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FIRST-ORDER HOMOTOPICAL LOGIC

JOSEPH HELFER

Abstract. We introduce a homotopy-theoretic interpretation of intuitionistic first-order logic based on
ideas from Homotopy Type Theory. We provide a categorical formulation of this interpretation using the
framework of Grothendieck fibrations. We then use this formulation to prove the central property of this
interpretation, namely homotopy invariance. To do this, we use the result from [8] that any Grothendieck
fibration of the kind being considered can automatically be upgraded to a two-dimensional fibration, after
which the invariance property is reduced to an abstract theorem concerning pseudonatural transformations
of morphisms into two-dimensional fibrations.

§1. Overview. The goal of this paper is to introduce a “homotopy-invariant”
interpretation of first-order logic with equality, to give a description of this
interpretation within the framework of categorical logic, and to give an abstract
formulation and proof of the homotopy-invariance property within this framework.

The interpretation can be concisely described by the following commutative
diagram.

MLTT Simplicial Sets

IFOL

Voevodsky–Awodey–Warren–Kapulkin–Lumsdaine

Martin-Löf 1972

First-order homotopical logic

(1.1)

On the bottom left we have intuitionistic first-order logic, on the top left we have
Martin-Löf type theory, and the vertical arrow is the interpretation of IFOL into
MLTT which was described in Martin-Löf’s original paper [23]. The long horizontal
arrow is the homotopy-theoretic interpretation of type theory [1, 13, 32] which
initiated the subject of Homotopy Type Theory (HoTT). Hence, composing these
two interpretations, one obtains a homotopy-theoretic interpretation of first-order
logic, which is the purpose of this paper to elaborate.

In fact, one does not need to go through these two interpretations, as the
homotopical semantics for first-order logic can be described directly and very
simply—it is essentially as simple as the ordinary (Tarskian) semantics for first-
order logic. Hence, this interpretation gives us a simpler—but already interesting—
context in which to consider the ideas involved in HoTT. A second motivation to
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study this interpretation is the inherent interest in first-order logic, and in particular
in semantics for intuitionistic first-order logic.

Our main result is the following fundamental “homotopy invariance” theorem
saying, essentially, that homotopy-equivalent structures have the same (first-order)
homotopical properties. (See Sections 2.3 and 2.4 for the relevant notation and
terminology.)

Theorem 1.1. LetM,N : � → Kan be two interpretations of an algebraic signature
� in Kan. Let (ϕ, �x) be a formula-in-context over �, and let M̂ �x(ϕ) ∈ Kan/M ( �x) and
N̂ �x(ϕ) ∈ Kan/N ( �x) be homotopical interpretations of (ϕ, �x).

Then for any homotopy equivalence α : M → N , there exists a homotopy
equivalence

M̂ �x(ϕ) → N̂ �x(ϕ)

lying over αtp �x : M ( �x) → N ( �x). In particular, if ϕ is a closed formula (i.e., �x = ∅),
thenM � ϕ if and only if N � ϕ.

To prove this theorem, we first provide an “algebraic” or “functorial” version of the
homotopical semantics, in the usual style of categorical logic. The above invariance
theorem (which we call the “special” or “syntactic” invariance theorem) is then
deduced from the following purely categorical “abstract” invariance theorem. (See
Sections 3.1 and 3.2 for the relevant terminology.)

Theorem 1.2. Let Cbe a free h=-fibration, let C′ be a 1-discrete 2-fibration which
is also an h=-fibration, and let (Φ, ϕ), (Ψ, �) : C→ C′ be morphisms of h=-fibrations.
Then for any pseudonatural equivalence α : ϕ → �, there exists a pseudonatural
equivalence Φ → Ψ lying over α.

There is also a “second part” to the abstract invariance theorem, Theorem 3.21,
which we discuss in the introduction to Section 3.

We now give some general background on homotopical and categorical semantics,
in order to elucidate the significance of the above theorems.

1.1. Homotopical structures. We do not have the space here to explain the
somewhat complicated and many-faceted history behind HoTT, and must assume
the reader already has some familiarity with it. We will say only this much about
it: the central concept of interest is that of homotopy type which roughly means
“topological space up to homotopy equivalence” (though, importantly, there are
other equivalent “models” for the notion of homotopy type), and the main idea is
that it is homotopy types, and not sets, that are the fundamental building blocks
in mathematics, with sets arising as special cases (namely the “discrete” homotopy
types). Moreover, the notion of “two elements of a set being equal” is to be replaced
by “two points in a space being joined by a path” (note, for instance, that in the case
of discrete spaces—i.e., sets—these two notions coincide).

The fundamental role of sets in mathematics is as carriers for structures. We will
be in particular concentrating on the algebraic structures, such as groups and rings.
Hence, if homotopy types are to take the role of sets, there should be a notion of
structures on homotopy types.

In fact, putting it this way distorts the history, as the appearance of such
“homotopical structures” was one of the first developments in the history leading
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FIRST-ORDER HOMOTOPICAL LOGIC 3

up to HoTT, and was, for example, studied in depth in the text [4] titled “Homotopy
Invariant Algebraic Structures on Topological Spaces.” Here, the emphasis is on
homotopy-invariance, meaning roughly that if some topological space X carries such
a structure, so should any homotopy equivalent space Y.

For example, if one considers the structure of a (continuous) associative binary
operation on X (i.e., the structure of a semigroup), we find that this indeed induces
a binary operation on Y, but it is no longer associative. Rather, it is homotopy-
associative, in the sense that the two resulting maps Y × Y × Y → Y are not equal,
but homotopic. In particular, for eachx, y, z ∈ Y , we find that the elements (x · y) · z
andx · (y · z) ∈ Y are not equal but rather joined by a path; this is the first instance of
“joined by a path” replacing “equal.” Such a homotopy-associative binary operation
is the first instance of a homotopy-invariant algebraic structure.

Before proceeding, we would like to point out as soon as possible that the main
homotopy-invariant algebraic structures of interest in topology are the so-called
“higher structures”—for example “A∞” and “E∞” structures. These result from,
for example, not just demanding that the two mapsX × X × X → X are homotopic,
but specifying such a homotopy as part of the structure, and then demanding that
certain induced homotopies between maps X × X × X × X → X are homotopic
(and then specifying such a homotopy as part of the structure, and so on). HoTT
is able (to some extent) to deal with such higher structures, whereas the First-Order
Homotopical Logic considered here cannot, which is a serious limitation.

Returning to our discussion of homotopical structures, we next note that, in
the subject of model theory, the way that structures satisfying certain properties are
studied is via a suitable language. For example, given a set X with a binary operation
“·,” demanding that the operation be associative is tantamount to requiring that the
structure (X, ·) satisfy the sentence

∀x, y, z [(x · y) · z = x · (y · z)],

formulated in first-order logic over the algebraic signature (i.e., specification of a
set of sorts and of operations with given arities—see Definition 2.17) consisting
of a single sort with a single binary operation “·.” Of course, once one has such a
definition in place, one can consider sentences of arbitrary complexity, and structures
satisfying them.

Our goal here is to establish a similar framework for homotopical structures—
i.e., define what it means for a given homotopical structure to satisfy an arbitrary
first-order sentence. Moreover, it should be homotopy invariant in the sense that
homotopy equivalent structures satisfy the same sentences. For example, a space
with a binary operation should satisfy the above sentence if and only if the operation
is homotopy-associative.

As another example (both of these are worked out in the examples section
(Section 4.1)), the sentence

∃x∀y(x = y),

over the empty signature, which would normally mean “there is a single element,”
should be a satisfied by a space X if and only if X is contractible.

Before proceeding to describe how the homotopical semantics are defined, let us
make two general comments.
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The first is that, for reasons we will discuss below, it turns out to be difficult and
unnatural to define the homotopical semantics using topological spaces. Instead, we
use simplicial sets (more precisely, Kan complexes)—as indicated in (1.1)—which
are another of the “models of homotopy types” mentioned above (it is possible in
principle to use other categories as well—see Section 2.2). The case of topological
spaces is then treated via that of Kan complexes (see Section 2.5). This is somewhat
disappointing given the historical importance and intuitive appeal of topological
spaces; however, it can be argued that Kan complexes are a more natural setting
for homotopy theory in the context of HoTT, specifically in light of the so-called
“Homotopy Hypothesis” of Grothendieck (formulated in [6]—the name seems to
be due to Baez [2]).

The second is the role of intuitionistic logic, about which we have not said anything
yet. An important (really, the central) feature of any interpretation of first-order logic
is soundness: if a structure satisfies a sentence ϕ, it should also satisfy any sentence
� which is a logical consequence of ϕ. Accordingly, our homotopical semantics
will satisfy this property, but only—for reasons we discuss below—for intuitionistic
logic, and not all of classical logic.

1.2. Propositions-as-spaces. The key to the homotopical interpretation of first-
order logic (as well as the interpretation of IFOL into MLTT—i.e., the vertical
arrow in (1.1)) is the idea, inspired by the “BHK (Brouwer–Heying–Kolomogorov)”
interpretation of intuitionistic first-order logic (see [31, Section 3.1]), that a formula
should not be interpreted just as a truth-value, but rather a set (or, here, space), to
be thought of as the “set of its proofs,” so that the proposition is interpreted as true
just if this set is inhabited. The various logical connectives are then each interpreted
as a certain operation on sets/spaces; the homotopy-invariance of the interpretation
could then be ensured by having each of these operations on spaces be homotopy
invariant.

