (5.1)

To proceed to the next order, we note that as η → −∞,

J2 ∼ J1

MTu
+ J1(η)

Tu
,

Tu

( J3

ϑ(η)
− J4

)
∼ − J̇1

MṪu
+ J1

MTu
+ J1(η)

Tu
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.2)

such that

m ∼ M + δ

{
A − P

MTu

((
K + 1

γ

Ṗ
P

− Ṁ
M

)
J1 + J̇1

)
+
(

Mκ − PK

Tu
− Ṗ
γTu

)
J1(η)

}
.

(5.3)

The hydrodynamic solution to O(δ) at n = 0− takes the form

mhyd ∼ M + δ

{
m(1)hyd|n=0− +

∂m(0)hyd

∂n

∣∣∣∣∣
n=0−

J1(η)

}
, (5.4)

where, here and below, it is understood that M must be expanded to O(δ), namely replaced
by M + δ(∂M/∂Tf )T

(1)
b with the O(δ) retained when necessary. Matching then yields an

expression for m∗ which, after dividing by ρu, gives the expression

Sf = M
ρu

− δ

M

{
M1

(
K − Ṁ

M

)
+ M2

Ṗ
P

}
+ ℴ(δ). (5.5)

The flame speed Sf is modulated by two time-dependent coefficients

M1 = Tf

q
J1 +

(
Ta

Tf

)2 β(Leeff − 1)
2q

TuJ2,

M2 = M1 − γ − 1
γ

{
J1 +

(
λu

Tu
− λb

Tf

)
TuTf

q
+
(

Ta

Tf

)2 β(Leeff − 1)
2q

T2
u J3

}
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.6)

which results from (5.3) after expressing the scaled parameters leeff and ϕ in terms of
the effective Lewis number Leeff and the excess-to-deficient reactant mass ratio Φ while
using the Zel’dovich number β in lieu of β0. Matching the gradients does not reveal new
information because the gradient of the mass flux to leading order can also be deduced
from the continuity equation (3.2) when evaluated at n = 0−. The O(δ) correction to the
flame speed consists of two terms; the first will be recognized below as the voluminal
stretch and the second is the proportionate time rate of change of the pressure; the
coefficients M1 and M2, which can arguably be referred to as Markstein numbers, will
be further discussed below.
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Flames in closed vessels

The flame speed, as defined in (3.17), is based on the prevalent convention that it is
measured relative to the velocity of the fresh unburned gas. It is often convenient to relate
the propagation speed to the gas velocity of the burned gas and define the flame speed as
Sb

f ≡ mb/ρb, where the superscript b here and below signifies that the quantity is measured
relative to the burned gas. This requires evaluating the mass flux mb at the burned edge of
the flame, i.e. at n = 0+, which is directly obtained by matching with the solution (4.26)
as η → +∞. The flame speed is then given by

ρb

ρu
Sb

f = M
ρu

− δ

M

{
Mb

1

(
K − Ṁ

M

)
+ Mb

2
Ṗ
P

}
+ ℴ(δ), (5.7)

with time-dependent coefficients

Mb
1 = Tu

q
J1 +

(
Ta

Tf

)2 β(Leeff − 1)
2q

TuJ2,

Mb
2 = Mb

1 − γ − 1
γ

T2
u

{
1
q

(
λu

Tu
− λb

Tf

)
+
(

Ta

Tf

)2 β(Leeff − 1)
2q

J3

}
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.8)

which may be referred to as the burned Markstein numbers. Here too, matching the
gradients does not reveal new information; the gradient of the mass flux to leading order
can be also deduced from the continuity equation (3.2) when evaluated at n = 0+.

From the above relations, it can be verified that there is an O(δ) jump in the normal
mass flux across the entire flame given by

[[m]] = δ

M

{
ρuJ1

(
K − Ṁ

M

)
+ d

dt
(ρuJ1)

}
. (5.9)

Although the mass flux is conserved across an infinitesimally thin flame, when accounting
for the finite (albeit small) thickness of the flame zone, the normal mass flux leaving the
flame differs from that into the flame due to transverse transport and/or mass accumulation.
One also notes that the jump in the gas velocity across the flame given by

[[v · n]] = Tf − Tu

P
m∗ + Tf

P
[[m]] = qM

P
+ O(δ) (5.10)

always increases in time, a direct result of the rise in flame temperature.
Although the density and temperature of the unburned gas ρu and Tu remain spatially

uniform to all orders in δ, the state of the burned gas is modified to O(δ) by corrections
arising from variations in the flame temperature. In particular, the temperature is
determined by solving

ρ
DT
Dt

− γ − 1
γ

dP
dt

= δ∇ · (λ∇T), (5.11)

subject to

Tf = Tu + q − δP
M2

{
γ − 1
γ

(
J1 + qλb

Tu + q

)
Ṗ
P

}
− (LeD − 1)

δ

M

{(
PJ2

M

)
K + d

dt

(
PJ2

M

)}
(5.12)

at n = 0+, with appropriate boundary conditions to O(δ) at the vessel’s walls. The
expression for Tf results from matching with the solution in the flame zone as η → +∞.
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Although the flame temperature Tf varies primarily in time as a result of the pressure
rise, there are small changes in temperature associated with flame stretch that depend
on the Lewis number of the deficient reactant, i.e. the fuel in a lean mixture and the
oxidizer in a rich mixture. The dependence on flame stretch was corroborated with direct
numerical simulations for freely expanding spherical flames (Giannakopoulos et al. 2015)
where it was shown that, depending on the equivalence ratio that determines whether LeD
is above/below one, the flame temperature is lower/higher than its adiabatic value and
increases/decreases towards Ta when K → 0.

The equations describing the flow field and state variables in the hydrodynamic zones
were presented in § 3 to leading order. To extend the results to O(δ), (2.9)–(2.13) must be
considered with the reaction term set to zero and diffusion added as correction terms. For
the determination of the flow field, the O(δ) corrections to the RH conditions (3.9) must be
derived, as carried out in Matalon & Matkowsky (1982) for freely propagating flames. Not
being the focus of this work, the derivation will not be pursued here. For configurations
that depend on a single spatial coordinate, such as planar or spherical flames, the velocity
field is directly determined from the continuity equation (3.7) which, when extended to
O(δ) takes the form

∇ · v + 1
γP

dP
dt

= δ
1
P

∇ · (λ∇T), (5.13)

and needs to be solved subject to the jump condition (5.9) across the flame surface. The
momentum equation is used a posteriori to evaluate the dynamic pressure.