The formalization of this—with one complication, which we return to below—
can be obtained as a special case of the general “fibrational” (or “hyperdoctrinal”)
interpretation of first-order logic (which we assume familiarity with—see [10, 19]).

Fix an algebraic signature �, a category B with finite products, and an
interpretation M : � → B of � in B (in the usual sense of categorical logic—see

Definition 2.17). Then, given any h=-fibration1 (see Definition 2.2) C
C
↓
B
, we can

consider the interpretation of first-order formulas over � in C (see Definition 2.19).
Thus, different choices ofh=-fibrations give us different semantics for intuitionistic

first-order logic, and it is now just a question of finding one which will give us the
homotopical semantics.

For instance, taking an appropriate fibration P(Set) in which the fiber over
a set X is the power set P(X ), we obtain the classical, set-theoretic semantics.

1This (as well as “h-fibration” for the version without equality) is the name used in [19]; the “h”
stands for “Heyting” and is unrelated to the notion of “Hurewicz fibration” as in [24, p. 340]. The
corresponding hyperdoctrinal notion is simply called a “hyperdoctrine” in [28], and the version with
preorder fibers is called a “first-order fibration” in [10]. The original notion of hyperdoctrine (which is
adapted to higher-order rather than first-order logic) is due to Lawvere [15, 17].
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Next, if we take the codomain fibration F(Set)
Set→

↓
Set

whose fiber over X is the

slice category Set/X (i.e., the category of X -indexed families of sets), then we
obtain the “propositions-as-sets” interpretation alluded to above. We note that
these examples are in fact not just h-fibrations but Boolean fibrations, i.e., the
corresponding interpretations are sound for classical, and not just intuitionistic,
logic.2

The last example immediately generalizes: for any category B which is locally
bicartesian closed (i.e., locally cartesian closed with finite coproducts), the
fibration F(B) will be an h=-fibration, resulting in a “propositions-as-objects-in-B”
interpretation (cf. [26]). For general B, this will be a genuinely intuitionistic
interpretation, i.e., F(B) will not be a Boolean fibration.

Hence, it might seem that our “propositions-as-spaces” semantics should simply
result by taking B = sSet, the category of simplicial sets, which is locally bicartesian
closed (as opposed to the category of topological spaces—this is one reason we
cannot use the latter for the homotopical semantics). This “almost” works, except
that equality is interpreted the wrong way.

To explain this, let us recall, in concrete terms, how the “propositions-as-sets,”
and more generally, the “propositions-as-objects-of-B” interpretation is defined. We
have the following table, with logical connectives in the first row, and operations on
(families of) sets (or more generally, objects in a locally bicartesian closed category)
in the second (note that negation is omitted as it is equivalent to (–)⇒⊥):


 ⊥ ∨ ∧ ⇒ ∀x ∈ Ai ∃x ∈ Ai =

1 ∅ + × (–)(–) ∏
x∈Ai

∑
x∈Ai Δ

(1.2)

The first two items in the bottom row (one-element set and empty set) are nullary
operations, and the following three (disjoint union, product, and exponential (set
of functions)) are binary operations. All of these act on families “point-wise,” e.g.,
{Xi}i∈I × {Yi}i∈I := {Xi × Yi}i∈I .

The next two, the indexed product and disjoint union, take a family of sets indexed
by A1 × ··· × An and return a family of sets indexed by A1 × ··· × Âi × ··· × An
(where Âi indicates that the i-th entry is omitted).

We will return to the last entry shortly.
Now, given an interpretation M : � → Set, the propositions-as-sets semantics

should assign a set M (ϕ) to each sentence (i.e., closed formula) ϕ, and more
generally, to a formula ϕ with free variables �x = 〈x1, ... , xn〉 with sorts �A =
〈A1, ... , An〉, it should assign a family M (ϕ) of sets indexed by the product
M ( �A) =

def
M (A1) × ··· ×M (An) of the interpretations M (Ai) under M of the

sorts Ai .

2As remarked in [31, p. 34, Exercise 1.3.4], this shows that this formalization of the “propositions-as-
sets” interpretation is not really faithful to the BHK-interpretation, which is meant to be an interpretation
only of intuitionistic logic. Note, however, that Läuchli [1] uses a variant of this interpretation to give a
complete semantics for intuitionistic first-order logic. A fibrational interpretation of Läuchli’s result is
worked out in [19].
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This is done, of course, by recursion on the complexity of ϕ, and the various
recursive clauses are handled according to the table (1.2). It is then straightforward
to verify the desired property that the setM (ϕ) is inhabited if and only ifM � ϕ,
i.e., the structure M satisfies ϕ in the classical sense.

This direct description of the propositions-as-sets semantics is precisely what
comes out in the case C= F(Set) from the general notion of “interpretation in the
h=-fibration C.” In the case C= F(B) for a general locally bicartesian category B,
the description is the same: we observe each of the set-theoretic operations in (1.2)
is governed by a certain universal property in Set, and we take the corresponding
operation in the category B (which exist by locally bicartesian closedness). In this
case, “family of sets indexed by M ( �A)” becomes “object in the slice category
B/M ( �A).”

In the general case, the reason that this interpretation is sound for intuitionistic
logic is that under the Lambek–Lawvere axiomatization of intuitionistic logic (see
Appendix A.2), the logical axioms governing each connective correspond precisely
to the universal property defining the operations (1.2) in a locally bicartesian closed
category—and more generally in an h=-fibration.

We have yet to discuss the interpretation, both for Set and for general B, of atomic
formulas—where in this paper, we consider only algebraic signatures (meaning those
containing no primitive relations), so that the only atomic formulas are equalities.
This brings us to the last column in the table (1.2).

In the case of propositions-as-sets, we interpret equality in the obvious way: given
two terms s and t of sort A which have been interpreted as some elements M (s)
and M (t) of the set M (A), we define M (s = t) := {x ∈ 1 |M (s) =M (t)}, i.e.,
(assuming classical logic):

M (s = t) =

{
1, if s = t,
∅, otherwise.

The categorical description of this is as follows. If s and t (still assumed to be of
sort A) have free variables �x of sorts �A, thenM (s) andM (t) are morphismsM ( �A) →
M (A) ×M (A), andM (s = t) is the object in B/M ( �A) given by the pullback

· M (A)

M ( �A) M (A) ×M (A)

M (s=t)
�

Δ

〈M (s),M (t)〉

of the diagonal morphism Δ: M (A) →M (A) ×M (A) (hence the “Δ” in the table
(1.2)).

In particular, this is how equality is interpreted in the h=-fibration F(sSet), and
amounts to strict equality of elements of a simplicial set.

However, for the homotopical semantics, this is not how we want to interpret equality!
Indeed, the whole point of the homotopical semantics is that we want to interpret
equality as the space of paths. This is why the homotopical semantics cannot literally
be given by the h=-fibration F(sSet).
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In order to achieve the desired notion of equality, we need to replace the diagonal
morphism with the morphismM (A)I →M (A) ×M (A), where I is the “simplicial
interval,” making M (A)I the space of paths in M (A), and where the displayed
morphism takes each path to its two endpoints (it is given by the two morphisms
M (A)I →M (A)pt ∼=M (A) induced by the endpoint inclusions pt → I ).

Thus, the definition of the homotopical semantics (stated in Section 2.3) is: given
an interpretationM : � → Kan,3 we interpret formulas as in the fibration F(sSet)—
i.e., according to the rules in (1.2)—except that we interpret equality using the
path-space instead of the diagonal.

A priori, this is no longer an instance of the general notion of “interpretation in an
h=-fibration”; but in fact it is! Namely, for any model category C, there is a certain
fibration HoFf (Cf ) obtained from F(C)—which we show in Section 2.2 is an
h=-fibration for suitable model categories C such as sSet—such that the just-
described homotopical semantics corresponds precisely to the interpretation in
HoFf (sSetf ), at least up to homotopy equivalence (see Section 2.3). This fibration
was studied in [8] (and had been previously introduced independently in [5]),
where a certain 2-categorical structure on it (and in fact, on any “∧=-fibration”) is
introduced, whose significance we will return to below in Section 1.3.

There are certain advantages to having our semantics be given by an h=-
fibration—for example, as mentioned above, it automatically gives us the soundness
of the interpretation with respect to intuitionistic logic.

But also, as we explain next, the fibrational formulation is what we use to prove
the homotopy invariance property.

1.3. Functorial semantics and invariance. To prove the homotopy-invariance
property of the homotopical semantics, we must bring in an important aspect of
the fibrational semantics that we have yet to discuss, namely that the syntax of first-
order logic over the signature � can itself be organized into an h=-fibration Pf�
in such a way that the resulting interpretation in a general h=-fibration C is then
mediated by a morphism of h=-fibrations Pf� → C.