As a final remark, we note that the expressions for the flame speed and Markstein
lengths (relative to burned or unburned gas), and the flame temperature simplify to the
corresponding expressions for freely propagating flames. With P = Tu = 1, the flame
temperature, to leading order, is the adiabatic flame temperature Ta = 1 + q and the
density is a piecewise constant function with ρu = 1 and ρb = 1/Ta. Then, the flame speed
depends on a single Markstein number M1 that takes the form

M1 = σ

σ − 1

∫ σ

1

λ(x)
x

dx + β(Leeff − 1)
2(σ − 1)

∫ σ

1

λ(x)
x

ln
(
σ − 1
x − 1

)
dx, (5.14)

where σ = ρu/ρb is the unburned-to-burned density ratio. The stretch-corrected flame
speed and temperature reduce to

Sf = 1 − δM1K,

Tf = Ta − δ

{
(LeD − 1)

∫ σ

1

λ(x)
x

ln
(
σ − 1
x − 1

)
dx
}

K,

⎫⎪⎬⎪⎭ (5.15)

as in Matalon et al. (2003).

5.2. Pressure rise
The pressure rise in the vessel is determined from (2.17) where the integral on the
right-hand side is to be carried out over the entire volume. In the hydrodynamic limit
it simplifies to

dP
dt

= γ q
V

∫
ω dn dA = γ q

V

∫
Af

∫ ∞

−∞
ωδλdη dA, (5.16)

where the integration is carried out across the flame zone and over the entire flame surface
Af . Since the chemical reaction rate ω is replaced by a Dirac delta function, the latter
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Flames in closed vessels

simplifies to
dP
dt

= −γ
V

∫
Af

[
∂T
∂η

]
dA. (5.17)

The integrand consists of the jump in temperature gradient across the reaction sheet,
namely the fraction of the total heat generated by the chemical reaction and conducted
in different proportions to the burned and unburned gas. Under adiabatic conditions, more
heat is transported to the fresh mixture justifying the assertion that the pressure always
rises. The jump in temperature gradient across η = 0 is obtained directly from the solution
constructed in the previous section, such that

dP
dt

= γ qAf

V

{
M − δ

(
Ta

Tf

)2 β(Leeff − 1)
2q

(
d
dt

(
PJ2

M

)
+ PJ2

M
1
Af

∫
Af

K dA
)}

, (5.18)

where Af is the flame surface area. For consistency, O(δ2) terms in the curly bracketed
expression must be discarded. It may be verified when using (4.22) that the factor
multiplying the last term in this equation decreases in time implying that the influence
of flame stretch diminishes as the pressure rises. Equation (5.18) can be also expressed as

dP
dt

= γ

V

∫
Af

(qm∗ + Tf [[m]]) dA + δ

(
Af

V

)2

γ (γ − 1)qJ1, (5.19)

a form found useful in the next section.

5.3. Flame stretch
Flame stretch, first introduced by Karlovitz et al. (1953), is a measure of the deformation of
the flame surface resulting from its motion and from the underlying flow field. It is defined
as the proportionate rate of change of the area of an infinitesimal surface element A of
the flame front, namely K ≡ A−1 dA/dt. The stretch rate appeared naturally in the mass
conservation equation (4.24) when expressed in terms of intrinsic surface coordinates, and
may be expressed in the coordinate-free form as

K = −Vf κ − n · ∇ × (v × n)︸ ︷︷ ︸
−∇s·v⊥

, (5.20)

obtained from the basic definition (Matalon 1983). The first term corresponds to the
surface dilatation resulting from the motion of the flame front, and the second term is
the surface extension/compression resulting from the underlying velocity gradient on the
surface of the flame front. The curvature can be evaluated from κ = −∇ · n, evaluated at
the flame front. Since v⊥ is continuous across the flame (to leading order), the stretch rate
is uniquely defined on the flame surface and can be evaluated from (5.20) on either side of
the interface.

It is often stated that flame stretch is a combination of curvature and strain, a statement
that requires careful consideration. When expanding the right-hand side of (5.20), one
finds that

K = (v · n − Vf )κ + KS + ∇ · v, (5.21)

where KS = −n · E · n is the local strain rate. It must be noted that the first two terms
on the right-hand side admit different values when evaluated on the unburned and burned
sides of the flame front. Thus, using (5.21) to determine the stretch rate requires specifying
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Figure 2. The dependence of (a) the flame thickness lf and (b) the flame temperature Tf scaled by the adiabatic
flame temperature Ta on pressure P(t) representing time, for various values of the heat release parameter q; the
curves end at P = Pe marked on the axis.

on which side of the flame front this expression is to be evaluated. For a freely propagating
flame in the hydrodynamic limit, ∇ · v = 0 on either side of the flame and the stretch
rate is indeed a combination of curvature and strain, but each of these components have
different expressions when evaluated on the unburned and burned sides. On the unburned
side of the flame, v · n − Vf ∼ 1 and K = κ + Ku

S ; on the burned side of the flame
v · n − Vf ∼ σ , where σ is the unburned-to-burned density ratio and K = σκ + Kb

S . Both
yield the same value for the stretch rate because [[KS]] = −(σ − 1)κ , a relation derived in
Matalon et al. (2003). For a flame propagating in a closed vessel, the stretch rate is not just
a combination of curvature and strain because the volume dilatation rate ∇ · v /= 0 due to
gas compression, but may be expressed in the form

K = M
ρ
κ + KS − 1

γP
dP
dt
, at ψ = 0±. (5.22)

A planar flame, for example, is not stretched, but in a closed vessel it experiences normal
strain that balances the volume dilatation rate, thus ensuring that K = 0. Similarly, a
spherical flame experiences normal straining and a non-zero dilatation rate such that (5.22)
simplifies to K = −Vf κ as it should. These examples will be further discussed in § 6.

Although the flame zone expressed in units of the diffusion length ld is of infinite
extent, the distance required for the temperature to rise from the cold value Tu to the
flame temperature Tf occurs over a relatively small multiple of this length. The flame
thickness may therefore be defined as the distance from the reaction zone to the point
where the temperature falls within 1 % of Tu. For a freely propagating flame (M = 1),
this distance is constant; typically lf ≈ 7ld with an accuracy of 10−4. Under confinement,
however, lf ∼ 1/M and, since M increases in time due to the pressure rise, the flame
becomes consistently thinner when propagating towards the end of the vessel, as shown
in figure 2(a). The graph exhibits the dependence of lf on time, represented by P(t), for
various values of q, with ϕ = 0, λ = T0.7 and β = 10. Changes in equivalence ratio and/or
the dependence λ(T) show no significant quantitative difference in the behaviour of lf .

Due to the significant decrease in the flame thickness with time, the correction to the
flame speed resulting from the physicochemical processes occurring inside the flame zone
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has been expressed in (5.5) as a multiple of δ/M, which being proportional to lf /l, is a
more accurate measure of its thickness. The proportionate time rate of change of the flame
thickness lf −1 dlf /dt = −Ṁ/M combines with the proportionate time rate of change of
the area of a flame surface element to define a voluminal stretch rate

1
V

dV
dt

= 1
A

dA
dt

+ 1
lf

dlf
dt

= K − Ṁ
M
, (5.23)

where V = lf A is an infinitesimal volume element of the flame zone. Accordingly, the
flame speed (5.5) was found to depend on the voluminal stretch rate that measures the
local deformation of a volume element of the flame zone. The voluminal stretch concept
was first introduced by Buckmaster (1979) in the context of slowly varying flames, as noted
in the introduction.

5.4. The effective Lewis number
Although distinct Lewis numbers were assumed for the two reactants, the burning rate
was found to depend on a stoichiometry-weighted combination of the two, or an effective
Lewis number of the form

Leeff = LeE + LeD(1 +Δ)

2 +Δ
,

Δ =
(

Ta

Tf

)2

β(Φ − 1), Φ ∼
{

1/φ lean mixtures,
φ rich mixtures,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.24)

where φ is the equivalence ratio andΔ measures the deviation from stoichiometry. It is an
average of the Lewis numbers of fuel and oxidizer, with a heavier weight on the deficient
component in the mixture. The effective Lewis number is the mean value of LeD and LeE
for a stoichiometric mixture (Δ = 0) and tends towards LeD for conditions sufficiently far
from stoichiometry (Δ  1). It also varies in time due to the dependence of Tf /Ta on
pressure shown in figure 2(b). The figure displays the dependence of the (leading-order)
flame temperature scaled by the adiabatic temperature Ta on pressure, which varies in time
from P = 1 initially to the end pressure Pe = 1 + γ q; the latter is shown on the axis for
each value of q. Given that Tf /Ta does not increase considerably, and the uncertainty in
accurately specifying the individual Lewis numbers, a time-averaged value can serve as
the representative Leeff .

Figure 3 shows the dependence of Leeff , averaged over the total propagation time, on
the equivalence ratio φ of the mixture, for several fuels burning in air. They are plotted
for the representative value q = 6, which characterizes mixtures of various heat releases
Q and mass fractions YD0 . The determination of the effective Leeff requires specifying
the limiting Lewis numbers; the fuel Lewis number LeF for lean mixtures and the oxygen
Lewis number LeO for rich mixtures. These values are defined as the ratio of the thermal
diffusivity of the mixture to the binary diffusivity of the fuel/oxygen into N2, as per the
dilute-mixture assumption used when adopting Fick’s law in the governing equations;
they were estimated near the lean/rich flammability limits and are marked by a dashed
line in the figure. The formula (5.24) then provides the distribution of Leeff as a function
of the equivalence ratio φ, approaching the respective limiting Lewis numbers for lean
and rich mixtures. A monotonically decreasing curve results for heavy hydrocarbon fuels
with LeF > 1, and a monotonically increasing curve results for light fuels with LeF < 1,
such as hydrogen and methane. The transitional curves display a weak dependence on the
Zel’dovich number, which has been specified in this figure as β = 10.
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Figure 3. The dependence of the effective Lewis number Leeff , averaged over the total propagation time, on the
mixture equivalence ratio for several fuels burning in air. The dashed lines mark the limiting Lewis numbers;
the fuel Lewis number LeF for lean mixtures and the oxygen Lewis number LeO for rich mixtures.

5.5. The Markstein numbers
When viewed on the hydrodynamic scale, the flame is effectively an interface embedded
in the flow field; the preheat zone of the flame collapses to ψ = 0− and the post-reaction
zone of the flame to ψ = 0+. The propagation speed can be expressed relative to either the
unburned or burned gas. When expressed relative to the unburned gas, the flame speed Sf
exhibits a linear dependence on the voluminal stretch rate, modulated by a parameter M1,
and on the rate of pressure rise, modulated by a parameter M2. Similarly, when expressed
relative to the burned gas, the flame speed Sb

f exhibits a linear dependence on the voluminal
stretch rate, modulated by a parameter Mb

1, and on the rate of pressure rise, modulated
by a parameter Mb

2. We note that unlike Sf , which mimics the diffusion and reaction
processes occurring in the entire flame zone and is not evaluated at any specific isotherm,
Sb

f is effectively evaluated at the flame temperature T = Tf . This has practical implications
when seeking comparison with experimental and/or numerical simulations aimed at
quantifying the dependence of the flame speed on stretch and pressure rise. Measurements
and simulations that resolve the flame structure require selecting an isotherm to represent
the flame surface, and the burned Markstein numbers in that regard are the most relevant
ones. Indeed, it has been established that the most appropriate isotherm for the evaluation
of the flame speed, which is well conditioned and displays the best agreement with the
theory, must be sufficiently close to the burned side of the flame (Giannakopoulos et al.
2015). The flame speed Sf and Markstein numbers M1 and M2, on the other hand, are
the appropriate expressions to use for the evolving flame front when determining the flow
field in the hydrodynamic regions.

Although the Markstein numbers (5.6) and (5.8) are pressure dependent, for a given
mixture they are mostly affected by the effective Lewis number Leeff . Given that their
dependence on time for a wide range of Leeff is quite moderate, they can be represented by
an average value. In figure 4 we show the variation of the Markstein numbers (unburned
and burned, averaged over the total propagation time) of selected fuels burning in air
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Figure 4. The dependence of the Markstein numbers (averaged over the total propagation time) on the
mixture equivalence ratio φ for several fuels burning in air.

across the entire range of the stoichiometric spectrum, which evidently mirror the variation
of Leeff on the equivalence ratio. We note that the second member on the right-hand
side of (5.8) is identically zero for λ(T) = T and negligibly small otherwise, implying
that Mb

2 ≈ Mb
1 = Mb. For the unburned coefficients, M2 <M1, but the difference is

typically small and does not exceed 20 %.
There are circumstances where despite the moderate variation of the Markstein numbers

with time they may change sign during the propagation. This becomes particularly
relevant when attempting to extract the burned Markstein number from experimental
measurements. Since the integrals J1 and J2 are both positive, Mb is strictly positive
for Leeff > Lecr

eff and negative otherwise, where

Lecr
eff ∼ 1 − 2

β

(
Tf

Ta

)2 J1

J2
. (5.25)

In most cases, Mb is either positive or negative, but in a limited range of sub-unity Lewis
number, estimated as 0.75 � Leeff � 0.82, it may change sign during the propagation. The
implication being that in such cases, the location where flame speed measurements are
taken to estimate the Markstein numbers becomes important. Two examples illustrating
this effect are shown in figure 5, where the dependence of Mb on time is shown for
several values of the equivalence ratio. For a sufficiently lean hydrogen–air mixture, such
as φ ≤ 0.775, the Markstein number is strictly negative and becomes strictly positive for
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Figure 5. Two cases illustrating circumstances where the ‘burned’ Markstein number Mb may change sign
during the propagation. Results are shown for the (a) H2–air mixture and (b) C8H18–air–CO2 mixture.
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Figure 6. Flame configurations: (a) planar flame propagating from left to right and (b) outwardly propagating
spherical flame; the blue arrows show the flow direction.