This is the notion of “functorial semantics” introduced by Lawvere [16] at the
dawn of categorical logic. Of course, the origin of this idea is in the “algebraic
semantics” for propositional logic using Boolean (or, in the intuitionistic case,
Heyting) algebras.

The fibration Pf�
Pf�
↓

Tm�
(which is constructed in Appendix A) is given roughly as

follows. The base category Tm� is the finite product category associated by Lawvere
with (the empty theory over) �: the objects are “contexts”—i.e., finite sequences of
sorts of �—and the morphisms are given by sequences of terms of �. The objects
of Pf� are first-order formulas over �, and in particular, the fiber Pf�

�A over a
context �A has as objects the formulas with free variables in the context �A, and

3From what we have said so far, it seems we can use any interpretation in sSet, and not only in
Kan. However, this will give the “wrong” semantics in general: it will not have the homotopy-invariance
property.
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the morphisms ϕ → � are certain equivalence classes of intuitionistic deductions
(proofs) of ϕ⇒�.4

The central feature of the structure Pf� (and more generally, of the algebraic
structure constructed out of the syntax in the various flavours of algebraic/functorial
semantics) is that it is free in an appropriate sense. The freeness precisely captures
the desired property that each interpretation � → C in an h=-fibration induces a
unique (up to isomorphism) morphism Pf� → Cof h=-fibrations. (In fact, for our
purposes, we will only need the abstract existence of such a free h=-fibration, and
not the particular description in terms of syntax given above.)

However, as is typical of categorical structures, the freeness Pf� has an additional

element: given an h=-fibration C
C
↓
B

and two interpretations M1,M2 : � → B, any

isomorphism of interpretationsM1
∼−→M2 gives rise to an isomorphism between the

induced morphisms Pf� → C. This immediately implies the isomorphism invariance
of the interpretation in C; for instance, when C= F(Set), this says that for given
an isomorphism M1

∼−→M2 of set-based structures M1,M2 : � → Set (giving, in
particular, a bijection α �A : M1( �A) →M2( �A) for each sequence of sorts �A), there
is an induced bijectionM1(ϕ) →M2(ϕ) lying over α �A for each formula ϕ with free
variables �x with sorts �A. In particular,M1 andM2 satisfy the same sentences.

This is the recipe for our proof of the homotopy invariance; however, things are
somewhat more subtle in the latter case. The point is that we are now interested
in a homotopy equivalence of two structuresM1,M2 : � → Kan, which is no longer
a purely category-theoretic notion, and therefore cannot be expected to induce an
isomorphism (or rather, homotopy equivalence) of the corresponding morphisms
Pf� → HoFf (Kan) as above.

On the other hand, a homotopy equivalence is naturally formulated as a 2-
categorical notion with respect to a natural 2-categorical structure on Kan—namely,
it is given by a “pseudonatural equivalence” of functors Tm� → Kan.

Now, in [8], we showed that for any h=-fibration (or more generally ∧=-fibration)

C
C
↓
B
, the base category B automatically inherits a 2-categorical structure—and in

fact, the whole fibration C becomes a “1-discrete 2-fibration”—in such a way that
this recovers the usual 2-categorical structure on Kan (or more generally the category
of cofibrant–fibrant objects in any model category).

With this preparation, we are able to formulate and prove the homotopy-
invariance property as a purely abstract, categorical theorem (Theorem 1.2, stated
in the introduction) concerning morphisms of h=-fibrations from a free h=-fibration
into a 1-discrete 2-fibration.

Finally, we note that one needn’t necessarily deduce the homotopy-invariance
property of the homotopical semantics from the abstract invariance theorem; there is
presumably a simpler, direct proof by induction. However, the abstract invariance

4There is a simpler version of this fibration in which the fibers are replaced by their posetal reflections,
so that they are instead Heyting algebras, with the ordering given by implication. This version suffices
for interpretations in h=-fibrations C which are themselves “posetal” in this sense, but this is not the
case for the fibration HoFf (Cf ) of interest.
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theorem is interesting in itself, and helps to situate the syntactic invariance theorem
in a broader context.

§2. Homotopical semantics. In this section, we give the definition of the
homotopical semantics that was sketched in the introduction. As stated there,
this is essentially (i.e., up to homotopy equivalence) obtained as a special case
of interpreting logic in an h=-fibration, for a particular h=-fibration HoFf (Kan).

We first define the latter fibration in Section 2.2. Then, in Section 2.3, we
introduce the general notion of interpreting first-order logic in an h=-fibration,
define the homotopical semantics, and describe its relationship to the interpretation
in HoFf (Kan). In Section 2.4, we provide the remaining notions needed to state
the special invariance theorem, in particular that of homotopy equivalence of
interpretations. Finally, in Section 2.5, we discuss how topological spaces (as
opposed to simplicial sets/Kan complexes) can be handled.

2.1. Preliminaries on h=-fibrations. In this section, we recall the definition of and
some basic facts concerning h=-fibrations. In [8], we discussed a part of the structure
of h=-fibration, namely the notions of ∧-fibrations and ∧=-fibrations. After briefly
recalling those and some related notions from [8], we then go on to give the “rest”
of the definition of h=-fibration.

Definition 2.1.1. We briefly recall some definitions [8] to fix our terminology
and notation:

• A prefibration is simply a functor C
C
↓
B

; we call C the total category and B the

base category. We denote the fiber of C
C
↓
B

overB ∈ B by CB . (See [8, Section 1]

for the basic notions concerning Grothendieck fibrations.)

• A ∧-fibration is a Grothendieck fibration C
C
↓
B

in which each fiber CB has finite

products, and these are preserved by all pullback functors f∗ : CB → CA for
f : A→ B in B.

• A ∧=-fibration is a ∧-fibration in which B has finite products, and which has

equality objects EqB ∈ CB×B for each diagonal morphism B
ΔB−−→ B × B in

B, and these are required to be stable and satisfy Frobenius reciprocity (see
[8, Sections 1.6 and 1.7]).

• For a category C, the prefibration F(C)
C→

↓
C

is simply the codomain functor; it

is a ∧= fibration if C has finite limits.

• For a model category C, the fibration HoF(C)
Ho(C→)

↓
C

(see [8, Section 11]) has

as total category the homotopy category Ho(C→) of a certain model structure
on C→, and is induced by the codomain functor (which induces a functor out
of Ho(C→) since it takes weak equivalences in C→ to isomorphisms in C). The
fiber HoF(C)A over A ∈ C is equivalent to the homotopy category Ho(C/A)
with respect to the usual slice model structure on C/A.
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• Given a model category C and ∗ ∈ {c, f, cf}, we denote by C∗ the full
subcategory on cofibrant, fibrant, and cofibrant–fibrant objects, respectively.

The fibrations F∗(C)
(C→)∗
↓
C

and HoF∗(C)
Ho(C→)∗

↓
C

are obtained by restricting

the codomain functor to the subcategories (C→)∗ and Ho(C→)∗, respectively
(see [8, Sections 11.6–11.8]). They have fibers given by F∗(C)A � (C/A)∗ and
HoF∗(C)A � Ho(C/A)∗.

• For a full subcategory D ⊂ C, the fibration HoF∗(D)A is defined to be the
restriction of F(C)A to D (see [8, Section 13.6]).

• A 1-discrete 2-fibration or 1D2F C
C
↓
B

is a 2-functor of 2-categories whose

underlying functor is a fibration and for which, given any 2-cell α : f → g in
B and any p lying over f, there is a unique 2-cell in C with domain p lying over
α (see [8, Section 6]).

Definition 2.1. A fibration C has fiberwise finite coproducts if every fiber of C
has finite coproducts. We have the notion of a coproduct diagram in a fiber of C
being stable (under pullbacks), analogous the corresponding notion for products
(see [8, Section 1.5]).

We follow the conventions concerning coproducts from [8, Section 10.2], except
that we use the symbols ∨ and ⊥ instead of + and 0 when the category under
consideration is the fiber of some fibration. Also, we denote by in1 and in2 the
coprojections into a coproduct.

Next, given objectsB,C in a category C, an exponential diagram based on B and C
consists of an object CB (the corresponding exponential object), a product diagram
CB

�1←− CB × B �2−→ B , and a morphism (the evaluation morphism) ε : CB × B → C
satisfying the usual universal property (see, e.g., [12, p. 45]).

A category is cartesian closed if it has finite products, and there is an exponential
diagram based on each pair of objects. It is bicartesian closed if it is cartesian closed
and has finite coproducts. A functor between cartesian closed categories is cartesian
closed if it preserves finite products and takes exponential diagrams to exponential
diagrams, and a bicartesian closed functor is defined similarly.

We will generally use the above notation for exponential objects, except when the
category in question is the fiber of some fibration, in which case we will write B⇒C
instead of CB .

A ∧-fibration C has fiberwise exponentials if each fiber of C is cartesian closed.
We have the notion of stability (under pullbacks) of exponential diagrams in fibers,
analogous to that of product and coproduct diagrams.

Definition 2.1.2. Let C
C
↓
B

be a fibration. We recall the notion of indexed products

and sums in C.
Given a morphismf : A→ B in B andP ∈ CA, a

∏
f-diagram based on P consists

of an object
∏
f P ∈ CB (the corresponding indexed product object), a cartesian

morphism ↑ : f∗ ∏
f P → P over f, and an evaluation morphism ε : f∗ ∏

f P → P
over 1A, satisfying the appropriate universal property (see [19, p. 341]).
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We refer to loc. cit. for the notion of an indexed product
∏
f P (or more precisely,

of the corresponding
∏
f-diagram) being stable with respect to a pullback square

C D

A B

g

h

�
k

f

(this is also known as the Beck–Chevalley condition, and amounts to a certain
morphism

∏
g(h

∗P) → k∗
∏
f P being an isomorphism).

We say that
∏
f P is stable along a morphism k : D → B if it is stable along each

pullback square based on k as above.
By an indexed sum object

∑
f P, we simply mean the codomain of a cocartesian

morphism over f with domain P. As in [8], when f is a diagonal morphism and P a
terminal object, we will usually write EqA in place of

∑
f P.

The stability or Beck–Chevalley condition for indexed sums is the same as the one
for cocartesian morphisms, which was explained in [8, Section 1.6] (cf. [19, p. 342]).

Definition 2.2. A fibration C
C
↓
B

is an h-fibration if it satisfies the following four

conditions.
(i) Chas stable fiberwise finite products and coproducts and exponentials.

(ii) B has finite products.
(iii) For any product projection � : A× B → B in B and any P ∈ CA×B , there

exist indexed sums and products
∑
� P and

∏
� P, and these (i.e., the

corresponding cocartesian morphisms and
∏
�-diagrams) are stable along

all morphisms k : D → B .
C is an h=-fibration if, in addition,
(iv) For each B ∈ B, there exists an equality object EqB ∈ CB×B for B (i.e., a

cocartesian lift of a diagonal ΔB : B → B × B with domain a terminal object

B ∈ CB).

Definition 2.3. Given prefibrations C
C
↓
B

and C′
C′

↓
B′

, a morphism of prefibrations

C→ C′ is a pair (Φ, ϕ), where ϕ : B → B′ and Φ: C → C′ are functors such that
the square

C C′

B B′

Φ

C C′

ϕ

commutes (strictly). We say that (Φ, ϕ) is a morphism of prefibrations over ϕ. If
B = B′ and ϕ = 1B, we may just write Φ instead of (Φ, 1B), and we say in this case
that Φ is over B.5 If Cand C′ are fibrations, then (Φ, ϕ) is a morphism of fibrations
if Φ takes cartesian morphisms to cartesian morphisms.

Note that for each A ∈ B, (Φ, ϕ) induces a functor Φ: CA → (C′)ϕA.

5In [8, Definition 11.5], what we now call a “morphism of prefibrations over B” was just called a
“morphism of prefibrations.” We now adopt the new terminology.
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If Cand C′ are ∗-fibrations (where ∗ is one of ∧, ∧=, h, and h=—see [8, Section 1]
for the first two notions), we say that (Φ, ϕ) is a morphism of ∗-fibrations if it
preserves the relevant structure: (i) in all cases, the induced functors on fibers
should be f.p.; (ii) if ∗ is h or h=, the induced functors on fibers should moreover be
bicartesian closed, and Φ: C → C′ should preserve

∏
�-diagrams and cocartesian

morphisms over product projections �; (iii) if ∗ is ∧=, h, or h=, ϕ : B → B′ should
preserve finite products; and (iv) if ∗ is h= or ∧=, Φ should preserve cocartesian lifts
of diagonal morphisms with domain a terminal object.

Next, given two morphisms (Φ, ϕ), (Ψ, �) : C→ C′ of pre-fibrations, a nat-
ural transformation (Φ, ϕ) → (Ψ, �) is a pair (α̃, α) of natural transformations
α : ϕ → � and α̃ : Φ → Ψ such that C′ ◦ α̃ = α ◦ C. Again, we say that (α̃, α) lies
over α, or over B if B = B′,ϕ = 1B, and α = 11B . We say that (α̃, α) is an equivalence
if α and α̃ are both equivalences.

Proposition 2.4. Every h=-fibration is a ∧=-fibration.

Proof. Referring to the definition of ∧=-fibration from [8, Section 1.7], we
see that we are only missing the Frobenius reciprocity and stability along product
projections for equality objects. These follow from certain well-known facts, which
we leave to the reader, namely (i) that the existence of stable exponential objects
implies Frobenius reciprocity (see, e.g., [15, p. 6], [19, p. 343], [10, p. 102]) and (ii)
that, given f : A→ B in the base category (here, we take f a product projection), if
indexed products

∏
f P exist for all P lying over A, then all indexed sums are stable

along f (see, e.g., [19, p. 343], [10, Lemma 1.9.7]). �
Definition 2.5. A category C is locally cartesian closed if each slice category

C/X is cartesian closed and C has a terminal object (so in particular, C ∼= C/1 is
itself cartesian closed), and it is locally bicartesian closed if it is locally cartesian
closed and has finite coproducts (equivalently, the slices are bicartesian closed and
C has a terminal object).

It is well-known that F(C) is an h-fibration (in fact, an h=-fibration) if and only
if C is locally bicartesian closed (see, e.g., [19, p. 345], [29, Section 2.4][10, p. 81]).

Remark 2.6. It is easy to see (and well-known—see [19]) that, given a fibration

C
C
↓
B

and a morphism f : A→ B in B, the existence of indexed sums or products

over f is equivalent to the existence of left and right adjoints
∑
f and

∏
f to “the”

pullback functor f∗ : CB → CA.
In general, this requires the axiom of choice.6 One way to formulate this which

does not involve any choices is to say there is always a canonical anafunctor (see [21])
f∗ : CB → CA, and the existence of indexed sums or products over f is equivalent
to the existence of a left or right adjoint anafunctor

∑
f and

∏
f (which is then also

canonically defined).
We also note that in the case C= F(C), there is always an explicit indexed sum

functor
∑
f : C/A→ C/B taking (X, x) to (X,fx).

6We note that this and the various other uses of the axiom of choice which arise in this paper are
needed only when considering fibrations in general, but are not needed in relation to our specific fibration
of interest HoFf (Kan), in which we can uniformly specify all the required operations.
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2.2. The h=-fibration of spaces. We now introduce the h=-fibration HoFf (Kan);
or rather, we show that it is an h=-fibration, as it was already introduced in [8]. There,
it was already shown that it is a ∧=-fibration. Hence, to see that it is an h=-fibration,
it remains to show that this fibration has the necessary extra structure—namely, that
it supports the “logical” operations ∨,⇒,∀,∃.

In fact, in op. cit., it was shown more generally that the fibration HoFf (Cf ) is a
∧=-fibration for any model category C. We recall that the first subscript “f” means
we are restricting to fibrations, and the second that we are restricting to fibrant
objects (removing the first “f” actually results in an equivalent fibration, in contrast
to the situation with the related fibration Ff (Cf )). We have (sSet)f = Kan, which is
why we write HoFf (Kan).

It is not true that HoFf (Cf ) is an h=-fibration for any model category C; we
must put certain restrictions on C (satisfied, of course, by sSet). We encapsulate the
needed conditions in Definition 2.8 (“suitable model category”), similar in spirit to
the notion of “type-theoretic model category” and related notions (see, e.g., [18,
p. 166]). We do this just to clarify what assumptions we are using; we do not actually
consider any suitable model categories besides sSet, though we suspect there are
other interesting ones—we have in mind the so-called Cisinski model structures,
which always satisfy conditions (ii) and (iv) of the definition.

The approach taken here is the same as in [8, Sections 12 and 13]. We first
show that the fibration Ff (Cf )—from which HoFf (Cf ) is obtained by passing
to the homotopy category in each fiber—is an h-fibration (in fact, it is an h=-
fibration, but we are not interested in its equality structure), and then show that
this structure is preserved upon passing to homotopy categories. Along the way, we
deduce the important fact that the canonical morphism Ff (Cf ) → HoFf (Cf ), as
well as the inclusion Ff (Cf ) → F(C), are morphisms of h-fibrations, which gives us
an explicit description of the h-fibration structure in HoFf (Cf ).

Namely, this tells us that the h-fibration operations (pullbacks, fiberwise products
and coproducts, indexed products and sums, etc.) HoFf (Cf ) are computed in the
same way as those in F(C).

We then in fact have an explicit description of the full h=-fibration structure on
HoFf (Cf ), since, as was shown in [8], the equality objects are given by path spaces.
That is, given B ∈ Cf , we can take EqB ∈ HoFf (Cf ) to be the second morphism
in a factorization B → BI → B × B of the diagonal ΔB : B → B × B as a trivial
cofibration followed by a fibration.

Definition 2.7. The category sSet of simplicial sets is by definition the category
SetΔop

of presheaves on the category Δ of non-empty finite ordinals and non-
decreasing maps. There is a standard (“Quillen”) model structure on sSet (see
[27, Chapter II, p. 3.14]). Its fibrant objects are called Kan complexes, and we set
Kan := sSetf for the category of Kan complexes.