φ ≥ 0.845; it changes sign during the propagation when φ ≈ 0.8. The opposite trend is
observed for a rich octane–air mixture when diluted with CO2 to increase the effective
Lewis number; the Markstein number is strictly positive for φ ≤ 1.98, negative for φ ≥
2.92 and changes sign during the propagation when φ ≈ 2.4.

6. Planar and spherical flames

The asymptotic theory derived in the previous sections is used next to examine flame
propagation in two canonical configurations: a planar flame propagating in a rectangular
channel of length L and a centrally ignited outwardly propagating flame in a spherical
vessel of radius L (see figure 6). The results are illustrated below for vessels of
length/radius L = 100, measured in units of the hydrodynamic length scale l. For typical
δ = ld/l ∼ 0.02 − 0.002, it corresponds to approximately 1000–10 000 flame thicknesses.
Different mixtures will be represented by varying the heat release parameter q and effective
Lewis number Leeff , assuming stoichiometric conditions ϕ = 0, a power law λ = Ta with
a = 0.7 and ratio of specific heats γ = 1.4.
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6.1. Planar flame
We consider first the propagation of a planar flame travelling from left to right in a
rectangular channel, as shown in figure 6(a). If the channel’s width (in the y and z
directions) is chosen as the hydrodynamic length scale l, the flame surface area Af = 1
and the ratio Af /V = 1/L. The flame front is described by ψ(x, t) ≡ xf (t)− x = 0, such
that 0 < x < xf corresponds to the burned gas and xf < x < L to the unburned gas region.
The propagation speed is then given by Vf = −ẋf .

To leading order, the gas velocity determined from (5.13) and satisfying u(0, t) =
u(L, t) = 0 is given by

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
Ṗ
γP
(L − x), xf < x < L,

− Ṗ
γP

x, 0 < x < xf ,

(6.1)

with the pressure obtained by solving Ṗ = γ qM/L subject to P(0) = 1, and M given by
(4.22). The RH relation [[ρ(ẋf − u)]] = 0 then yields an expression for the flame position,

xf (t) =
(

1 − Pe − P
Pe − 1

P−1/γ
)

L, (6.2)

where Pe = 1 + γ q is the end pressure. In a sufficiently long channel (L  1), the pressure
increases linearly in time, namely P ∼ 1 + γ qt/L, and the velocity simplifies to

u(x, t) ∼
{

q − q(x + γ qt)/L + O(1/L), xf < x < L,
−qx/L, 0 < x < xf ,

(6.3)

where the additional O(1/L) contribution in the unburned gas comes from the expansion of
M. When L → ∞, the solution tends to that of a planar flame propagating from the closed
end of a semi-infinite channel towards an open end at a speed ẋf ∼ 1 + q. Determining the
state of the burned gas requires first solving the advection equation

∂E
∂t

+ Ṗ
γP

x
∂E
∂x

= 0 (6.4)

for the entropy function, subject to E = Eb at x = xf . The general solution is E = f (xP1/γ ),
where the function f (ζ ) is determined from the relation

f (ζ ) = 1 + q
P(γ−1)/γ for ζ =

(
P1/γ − Pe − P

Pe − 1

)
L. (6.5)

Evidently, f (0) = 1 + q and f (ζ ) ∼ 1 as ζ → ∞, but the values of interest are limited to
ζ corresponding to 1 ≤ P < Pe, with the end point determined by the parameters γ and q.

Next we examine the influences arising from the finite thickness of the flame. Evidently,
the planar flame surface is not stretched; although it experiences normal strain, the strain
rate KS = −∂u/∂x balances the dilatation rate resulting from gas compression such that
K = KS + ∇ · v = 0. The flame thickness however decreases as the pressure rises and the
influence of the internal structure on the flame speed, given by (5.5), diminishes in time.
Equation (5.18) for the pressure simplifies to

dP
dt

= γ q
L

{
M − δ

(
Ta

Tf

)2 β(Leeff − 1)
2q

d
dt

(
PJ2

M

)}
, (6.6)

with the only changes at O(δ) resulting from non-unity Lewis number effects. Their
contributions however are generally small and amount to less than 5 % for typical values
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Figure 7. (a) The pressure P and (b) the mass burning rate m∗ as a function of time, for a planar flame
propagating in a closed channel, for various values of the heat release parameter q.

of δ and a wide range of Leeff . The RH condition (5.9) combined with (5.19) yields

xf =
(

1 − Pe − P
Pe − 1

P−1/γ
)

L + δ

q

(
Tf J1

M
− TaĴ1

P1/γ

)
, (6.7)

relating flame location to pressure. Although the gas velocity is affected to O(δ) by the
corresponding variations in pressure, the velocity in the burned gas includes an additional
correction resulting from the right-hand side of (5.13), such that

u = − Ṗ
γP

x + δλf ′(xP1/γ )

∣∣∣∣x
x=0

, 0 < x < xf , (6.8)

where the prime in f ′ denotes differentiation with respect to the function’s argument and λ
at the wall is evaluated at T(0) = P(γ−1)/γ Ta. Overall, the contributions arising from the
internal flame structure on the propagation of a planar flame are small.

The results are illustrated in figures 7 and 8 for a representative value δ = 0.05, starting
with the solution of an unconfined planar flame at x = 0. Although the computations
account for the O(δ) corrections, the solutions appear indistinguishable from their
leading-order counterparts.

Figure 7 shows the dependence of the pressure P and burning rate m∗ on time, for
several values of the heat release parameter q. The pressure and burning rate, which at
first grow linearly, increase rapidly after the flame has travelled beyond the middle of the
vessel. Although the transition appears to occur earlier for larger values of q, the duration
of flame propagation is also shortened. Note that the overall pressure increases by nearly
ten fold, approaching Pe = 1 + γ q when the flame reaches the end of the channel.

Density and temperature profiles at equal time intervals are shown in figure 8. The
gas on both sides of the flame is compressed continuously as the pressure rises. In
the unburned gas region the density and temperature remain spatially uniform but vary
in time. The larger pressure translates primarily in increasing the density of the fresh
mixture, which reaches a value of approximately five times its initial value, near the
end of propagation. The temporally increasing temperature and density of the moving
flame front are advected with the flow upstream such that their values in the burned gas
region are no longer spatially uniform. A temperature gradient is established in the burned
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Figure 8. (a) Density and (b) temperature profiles of a planar flame in a closed channel at equal time
intervals, for a representative value q = 6.

gas region and is responsible for the re-illumination observed in photographic records of
flames propagating in closed spherical bombs at the centre of the vessel, a phenomenon
known as the Flamm-Mache effect (Flamm & Mache 1917; Lewis & von Elbe 1987).
The finite temperature gradient observed at x = 0 can be smoothed out in a thin thermal
boundary layer to ensure the adiabaticity condition at the wall.

Velocity profiles are plotted in figure 9(a) for the representative value q = 6. Initially
the burned gas trapped between the flame and the left wall is at rest, the flame advances
at a speed ẋf ∼ 1 + q and the fresh mixture is forced to the right at a constant velocity
u∗ ∼ q. As the flame propagates forward, the fresh mixture is being forced against a
denser gas causing it to slow down, gradually coming to rest at the end of the channel.
The jump in velocity across the flame increases due to the higher flame temperature and
the burned gas is swiftly advected away from the flame at an increasing speed. The flame
propagation speed ẋf = Sf + u∗ results from a balance between the increasing flame speed
and the gradual reduction in gas velocity ahead of the flame front. The flame speed Sf
and propagation speed ẋf are shown in figure 9(b) for increasing values of q, starting
respectively from 1 and 1 + q at time t = 0 to a common value when the flame reaches
the end of the vessel and u∗ = 0. Being an intrinsic property of the combustion process,
the flame speed (dashed curves) increases continuously in time and is higher for larger
values of heat release. The propagation speed (solid curves) on the other hand depends on
the flow conditions, such that the flame accelerates throughout the vessel for low values of
q and decelerates for large values of q. Indeed, the velocity profiles shown in figure 9(a)
at equal time intervals demonstrate that the flame for q = 6 decelerates throughout the
channel.

6.2. Spherical flame
We consider now the propagation of a centrally ignited flame in a closed spherical vessel of
radius L, as shown in figure 6(b). The flame front is described by ψ(r, t) = R(t)− r = 0,
such that 0 < r < R corresponds to the burned gas and R < r < L to the unburned gas
region. The propagation speed is then given by Vf = −Ṙ. The ratio of the flame surface
area to the volume of the vessel, Af /V = 3R2/L3, increases in time as the flame propagates
outward.
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Figure 9. Planar flames propagating in a closed channel: (a) velocity profiles at equal time intervals, for a
representative value q = 6, and (b) flame speed Sf (dashed curves) and propagation speed ẋf (solid curves) as
a function of time for various values of q.

To leading order, the gas velocity determined from (5.13) and satisfying u(0, t) =
u(L, t) = 0 is given by

v(r, t) =

⎧⎪⎪⎨⎪⎪⎩
Ṗ

3γP

(
L3

r2 − r
)
, R < r < L,

− Ṗ
3γP

r, 0 < r < R,
(6.9)

with the pressure obtained by solving Ṗ = 3γ qMR2/L3 subject to P(0) = 1, and M given
by (4.22). The RH relation [[ρ(Ṙ − v)]] = 0 then yields the following expression for the
flame position:

R(t) =
(

1 − Pe − P
Pe − 1

P−1/γ
)1/3

L. (6.10)

Determining the state of the burned gas requires solving the advection equation

∂E
∂t

− Ṗ
3γP

r
∂E
∂r

= 0 (6.11)

for the entropy function, subject to E = Eb at r = R. The general solution is E = f (rP1/3γ )
where the function f (ζ ) is obtained from the relation

f (ζ ) = 1 + q
P(γ−1)/γ for ζ =

(
P1/γ − Pe − P

Pe − 1

)1/3

L. (6.12)

Similar to the equivalent function for the planar solution, f (0) = 1 + q and f (ζ ) ∼ 1 as
ζ → ∞; its relevance is limited to values of ζ corresponding to 1 ≤ P ≤ Pe.

Next, we examine the influences that result from the finite thickness of the flame. Unlike
the planar flame, the surface of the spherical flame is stretched at a rate K = 2Ṙ/R apparent
from the fundamental expression (5.20). We recall that for a flame under confinement, the
stretch rate is not a simple combination of curvature and strain, and is obtained only when
combined with the volume dilatation rate. Moreover, the flame experiences normal strain
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at different rates on the unburned and burned sides of the flame surface, given by

Ku
S = qM

P

(
2
R

+ R2

L3

)
, Kb

S = qM
P

R2

L3 , (6.13a,b)

respectively. When substituted in (5.22) with the curvature term (M/ρ)κ evaluated
appropriately, one finds that

K =
(

M
P1/γ + qM

P

)
2
R

− qM
P

2R2

L3 = 2Ṙ
R
, (6.14)

as expected. The flame speed is given by (5.5), with the corrections resulting from flame
stretch most significant when the flame is relatively small. Equation (5.18) for the pressure
simplifies to

dP
dt

= 3γ qR2

L3

{
M − δ

(
Ta

Tf

)2 β(Leeff − 1)
2qR2

d
dt

(
PJ2

M
R2
)}

(6.15)

with the only changes at O(δ) resulting from non-unity Lewis number effects. As for
the planar flame, their contribution is generally small for a wide range of Leeff . The RH
condition (5.9) combined with (5.19) yields the equation

R3 =
(

1 − Pe − P
Pe − 1

P−1/γ
)

L3 − δ

(
3R2

q
Tf J1

M

)
(6.16)

relating the flame location to the pressure. The gas velocity is affected to O(δ) by the
pressure variations, with an additional correction in the burned gas region resulting from
the right-hand side of (5.13). One finds that

v(r, t) = − Ṗ
3γP

r + δ
λ

P2/3γ f ′(rP1/3γ )

∣∣∣∣r
r=0

, 0 < r < R, (6.17)

where λ = λ(T) is evaluated at the origin where T(0) = P(γ−1)/γ Ta.
The results presented below correspond to a spherical flame evolving from a

small unconfined flame kernel and, unless otherwise specified, δ = 0.05. Although the
computations account for the O(δ) corrections, their contributions are generally small
except for the flame speed and propagation speed; the solutions of the state variables
remain indistinguishable from their leading-order counterparts.