Outside of the discussion in Section 2.5 and the examples in Section 4.1, we
will not really use anything about this model category, except what little is needed
to show that it is suitable in the sense of Definition 2.8. However, we certainly
expect the reader to be familiar with it. For example, it is good to know that
there is an adjunction (in fact, “Quillen equivalence”) sSet � Top (the functors
being “geometric realization” and “singular simplicial set”) inducing an equivalence
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Ho(sSet) � Ho(Top). It might also be good to know (for the sake of general cultural
context) that Kan complexes can justifiably be said to provide a formal definition of
the (informal) notion of “weak infinity-groupoid.”

Definition 2.8. A model category C is suitable if the following four conditions
are satisfied.

(i) C is right-proper, i.e., weak equivalences are closed under pullbacks along
fibrations.7

(ii) C is locally cartesian closed (as a category).
(iii) [f, g] : A+ B → C is a fibration whenever f : A→ C and g : B → C are,

and the unique morphism 0 → A is always a fibration.
(iv) The cofibrations of C are precisely the monomorphisms.

We note that the Quillen model structure on simplicial sets is suitable. Condition
(iv) holds by definition. Condition (i) is non-trivial, but well-known, and follows
from the existence of pullback and fibration preserving fibrant replacement functors
(see, e.g., [24, p. 370]). As for (ii), it is well-known that any presheaf category is locally
cartesian closed (see [12, p. 48]).

To see (iii), note that the “horns” Λnk are all connected, in the sense that any two
vertices are connected by a path of edges (in fact, for n > 2, by a single edge). It
follows that any morphism Λnk → A+ B to a coproduct must factor through one
of the summands A,B . Now, for [f, g] : A+ B → C to be a fibration, it must lift
against each horn inclusion Λnk → Δn. But if f and g are each a fibration, this follows
immediately from the fact that any given morphism Λnk → A+ B factors through A
or B. The corresponding lifting problem for morphisms 0 → A is trivial, since there
are no morphisms Λnk → 0.

Proposition 2.9. If C is a suitable model category, then any slice category C/A of
C, with its induced model structure, is also suitable (and in fact, this is true separately
for each of the conditions in Definition 2.8).

Proof. It is well-known (and easy to see) that each slice of a locally cartesian
closed category is locally cartesian closed; this follows from the existence of the
canonical isomorphisms (C/A)/B ∼= C/B . That Conditions (iii) and (iv) hold in
C/A follows from the fact that a morphism (p, 1A) in C/A is a monomorphism,
cofibration, or fibration if and only if p is, and the fact that the forgetful functor
C/A→ C preserves coproducts. Similarly, Condition (i) holds since a square in a
slice category C/A is a pullback square if and only if its image under the forgetful
functor C/A→ C is. �

Proposition 2.10. In a suitable model category C, every object is cofibrant. Hence
Ccf = Cf , and Ho(Cf ) = �(Ccf ).

Proof. Since the cofibrations are the monomorphisms, this amount to checking
that each morphism from the initial object is a monomorphism. It is well-known
that this holds in any cartesian closed category (see [25, p. 61]). �

7Actually we will only need that trivial cofibrations are closed under pullbacks along !A : A→ 1C for
A fibrant.
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Proposition 2.11. Let C be a suitable model category, letp : X → Y be a fibration,
and let C be a fibrant object. Then the induced map pC : XC → YC is a fibration.

Proof. We must show that for any solid commutative diagram

A XC

B YC

i pC

in C with i a trivial cofibration, there exists a dashed morphism making the diagram
commute.

Using the adjunction (– ×C ) � (–)C , this is seen to be equivalent to the existence
of a dashed morphism making the corresponding diagram

A× C X

B × C Y

i×1C p

commute. For this, it suffices that i × 1C be a trivial cofibration. Noting that it is
the pullback of i along the projection B × C → B (which is a fibration since C is
fibrant), we have that i × 1C is a cofibration since monomorphisms are stable under
pullback, and it is a weak equivalence since C is right-proper. �

Proposition 2.12. Let C be a suitable model category. We know from [8,
Proposition 12.2] that Cf is an f.p. category and that the inclusion Cf ↪→ C is an
f.p. functor.

We now claim that Cf and the inclusion Cf ↪→ C are bicartesian closed.

Proof. Since Cf is a full subcategory of C, it suffices to show that the
fibrant objects in C are closed under exponentials and coproducts. Condition (iii)
of “suitable” (Definition 2.8) implies that the fibrant objects are closed under
coproducts. That they are closed under exponentials follows from Proposition
2.11. �

Definition 2.13. In [8, Definition 13.6], for a model category C and a full
subcategory D ⊆ C, we defined HoF∗(D) to be the restriction of HoF∗(C) to
D (where ∗ ∈ {c, f, cf}). We similarly define F∗(D) to be the restriction of F∗(C)
to D.

We note that, in general, the restriction of a ∗-fibration (with ∗ one of ∧, ∧=, h,
and h=) to any full subcategory having finite products is again a ∗-fibration.

Proposition 2.14. Let C be a suitable model category. Since C is locally bicartesian
closed, we know that F(C), and hence F(Cf ), is an h-fibration (see Definition 2.5), and
by [8, Proposition 12.3], we know that Ff (Cf ) is a ∧-fibration, and that the inclusion
Ff (Cf ) ↪→ F(Cf ) is a morphism of ∧-fibrations.

We now claim that Ff (Cf ) is an h-fibration and the inclusion Ff (Cf ) ↪→ F(Cf ) is a
morphism of h-fibrations.

Proof. It follows from Propositions 2.9 and 2.2.1 that the fibers of Ff (Cf ), and
the functors on fibers induced by the inclusion, are bicartesian closed.
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Next, we need to check that, given a product projection �2 : A× B → B in Cf

and a cocartesian morphism (p, �2) : (X,A× B, x) → (Y,B, y) in C→ lying over
�2, if (X, x) is in Ff (Cf )

A×B , then (Y, y) is in Ff (Cf )
B—i.e., if x is a fibration,

then so is y. But the product projection �2 is a fibration since A is fibrant, and p
is an isomorphism (this being equivalent to the cocartesianness of (p, �2)), hence
y = �2xp

–1 is a fibration as well.
Similarly, we need to check that if (X, x) is a fibration, then

∏
�2

(X, x) is a fibration.
In the case where B ∼= 1C, it is well-known (e.g., [12, Lemma 1.5.2]) that

∏
�2

(X, x)
can be computed as a pullback along a morphism 1C → AA of xA : XA → AA, which
is a fibration by Proposition 2.11.

We now reduce the general case to this one by using the canonical isomorphisms
(C/A× B) ∼= (C/B)/(A× B, �2) and C/B ∼= (C/B)/(B, 1B) as follows. We wish to
show that the (ana-)functor

∏
�2

: C/(A× B) → C/B (see Remark 2.6) preserves
fibrant objects, which we know in the case when B is terminal. Consider the following
diagram on the left.

C/(A× B) C/B

(C/B)/(A× B, �2) (C/B)/(B, 1B )

∏
�2

∏
�2

∼ ∼

C/(A× B) C/B

(C/B)/(A× B, �2) (C/B)/(B, 1B )

∑
�2

∑
�2

∼ ∼

The bottom row preserves fibrant objects since (B, 1B) is terminal in C/B . Hence
(since the vertical isomorphisms clearly preserve fibrant objects), we will be done
if we can show that the diagram commutes. But note that the diagram to the right
clearly commutes (with Σ�2 the explicit indexed sum functor from Remark 2.6),
hence the left diagram as well, since Π�2 is a right (ana-)adjoint to a right (ana-)
adjoint �∗2 of Σ�2 .

It remains to see that all the operations are “stable,” i.e., that the pullback functors
are bicartesian closed, and that the cocartesian morphisms and

∏
�-diagrams over

product projections � are stable. In each case, this follows immediately from the
corresponding fact in F(Cf ). �

Proposition 2.15. Let C be a suitable model category. We know from Proposi-
tion 2.2.1 that Cf is bicartesian closed, and we know from [8, Proposition 12.4] that
Ho(Cf ) is an f.p. category and that the functor 	 : Cf → Ho(Cf ) is an f.p. functor.

We now claim that the category Ho(Cf ) and the functor 	 : Cf → Ho(Cf ) are
bicartesian closed.

Proof. That Ho(Cf ) has, and 	 preserves, finite coproducts, follows from an
argument dual to the one given in [8, Proposition 12.4] (using that all objects in C
are cofibrant).

We next turn to exponentials. Consider an exponential diagram

CB × B C

CB B.
�1 �2

ε
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We already know that CB × B is still a product in Ho(Cf ), so it remains (by
Proposition 2.10) to see that for any A ∈ Cf and product A

�1←− A× B �2−→ B , the
composite

�(A,CB)
(–)×1B−−−−→ �(A× B,CB × B)

(ε◦–)−−−→ �(A× B,C )

is a bijection. That this map is surjective is clear, since it is already surjective before
passing to homotopy classes. To show injectivity, we need to show that if two
morphismsf1, f2 : A× B → C are homotopic, then the corresponding morphisms
f̃1, f̃2 : A→ CB are.