The dependence of the pressure level P on time is shown in figure 10(a) for several
values of the heat release parameter q. The initial linear rise in P appears much slower than
for a planar flame, but the sharp increase occurring after the flame has travelled beyond
the middle of the vessel is more rapid, being proportional to the flame surface area R2.
When increasing q, the transition appears to occur at an earlier time, but the duration of
flame propagation is also shorter. Unlike the planar flame, the effect of flame stretch on the
flame speed and, consequently, on the mass burning rate m∗ is evident in figure 10(b). In
the absence of stretch, with P ∼ 1 during the early stages of propagation the flame speed
would remain close to the laminar flame speed with m∗ ∼ 1. The incipient spherical flame,
however, is highly stretched such that Sf , and consequently m∗, are significantly lower for
practically all values of the unburned Markstein number M1. This behaviour changes at
later times due to the diminished effect of stretch on one hand and the pressure rise on the
other.
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Figure 10. The pressure P and burning rate m∗ as a function of time, for a spherically expanding flame in a
closed vessel at various values of the heat release parameter q and Leeff = 1.
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Figure 11. Density and temperature profiles of a spherical flame in a closed vessel at equal time intervals, for
a representative value q = 6.

Profiles of density and temperature are shown in figure 11 at equal time intervals for
the representative value of q = 6. The results are similar to those observed for planar
flames. The gas on both sides of the flame is compressed continuously as the pressure
rises. In the unburned gas the density and temperature remain spatially uniform, but
vary in time. The pressure rise translates primarily in increasing the gas density with the
temperature increasing only slightly. In the burned gas the density and temperature are no
longer spatially uniform; the temporally varying temperature and density of the moving
flame front are advected with the flow in the burned gas region. The temperature increases
significantly reaching its maximum value at the centre of the vessel, as observed by Flamm
& Mache (1917).

Velocity profiles at equal time intervals are shown in figure 12 for q = 6, Leeff = 1 and
two values of δ. The sharp discontinuity represents the flame location. Initially the burned
gas is at rest and the propagating flame drives the fresh mixture ahead into motion. As the
flame grows outwards, the velocity across the flame increases because of the higher flame
temperature and the burned gas is swiftly advected away from the flame at an increasing
speed. The fresh mixture that moves against a denser gas slows down, coming to rest at
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Figure 12. Velocity profiles of a spherical flame propagating in a closed vessel at equal time intervals. The
dashed lines correspond to the leading-order solution, absent of stretch effects, and the solid lines to the solution
with O(δ) contributions included; for q = 6 and Leeff = 1. Results are shown for (a) δ = 0.05 and (b) δ =
0.001.

the end of the vessel. Two profiles are shown at each time; the dashed curves correspond
to the leading-order solution, absent of flame stretch effects, and the solid curves to the
complete solution. For δ = 0.05, the expanding stretched flame is seen to propagate slower,
lagging behind the solution predicted in the absence of stretch. When stretch effects are
underplayed, as for δ = 0.001, the solutions with and without the O(δ) corrections appear
closer.

We now consider the effects of flame stretch on the propagation speed and its
dependence on the properties of the combustible mixture. It is instructive to examine
first the simplifications that result when the flame propagates in a sufficiently large vessel
(L  1). In this limit, the equation for the pressure takes the form

dP
dt

∼ 3γ q
L3

(
1 − δ

β(Leeff − 1)
2

Ĵ2K

)
R2, (6.18)

with the velocity field given by

v(r, t) ∼ q
(

1 − δ
β(Leeff − 1)

2
Ĵ2K

)⎧⎪⎪⎨⎪⎪⎩
R2

r2 − R2

L3 r, R < r < L,

−R2

L3 r, 0 < r < R.

(6.19)

When L → ∞, we recover the solution of a centrally ignited freely propagating spherical
flame; the pocket of burned gas encompassed by the flame remains at rest, the unburned
gas forced forward decays according to the inverse of the square of radial distance, and the
flame propagation speed is given by

Ṙ ∼ (1 + q)
(

1 − δMb
1

2(1 + q)
R

)
. (6.20)

The propagation speed highlights the combined effects of stretch and differential diffusion,
as shown in figure 13(a). In mixtures with Leeff > Lecr

eff , for which Mb
1 > 0, the spherical

flame expands slower as compared with the unstretched flame (dashed line) and accelerates
toward the asymptotic value Ṙ = 1 + q, associated with the (burned) laminar flame speed.
In mixtures with Leeff < Lecr

eff the flame expands at a relatively faster rate that is gradually
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Figure 13. Propagation speed of spherical flames for various Leeff ; plots correspond to q = 6 and δ = 0.001;
the dashed line indicates the solution (leading-order) in the absence of stretch effects. (a) Freely propagating
flame. (b) Propagation in a closed vessel.

reduced due to stretching and decelerates towards the asymptotic value Ṙ = 1 + q. This
stretch-dominated behaviour was observed experimentally in various mixtures (Strehlow
1984; Kwon, Tseng & Faeth 1992; Beeckmann et al. 2017) by varying the equivalence
ratio, and confirmed theoretically by Frankel & Sivashinsky (1983), Bechtold & Matalon
(1987) and Addabbo et al. (2002). It persists when the propagation occurs in a closed
vessel as illustrated in figure 13(b) for δ = 0.001, but is limited to the early time before the
flame encounters a significantly denser gas and slows down until reaching the end of the
vessel. The intersection of the curves for various Leeff with the dashed line corresponding
to the leading-order solution occurs when the flame zone contributions vanish, namely
at radii within O(δ) of each other. For δ = 0.05, stretch effects extend to larger radii as
shown in figure 14. For Leeff > Lecr

eff , the flame accelerates, reaches a peak at nearly the
midway point to the vessel wall before slowing down, while for smaller values of Leeff , the
flame undergoes monotonic deceleration throughout the bulk of the propagation. Finally,
we note that the small increase in speed observed when R ≈ 100 is due to the limitation
of the model that does not account for the interaction of the flame zone with the vessel’s
walls.

Since the problem under consideration is inherently unsteady, it is appropriate to
comment on the initial state of the mixture and its effect on the flame propagation. As
noted earlier, the present theory does not describe the ignition event and assumes that
a flame already exists at t = 0. However, when igniting the mixture, a small pocket of
burned gas of radius R0 and temperature Ta is first formed and then propagates outward.
Accounting for this condition when integrating (2.21) leads to

Pe = 1 + γ q − γ q(R0/L)3, (6.21)

which modifies the dependence of the flame size on pressure (6.16) to read

R3 =
(

1 − Pe − P
γ q

P−1/γ
)

L3 − δ

(
3R2

q
Tf J1

M
− 3R2

0
q

TaĴ1P−1/γ

)
. (6.22)

Since the initial kernel of radius R0 is of the order of the flame thickness δ, the correction
term is extremely small and can be neglected.

Constant volume combustion chambers are commonly used in the laboratory to
determine the laminar flame speed of different mixtures. In one approach, measurements
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Figure 14. Propagation speed of spherical flames for various Leeff ; plots correspond to q = 6 and δ = 0.05;
the dashed line indicates the solution (leading-order) in the absence of stretch effects.

of centrally ignited expanding flames are taken up to a limited distance and the laminar
flame speed is determined by extrapolating the data to the zero-stretch limit; namely from
the asymptotic value Ṙ = 1 + q shown in figure 13(a). Data are collected during the early
stages of propagation when pressure rise is minimal so that the burned gas enclosed by the
flame remains essentially at rest and, thus, Ṙ = Sb

f . The laminar flame speed is then given
by Sf = (ρb/ρu)Sb

f with ρb and ρu taken as constants. However, unless the experimental
set-up ensures that the ambient pressure remains constant, the results may be tainted by
small pressure changes, effects due to compression and by the inward flow of burned gas
that becomes substantial when the flame grows bigger as shown in figure 12. The present
theory provides a means for estimating these effects in sufficiently large chambers. The
dependence of the flame radius on the pressure level given by (6.10), and the gas velocity
in the burned gas given by (6.9), may be used to more accurately determine the distance
where measurements can be taken without being significantly affected by fluid motion and
compressibility effects. Figure 13(b) illustrates a scenario where the laminar flame speed
can be reasonably estimated from measurements taken up to R ≈ 30, in contrast to the
conditions presented in figure 14.

Another approach to determine the laminar flame speed involves the use of smaller
spherical vessels with thick walls that can accommodate higher pressures. Transducers
measure the pressure history as the flame propagates outward, and flame location,
propagation speed and flow velocities are then determined from theoretically derived
relationships, which are essentially the leading-order expressions presented here. Our
theory provides corrections to these quantities that account for effects resulting from the
internal flame structure, as given by (6.16) and (6.17). When included in data extrapolation
these contributions may lead to better accuracy.

The same reasoning to the aforementioned comments applies to the determination of
the Markstein length that, as the present theory demonstrates, is affected by the rise in
pressure and flame temperature. Additionally, the experimental pursuit may be hampered
by onset of the hydrodynamic instability that may be enhanced by the attenuated influence
of diffusion on the thinner flames that result under confinement.
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7. The Newtonian limit

A formal asymptotic approach of the flame zone analysis can be carried out when adopting
the Newtonian limit (γ − 1)/γ � 1, in lieu of the delta-function model used above. It
requires adopting the distinguished limit

(γ − 1)/γ = εγ̂ , (7.1)

with ε = β−1
0 � 1. Here we use ε as the perturbation parameter to avoid confusion with

β0 treated earlier in the delta-function model as a finite parameter.
We start by examining the implication of the Newtonian limit on the solution in the

hydrodynamic zones. The entropy in the homogeneous fresh mixture remains constant,
E = 1, while in the burned gas it is given by E = Ta + εγ̂E1 + · · · , with E1 determined
by solving

DE1

Dt
= 0 subject to E1|ψ=0+ = −q ln P. (7.2)

The density and temperature are then given by

ρ ∼
⎧⎨⎩

P − εγ̂P ln P, ψ(x, t) < 0,
P
Ta

− εγ̂

(
P
Ta

ln P + P
T2

a
E1(x, t)

)
, ψ(x, t) > 0,

T ∼
{

1 + εγ̂ ln P, ψ(x, t) < 0,
Ta + εγ̂ (Ta ln P + E1(x, t)), ψ(x, t) > 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7.3)

with the flame temperature given by Tf ∼ Ta + εγ̂ ln P. Gas compression leads to a
pressure rise that minimally affects the temperature but, as shown below, alters the burning
rate in a more meaningful way.

The solution in the flame zone requires, as before, introducing the stretching
transformation (4.8), expanding all variables in powers of δ and seeking solutions that
match those in the hydrodynamic zones as η → ∓∞. Instead of replacing the reaction
rate by a Dirac delta function, the thin reaction zone centred near η = 0 is now resolved
on the η̂ = η/ε scale, with ε � δ. The equations in the flame zone that do not contain
explicitly the reaction rate term, can be directly integrated with respect to η̂ to provide,
through matching, the jump conditions (4.14) across η = 0. The exception is the energy
equation that determines the jump in the temperature gradient. To this end, we retain the
near-equidiffusion and near-stoichiometric assumptions and expand the temperature and
mass fractions about their values at η = 0, such that

T = Ta + ε(γ̂ ln P + θ(η̂, ξ1, ξ2, t))+ · · · ,
T + qYD/YD0 = Ta + ε(γ̂ ln P + ĥD(η̂, ξ1, ξ2, t))+ · · · ,

T + qYE/νYD0 = Ta + ε(γ̂ ln P + qϕ + ĥE(η̂, ξ1, ξ2, t))+ · · · .

⎫⎪⎪⎬⎪⎪⎭ (7.4)

where use has been made of YE0 = νYD0(1 + εϕ). Being conserved scalars, the enthalpies
satisfy ∂2ĥi/∂η̂

2 = 0, and the bounded solutions remain independent of η̂ such that

ĥD = hD(0, ξ1, ξ2, t) ≡ h∗
D, ĥE = hE(0, ξ1, ξ2, t) ≡ h∗

E. (7.5a,b)
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As a consequence, the energy equation simplifies to

−∂
2θ

∂η̂2 = Λ(h∗
D − θ)(h∗

E + qϕ − θ) exp(θ/T2
a ),

Λ = q2P2+γ̂ /T2
a

4T6
a (1 + qϕ/2T2

a )
= O(1),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.6)

consisting of a balance between the diffusion and chemical reaction rates. The associated
matching conditions are

∂θ

∂η̂
∼ ∂T
∂η

∣∣∣∣
η=0−

as η̂ → −∞,
∂θ

∂η̂
∼ 0, θ ∼ h∗

D as η̂ → +∞, (7.7)

where the latter results from the fact that T(η, ξ1, ξ2, t) for η > 0 is, to leading order,
independent of η, and h∗