Let A+A
[∂1,∂2]−−−−→ A× I �−→ A be a cylinder object for A. Because the functor

(– ×B) is a left (ana-)adjoint, it preserves coproducts, and hence the canonical
morphism [〈in1 �1, �2〉, 〈in2 �1, �2〉] : A× B +A× B → (A+A) × B is an isomor-
phism. Applying (– ×B) to our cylinder object for A, we have a sequence of
morphisms

A× B +A× B ∼−→ (A+A) × B [∂1,∂2]×1B−−−−−−→ (A× I ) × B �×1B−−−→ A× B

and we claim that this exhibits (A× I ) × B as a cylinder object for A× B . Indeed,
the composite is clearly equal to ∇A×B , and � × 1B is a weak equivalence by the
right-properness of C, since it is the pullback of a weak equivalence along the
projection (A× I ) × B → A× I , which is a fibration since B is fibrant. Moreover,
the first two morphisms are cofibrations (the first being an isomorphism and the
second being the pullback of a monomorphism and hence a monomorphism).

Hence, by [8, Proposition 10.5[ii]], given two homotopic maps f1, f2 : A×
B → C , we obtain a left-homotopy h : (A× I ) × B → C between them, and hence
a morphism h̃ : A× I → CB . It remains to see that this is a homotopy between f̃1

and f̃2, i.e., that h̃∂i = f̃i : A→ CB . It suffices to see that ε · ((h̃∂i) × 1B) = fi ,
which follows from the definition of h̃. �

Theorem 2.16. Let C be a suitable model category. By Proposition 2.14, we
know that Ff (Cf ) is an h-fibration, and by [8, Propositions 12.5 and 13.7], we know
that HoFf (Cf ) is a ∧=-fibration and that the localization morphism 	 : Ff (Cf ) →
HoFf (Cf ) is a morphism of ∧-fibrations.

We now claim that HoFf (Cf ) is in fact an h=-fibration, and that 	 is a morphism
of h-fibrations.

Proof. By Proposition 2.15, we know that the fibers of HoFf (Cf ) and the
functors on the fibers induced by 	 : Ff (Cf ) → HoFf (Cf ) are bicartesian closed.

Next, we consider indexed sums. That is, we need to show that the image under 	
of any cocartesian morphism in Ff (Cf ) over a product projection is cocartesian
in HoFf (Cf ). This follows from [8, Proposition 13.1] and the fact that every
isomorphism is a weak equivalence.

We next consider indexed products
∏
�2
P. Let �2 : A× B → B be a product

projection in Cf , and let
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�∗2
∏
�2
P

∏
�2
P

P

A× B B

↑

ε

�2

be a
∏
�2

-diagram in Ff (Cf ). We need to see that its image in HoFf (Cf ) is also a∏
�2

-diagram.
We know already that the image of ↑ is cartesian. Hence, it remains to show that

for each Q ∈ (C/B)f and cartesian ↑ : f∗Q → Q over �2, the composite

�(Q,
∏
�2
P)

�∗2−→ �(�∗2Q, �
∗
2
∏
�2
P)

(ε◦–)−−−→ �(�∗2Q,P)

is a bijection. As in the proof of Proposition 2.2.1, it is immediate that it is surjective,
and injectivity follows by a similar argument to the one there.

It remains to check the various “stability” conditions for HoFf (Cf ). These are
proven in the same way as the stability of products in [8, Proposition 12.5]. Namely,
in each case, we reduce to showing the stability of some (rather than every) diagram
of the appropriate kind, and then we choose the diagram coming from Ff (Cf ), where
we already know that stability holds. �

2.3. Interpreting logic in fibrations. In this section, we recall the usual notion
of interpreting first-order logic in an h=-fibration, and then describe the variant
of it giving the homotopical semantics. We will then prove that, up to homotopy
equivalence, the homotopical semantics in a suitable model category C agrees with
the (ordinary) semantics in the h=-fibration HoFf (Cf ).

The homotopical semantics in C will be defined to be identical with the usual
semantics in the fibration F(C), except of course for the treatment of equality: we
demand that an equality formula be interpreted not as an equality object of the
fibration F(C) but as a path space; as mentioned in the introduction to Section 2.2,
this is precisely how the equality objects in HoFf (Cf ) are given.

We note that in the case of a posetal h=-fibration C(i.e., one in which the fibers are
Heyting algebras), the interpretation in C unambiguously assigns to each formula
an object in one of the fibers of C. However, in the general case, there are choices
involved, and this assignment is only determined up to isomorphism.

Definition 2.17. A (multi-sorted) algebraic signature � is given by a set Ob �
of sorts and, for each finite sequence �A of sorts and each sort B, a set �( �A,B) of
function symbols (with arity �A and codomain sort B). We denote the set of finite
(possibly empty) sequences in a set X by X<� , and write �( �A) for the length of a
finite sequence. Also, we denote concatenation of sequences (or of a sequence with a
single element) by juxtaposition. Given a sequence with the name �X , we will denote
its entries by X1, ... , X�(X ).

Given a finite product category C, an interpretation M of � in C consists of the
following data (i)–(iii):
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(i) a functionM : Ob � → Ob C;

(ii) a choice of object M �A and product diagram {�Mi : M �A→MAi}
�( �A)

i=1 on
MA1, ... ,MA�( �A) for each sequence �A ∈ (Ob �)<� (where for singleton
sequences 〈A〉 with A ∈ Ob �, we require that M 〈A〉 =MA and �M1 =
1MA : M 〈A〉 →MA);

(iii) a morphismMf : M �A→MB for each f ∈ �( �A,B).

We writeM : � → C to indicate that M is an interpretation of � in C.
Next, given an interpretation M : � → C and an f.p. functor F : C → D, we

obtain an interpretation F ◦M : � → D by setting (F ◦M )(A) = F (MA) for
A ∈ Ob �; (F ◦M )( �A) = F (M �A) and �F◦Mi = F�Mi : (F ◦M )( �A) → (F ◦M )Ai
for �A ∈ (Ob �)<� and 1 ≤ i ≤ �( �A); and (F ◦M )(f) = F (Mf) for f ∈ �( �A,B).

For the rest of Section 2.3, fix an algebraic signature �.

Definition 2.18. We recall the (usual) syntax of first-order logic over �.
We fix, once and for all, an arbitrary infinite set Varn of “variable names” (for

definiteness, we could take Varn = N).
We next declare the symbols to be used in the syntax. These consist of (i) the

(sorted) variable symbols, which are given by the set Varn×Ob �, (ii) the functions
symbols, which are just the function symbols of � (i.e., they are given by the disjoint
union of all the sets �( �A,B)), and (iii) the additional symbols ∧, ∨, ⇒, ∀, ∃, 
, and
⊥ (negation ¬ϕ is taken as an abbreviation of ϕ⇒⊥).

Now, on the basis of these, we define the set of �-terms (or just terms), and then
of �-formulas (or just formulas) as follows.

Each �-term t will have a sort tp(t) ∈ Ob � associated with it (the sort of t), and
the set of �-terms is given as follows: (i) each sorted variable symbol (v,A) is a term
of sort A, and (ii) ft1 ... t�( �A) is a term of sort B whenever f ∈ �( �A,B) is a function
symbol and t1, ... , t�( �A) are terms, with tp ti = Ai .

Given a sequence of terms �t = 〈t1, ... , tn〉, we will write tp(�t) for the sequence of
sorts 〈tp(A1), ... , tp(An)〉.

Next, the �-formulas are given as follows: (i) s = t is a formula whenever s and t
are terms of the same sort, (ii) 
 and ⊥ are formulas, (iii) ϕ ∧ �, ϕ ∨ �, and ϕ⇒�
are formulas whenever ϕ and � are, and (iv) ∀vϕ and ∃vϕ are formulas whenever
ϕ is a formula and v is a variable symbol.

We take for granted the notions free and bound variables in a term or formula
(all variables in a term being free), as well as the notion of one formula being
obtained from another by the renaming of bound variables. In fact, we will henceforth
identify two formulas when they differ only by renaming of bound variables (this
identification is needed, for example, in order to make the operation of capture-
avoiding substitution—which we also take for granted—well defined in general).

We also take for granted the principles of structural induction and recursion. That
is, to prove something about all terms or formulas, we can proceed by induction,
the base cases being the atomic terms or formulas, and the induction step being to
prove statement for a given formula after assuming it for its constituents. Similarly,
to define a function on the set of all terms or formulas, we can likewise proceed by
recursion.
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Finally, we define a formula-in-context to be a pair (ϕ, �x), where �x is a sequence
of distinct variable symbols containing all the free variables of ϕ, and we define a
term-in-context similarly.

Definition 2.19. Let B be a finite product category B, and M : � → B an
interpretation. Given a sequence of variables �x we writeM ( �x) forM (tp �x).

We now define a function taking each term-in-context (t, �x) to a morphism
M �xt : M ( �x) →M (tp t) by recursion on t as follows. If t is a variable xi , we set
M �x(t) = �Mi : M ( �x) →M (tpxi), and if t = ft1 ... tn with f ∈ �( �A,B) (so that
tp(t) = B and tp(ti) = Ai), then we takeM �x(t) to be the composite

M �x(t)
〈M �x (t1),...,M �x (tn)〉−−−−−−−−−−−→M ( �A)

Mf−−→MB
(note here that the free variables of each ti are among those in �x since this is the
case for t).