D is effectively the perturbation of the flame temperature in the
post-reaction region. A first integral of (7.6) can be obtained after multiplying both sides
of the equation by ∂θ/∂η̂. Using the matching conditions (7.7) one finds that(

∂T
∂η

)2
∣∣∣∣∣
η=0−

= 2Λ
∫ h∗

D

−∞
(h∗

D − θ)(h∗
E + qϕ − θ) exp(θ/T2

a ) dθ

= 2ΛT4
a (h

∗
E − h∗

D + qϕ + 2T2
a ) exp(h∗

D/T
2
a ), (7.8)

which can be expressed as a jump relation for the temperature gradient across the action
zone (η = 0), namely[

∂T
∂η

]
= −qP1+γ̂ /2T2

a

√
1 + (h∗

E − h∗
D + qϕ)/2T2

a

1 + qϕ/2T2
a

exp(h∗
D/2T2

a ). (7.9)

The jump in the temperature gradient (4.15) adopted in the delta-function model is a
straightforward generalization of this relation.

The solution in the flame zone can be easily deduced from the results derived in § 4 by
taking the limit (γ − 1)/γ � 1 and will not be repeated here. The resulting leading-order
expressions for pressure and burning rate are

dP
dt

∼ qAf

V
Pα, M ∼ Pα, (7.10a,b)

with α = 1 + γ̂ /2T2
a . A closed form solution can then be obtained for the planar flame,

for which Af /V = 1/L. One finds that

P =
(

L
L − q(α − 1)t

)1/(α−1)

, M =
(

L
L − q(α − 1)t

)α/(α−1)

, (7.11a,b)

consistent with the results shown in figure 7. The flame location and propagation speed
are given by

xf = 1 + q
q

P − 1
P

L, ẋf = (1 + q)Pα−2. (7.12a,b)

Similar to the observations in figure 9(b), when propagating forward, the flame accelerates
for α > 2 (small values of q) and decelerates for α < 2 (large values of q); steady
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propagation results when α = 2. For the spherical flame, Af /V = 3R2/L3 and when
integrated numerically, (7.10a,b) yield results that are consistent with those in the previous
section. Here too, steady propagation results when α = 2, with Ṙ = 1 + q and P =
(1 − qT2

a t3/L3)−1.

8. Conclusions

A general theory of premixed flames propagating in closed vessels is developed using
a multi-scale approach that exploits the disparity in length scales associated with the
fluid dynamics, diffusion and chemical reactions. The formulation reduces the problem
to the analysis of a free boundary fluid dynamical problem, where the free boundary is
the flame surface that separates burned gases from the unburned combustible mixture. By
resolving the internal structure of the flame zone, explicit expressions for the flame speed
and temperature, and their dependence on the flow and mixture conditions are derived.
The flame speed is shown to be modified by the voluminal stretch rate, which quantifies
the deformation of a volume element of the flame zone that results from the motion of
the flame and the underlying flow field, and by the rate of pressure rise. Both effects
are modulated by Markstein numbers of the order of the flame thickness that depend on
the heat release, mixture composition and diffusion properties of the reactants, while
capturing the effects of temperature-dependent transport and stoichiometry. The flame
temperature rises above the adiabatic flame temperature as a result of the pressure buildup,
with a weak dependence on the Lewis number of the deficient reactant. Integration
across the entire volume of the vessel yields an equation for the pressure buildup and its
dependence on the burning rate and mixture properties. The determination of the flow field
and the evolution of the flame surface are strongly coupled. The fluid velocity is affected
by the progressive increase in density and temperature resulting from the combined effects
of heat release, adiabatic compression and pressure buildup, while the instantaneous shape
and location of the flame surface relies on the local flow conditions through the stretch rate,
and on the pressure and mixture compositions through the Markstein numbers.

The present hydrodynamic theory differs significantly from that of freely propagating
flames. Unlike the latter where the flame propagates under nearly isobaric conditions and
its structure remains quasi-steady, combustion in a closed vessel is accompanied by an
increase in pressure that leads to a decrease in flame thickness and a diminishing effect
of its influence on the propagation. The temperature along the flame surface exceeds the
adiabatic flame temperature, and keeps increasing in the burned gas region due to adiabatic
compression. The flame speed depends not only on the conventional stretch rate, which
measures the distortion of the flame surface, but also on the rate of decrease of the flame
thickness, as well as on the rate of pressure buildup. The flow field ahead and behind the
confined flame is strongly affected by gas compression. Although thermo-diffusive effects
are captured by Markstein numbers, similar to the freely propagating flame theory, these
are now pressure dependent and in some circumstances may change sign during the course
of propagation.

To illustrate the richness of the current theory, we employ it to study the propagation
of a planar flame in a rectangular channel and a centrally ignited expanding flame in a
spherical vessel, demonstrating the role of compression and heat release on the burning
rate and flame speed, and the effect of confinement on the flow field induced by the flame
motion. During the early stages of propagation, the pressure rise is moderate and the
flame propagates in a quasi-steady manner. When the flame reaches a distance of roughly
one third of the vessel’s size, the sharp increase in pressure results in an appreciable
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increase in burning rate. Influences resulting from the internal flame structure are primarily
manifested through flame stretch and have therefore a minimal effect on the unstretched
planar flame. Spherical flames on the other hand are found to accelerate or decelerate for
different Lewis numbers during the initial stage of propagation when stretch effects are
substantial, before they inevitably decelerate due to gas compression. The fundamental
insights will serve to guide the experimental effort, since measurements of flame speed
and Markstein length are often carried out in constant volume chambers.

The hydrodynamic model is amenable to further the study of flames of arbitrary shape
within closed vessels of general configuration. The detailed analysis presented in this study
identifies the causes and effects of various mechanisms involved in the combustion process
and permits the construction of instructive models to numerically simulate the evolution
of multi-dimensional and corrugated flames in closed vessels. The main limitation is the
assumption that variations inside the flame zone due to enhanced chemistry or turbulence,
which could potentially alter its internal structure, are not physically resolved. Though the
model represents general chemical reactions via a single overall step, it is valid where
chemical kinetic parameters such as the activation energy remain fairly constant with
pressure rise. It is also limited to cases where the overall kinetics are not substantially
affected by drastic increases in pressure and temperature (Westbrook et al. 2009), mixing
with burned products (Dagan et al. 2019) or a high degree of turbulence (Aspden, Day
& Bell 2015). Future studies will leverage the model to analyse the stability properties of
confined flames and their propagation in turbulent media of moderate intensity, neither of
which are currently well understood.
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