Next, given an h=-fibration C
C
↓
B

over B, an interpretation M̂ in Cover M is a

function assigning to each formula-in-context (ϕ, �x) an object M̂ �x(ϕ) ∈ CM ( �x),
satisfying the following conditions:

(i) If ϕ is 
 or ⊥, then M̂ �x(ϕ) must be a terminal object 
M ( �x) or initial object
⊥M ( �x), respectively.

(ii) If ϕ is ��, where � is one of ∧, ∨, or ⇒, then M̂ �x(ϕ) must be, respectively,
a product, coproduct, or exponential object M̂ �x(�)�M̂ �x() of the objects
M̂ �x(�) and M̂ �x() in CM ( �x).8

(iii) If ϕ is ∀z� or ∃z�, then M̂ �x(ϕ) (where we can assume, by our convention
on bound variables, that z /∈ �x) must be, respectively, an indexed product∏
� M̂ �xz(�) or sum

∑
� M̂ �xz(�) of M̂ �xz(�), where � = 〈�M1 , ... , �M�( �x)〉.

(iv) If ϕ is s = t, with s and t terms of sort B, then M̂ �x(ϕ) must be a pullback
〈M �x(s),M�s(t)〉∗ EqMB along 〈M �x(s),M�s(t)〉 : M ( �x) →MB ×MB of an
equality object EqMB overMB ×MB .

We also say that the pair (M̂ ,M ) is an interpretation of � in C and write
(M̂ ,M ) : � → C.

If ϕ is a closed formula (i.e., has no free variables), we say that M satisfies ϕ, and
write M � ϕ, if there exists a morphism 1 → M̂∅(ϕ) in CM (∅) = C1B (this notion
really depends on Cand not just on M, but by Proposition 2.20 it does not depend
on M̂ ).

Given an interpretation M̂ in C over M and a morphism of h=-fibrations

(Φ, ϕ) : C→ C′
C′

↓
B′

, we obtain an interpretation in C′ over ϕ ◦M , denoted Φ ◦ M̂ ,

given by (Φ ◦ M̂ ) �x(�) := Φ(M̂ �x(�)).

8It is probably better to say, here and in the remaining clauses, that M �xϕ is a certain diagram in
C with a specified object (lying in CM ( �x)), so that, for instance, M �x(� ∧ ) is not only a product
M �x(�) ∧M �x(�), but in fact remembers” how it is a product; however, this will not make a difference
for us.
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Proposition 2.20. Given an h=-fibration C
C
↓
B

and an interpretation � : M → B

in B, any two interpretations in C over M are isomorphic—i.e., if M̂ and M̂ ′ are
two interpretations in C over M, then M̂ �xϕ and M̂ ′

�xϕ are isomorphic objects in
CM ( �x) for every (ϕ, �x). Moreover (using the axiom of choice), there always exists an
interpretation in Cover M.

Proof. The first claim follows by induction on ϕ since for each possible ϕ, one
of the clauses in the definition of interpretation over M determines M̂ �x(ϕ) up to
isomorphism based on the constituent formulas of ϕ.

For the second claim, we just choose fiberwise product, fiberwise coproducts, etc.,
in Cand then recursively define an interpretation over M. �

Remark 2.3.1. We now consider some examples of interpretations in h=-
fibrations, all of which were mentioned in Section 1.2 in the introduction.

If C = Set, then an interpretationM : � → Set is just a �-structure in the usual,
set-theoretic sense.9 Then, if we consider the sub-h=-fibration P(Set) ⊂ F(Set)
of F(Set) consisting of morphisms which are inclusions of subsets—then there is
exactly one interpretation in P(Set) over M, and this recovers the classical semantics
of first-order logic. Namely,M �x(ϕ) is then given by {�a ∈M ( �x) |M �

�x →�a
ϕ}.

Next, if we instead take the fibration F(Set), then an interpretation in F(Set)
over M recovers the “propositions as sets” semantics.

Similarly, taking F(C) for any locally cartesian closed category with finite
coproducts C with, we recover the “propositions as objects of C” semantics.

Finally, if we take C = sSet, we get the “propositions as objects of sSet” semantics
which, as explained in Section 1.2, is not our desired homotopical semantics.

We now want to convince ourselves that taking the fibration HoFf (Kan) does
give us the homotopical semantics). But let us first define what the latter is.

Definition 2.21. Given an interpretationM : � → C, with C any suitable model
category (in fact, any model category which is locally bicartesian closed), we define
a homotopical interpretation M̂ over M to be a function taking each �-formula-
in-context (ϕ, �x) to an object M̂ �x(ϕ) ∈ F(C)M ( �x) = C/M ( �x), satisfying the same
conditions as in Definition 2.19, except that in (iv) the equality object EqMB over
MB is replaced by a path object overMB—i.e., the second factor in a factorization
of ΔMB : MB →MB ×MB as a weak equivalence followed by a fibration.

Below, we will be concerned only with interpretationsM : � → Cf landing in the
subcategory Cf . In this case, each object M̂ �x(ϕ) lies in the subfibration Ff (Cf ) of
F(C) (this follows by induction using Proposition 2.14 and the fact that M̂ �x(s = t)
is by definition a fibration).

Again, for a closed formula ϕ, we write M � ϕ to mean that there exists a
morphism 1C → M̂∅ϕ in C/M (∅) ∼= C and again (now by Proposition 2.23), we
note that this is independent of M̂ .

9The one difference, perhaps, is that the “product” operation on sets is usually fixed, whereas in this
definition, the interpretation M “chooses” the relevant products.
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We again have, as in Proposition 2.20, that a homotopical interpretation over M
always exists. However, we no longer have the uniqueness up to isomorphism, the
reason being that there exist non-isomorphic path spaces over a given space. Still
(for suitable C), it is unique up to homotopy equivalence as we will see presently.

Definition 2.22. Let C be a model category and let A,B ∈ Ccf be cofibrant-
fibrant objects. Recall that in this case, a morphismf : A→ B is a weak equivalence
if and only if there exists g : B → A such that gf and fg are homotopic to the
identity (where we recall that for objects in Ccf , “left-homotopic” and “right-
homotopic” are equivalent)—see, e.g., [8, Proposition 10.7]. For emphasis, we call
such an f a homotopy equivalence and g a homotopy inverse.

Note that f is homotopy equivalence if and only if it is an equivalence (see
Definition 3.1) with respect to the Quillen 2-categorical structure on Ccf [8,
Definition 15.7].

If such an f exists, we say that A and B are homotopy equivalent.
We note that in practice, we will deploy this notion for suitable model categories

C, in which every object is cofibrant, so it is only necessary to restrict to fibrant
objects.

Proposition 2.23. Let M : � → Cf be an interpretation with C a suitable model
category.

Now suppose M̂ is an arbitrary function assigning to each �-formula-in-context
(ϕ, �x) an object M̂ �x(ϕ) ∈ C/M ( �x)f . Recall the localization morphism 	 : Ff (Cf ) →
HoFf (Cf ), and define the function 	 ◦ M̂ (taking values in the fibers of HoFf (Cf ))
as in the end of Definition 2.19.

Then 	 ◦ M̂ is an interpretation in HoFf (Cf ) over M if and only if M̂ is homotopy
equivalent to a homotopical interpretation over M, in the sense that there is some
homotopical interpretation M̂ ′ over M such that M̂ �xϕ and M̂ ′

�xϕ are homotopy
equivalent for each (ϕ, �x).

Moreover, any two homotopical interpretations over M are homotopy equivalent.

Proof. Suppose M̂ is homotopy equivalent to a homotopical interpretation M̂ ′.
Then 	 ◦ M̂ and 	 ◦ M̂ ′ are isomorphic, and hence it suffices to check that the latter
is an interpretation in HoFf (Cf ) over M.

We need to check each of the conditions in Definition 2.19. Conditions
(i)–(iii) follow from the fact that they are satisfied by M̂ and the fact that
	 : Ff (Cf ) → HoFf (Cf ) is a morphism of h-fibrations. Condition (iv) follows from
[8, Proposition 13.1] and the definition of homotopical interpretation.

Conversely, suppose 	 ◦ M̂ is an interpretation in HoFf (Cf ) over M, and let M̂ ′

be any homotopical interpretation. Then by what we just showed, 	 ◦ M̂ ′ is also an
interpretation in HoFf (Cf ) over M, and hence isomorphic to 	 ◦ M̂ by Proposition
2.20. But this means precisely that M̂ and M̂ ′ are homotopy equivalent (since, by
the suitability of C, all the objects M̂ �x(ϕ) and M̂ ′

�x(ϕ) are cofibrant-fibrant).
The last claim follows for the same reason. �

2.4. Homotopy equivalence. We now introduce the remaining notions that are
present in the statement of the special invariance theorem, Theorem 3.24 (which
was also stated in the introduction).
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The first is the definition of homotopy equivalence of � interpretations. We also
include the definition of (ordinary) homomorphism of �-interpretations, for the
sake of motivation, and since we will use it later (in the definition of free finite
product category).

The second is, given two fibrations X → A and Y → B in a model category, the
notion of a homotopy between morphisms X → Y lying over a given homotopy
between morphisms A→ B . In the case of topological spaces, this is a familiar
notion, and we verify that it is well-behaved in general.

Definition 2.24. Given two interpretations M,N : � → C, a homomorphism
α : M → N consists of morphisms αA : MA→ NA for each sort A ∈ Ob �, such
that for each f ∈ �( �A,B), the following diagram commutes, where we write α �A for
αA1 × ··· × αA

�( �A)
.

M �A N �A

MB NB

α �A

Mf Nf

αB

Given a suitable model structure on C and two interpretationsM,N : � → Cf = Ccf ,
a homotopy homomorphism α : M → N consists of a morphism αA : MA→ NA for
each A ∈ Ob �, such that, for each function symbol f ∈ �( �A,B), the morphisms
αB ◦Mf andNf ◦ α �A are homotopic (note thatM �A is still in Cf = Ccf as the latter
is close under products).

A homotopy homomorphism α : M → N is a homotopy equivalence if αA is a
homotopy equivalence for each A ∈ Ob �. If such an α exists, we say that M and N
are homotopy equivalent.

Definition 2.25. Let C be a model category, let (X,A, x), (Y,B, y) ∈ C→

be fibrations, and let (p,f), (q, g) : (X,A, x) → (Y,B, y) be morphisms. A right
homotopy from (p,f) to (q, g) consists of right-homotopies k : A→ BI from f to g
and k̂ : X → YI from p to q, together with a morphism yI : YI → BI making the
following two diagrams on the right commute.10

X × I Y

A× I B

ĥ

x×I y

h

X + X X × I X

A + A A× I A

〈∂1,∂2〉

x

�

x×I x

〈∂1,∂2〉 �

X Y I

A BI

k̂

x yI

k

Y Y I Y × Y

B BI B × B

s

y

〈d1,d2〉

yI y×y
s 〈d1,d2〉

(2.1)

We also call k̂ a right homotopy from p to q over k. If such a homotopy exists, we
say that (p,f) and (q, g) are right homotopic and that p and q are right homotopic
over k.

There is a dual notion of a left homotopy ĥ from p to q over a left homotopy h
from f to g, corresponding to the two diagrams above to the left.

10Of course, one could give this definition for general morphisms and not just fibrations, but we will
not need the general notion, and it would complicate Proposition 2.26.
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Note that if f = g and h is the trivial homotopy A× I �−→ A f=g−−−→ B , then p and
q are left-homotopic over h if and only if (p,f) to (q, g) are left-homotopic in the
model structure of [8, Definition 11.1] by [8, Proposition 11.3].

Proposition 2.26. With (p,f) and (q, g) as in Definition 2.25, if X and A are
cofibrant and Y and B are fibrant, then the notions of (p,f) and (q, g) being left or
right homotopic are equivalent, and are both equivalence relations.

Moreover, being homotopic over some fixed (left or right) homotopy h from f to g
depends only on the homotopy class of h (in the sense of [8, Section 14]), and if p and
q are homotopic over h, and q and r are homotopic over h′, then p and r are homotopic
over the composite of h and h′.

Proof. The first claim follows from the existence of a model structure on C→

in which the notions of left and right homotopic are the ones given above, and in
which an object of C→ is cofibrant iff both domain and codomain are, and is fibrant
iff it is a fibration with fibrant codomain (and hence domain).

The model structure in question is characterized by the property that its
cofibrations and weak equivalences are the object-wise cofibrations and weak
equivalences; see, e.g., [9, Theorem 5.1.3] (this is also known as the “injective model
structure,” and is also a “Reedy model structure”).

By inspecting the definitions, one finds that a left-homotopy is indeed precisely the
notion given above. However, for right-homotopies, there is the additional condition
that the induced morphism YI → BI ×B×B (Y × Y ) must be a fibration in order
for (2.1) to be a path object for (Y,B, y). But this can always be arranged by factoring
it as a trivial cofibration followed by a fibration YI → YI ′ → BI ×B×B (Y × Y )
and then replacing YI by YI

′
.

The last statement follows from the fact that the codomain functor C→ → C
preserves “all” of the model structure—fibrations, cofibrations, weak equivalences,
and finite limits and colimits—and hence takes composites of homotopies to
composites of homotopies.

For the second to last claim, we need to show that, given a homotopy
ĥ : X × I → Y from p to q over a homotopy h : A× I → B (where we denote the
auxiliary morphismX × I → A× I byx × I as above), and a homotopic homotopy
h′ : A× I ′ → B , there is a homotopic homotopy ĥ′ : X × I ′ → Y over h′.

So suppose we are given a left-homotopy H : A× J → B from h to h′, so
that we have a factorization of [�, �] : (A× I ) +A+A (A× I ′) → A as a cofibration

(A× I ) +A+A (A× I ′) [∂1,∂2]−−−−→ A× J and a weak equivalence � : A× J → A (which
we may assume is a trivial fibration since B is fibrant).11

Now let X × I ′ be a cylinder object on X with [∂1, ∂2] : X + X → X × I ′ a
cofibration, and let x × I ′ : X × I ′ → A× I ′ be a morphism as in (2.1) (this can be
obtained as a diagonal filler assuming � : A× I ′ → A is a trivial fibration, which we
may by [8, Proposition 14.4]), and factor [�, �] : (X × I ) +X+X (X × I ′) → X as a

cofibration and trivial fibration (X × I ) +X+X (X × I ′) [∂1,∂2]−−−−→ X × J �−→ X . Now

11Our notation and conventions for pushouts are analogous to those for pullbacks and coproducts
[8, Sections 5.1 and 10.2].
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choose a diagonal filler x × J in

X × I +X+X X × I ′ A× J

X × J A.

[∂1(x×I ),∂2(x×I ′)]

[∂1,∂2] �

x�

x×J

Finally, choose a diagonal filler Ĥ in the following square (where the morphism on
the left is a trivial cofibration).

X × I Y

X × J B

ĥ

∂1 y

H (x×J )

Ĥ

The composite Ĥ∂2 : X × I ′ → Y is then the desired homotopy. �

Definition 2.27. Let C be a model category and (p,f) : (X,A) → (Y,B) a
morphism in (Ccf )→, and suppose f is a homotopy equivalence. We say that p
is a homotopy equivalence over f if p is a homotopy equivalence, and moreover, there
exist homotopy inverses g : B → A and q : Y → X such that the homotopies from
qp to 1X and from pq to 1Y lie over homotopies from gf to 1A and from fg to 1B .

Remark 2.4.1. With these definition in place, we can now formulate the special
invariance theorem, Theorem 3.24, which was already restated in the introduction,
and so we won’t repeat it here.

2.5. Topological spaces. In Section 2.2, we showed that HoFf (Kan) is an h=-
fibration and that 	 : Ff (Kan) → HoFf (Kan) is a morphism of h-fibrations.

As mentioned in the introduction, we cannot hope to prove this with Top (= Topf )
in place of Kan, since Top is not locally cartesian closed.

However, it would also be nice to be able to define homotopical semantics valued
in topological spaces. We now briefly discuss some possible solutions to this issue.

2.5.1. Composing with Sing: Top → sSet. The simplest way to define Top-valued
homotopical semantics is to simply do so via simplicial sets (which is the approach
we take in Section 4.1): we have the singular simplicial set functor Sing: Top → sSet,
which preserves products, being a right adjoint.

Hence, given an interpretation M : � → Top, we can compose it with Sing to
obtain a �-interpretation Sing ◦M in sSet and we then define a homotopical
interpretation over � to be one over Sing ◦M .

The reason why this is a sensible thing to do is that—at least when M is valued
in spaces homotopy equivalent to a CW-complex—the properties which can be
described using the homotopical semantics (namely, the “homotopical” ones) can
all be recovered from the associated singular simplicial set—see Section 4.1 for
examples.
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2.5.2. The fibration HoF(Top). An important observation in this connection is
that, although Ff (Top) cannot be an h-fibration, it turns out that HoFf (Top) (or
the equivalent fibration HoF(Top)) is, after all, an h- (and even an h=-)fibration,
by virtue of its close relationship to HoFf (Kan).

The reason for this is that, when Top is endowed with its standard (“Quillen”)
model structure (or better, with its “mixed” model structure—see [24, p. 356]),

the adjunction Top sSet
Sing

� (the left adjoint being “geometric realization”)
becomes a Quillen equivalence, from which it follows that, for fibrant X ∈ Top,
the induced functor Top/X → sSet/ Sing(X ) is also a Quillen equivalence (with
respect to the induced model structures), which therefore induces equivalences
Ho(Top/X ) → Ho(sSet/ Sing(X )).

It follows that we have a morphism of fibrations HoF(Top) → HoF(sSet) which
is a “fiberwise equivalence” (Definition 3.9), from which it follows that HoF(Top)
is an h=-fibration (since HoF(Kan) is and Sing(X ) ∈ Kan for all X ∈ Top).

Thus, since homotopical interpretations in a model category C correspond to
ordinary interpretations in HoFf (Cf ), we can, in a sense, define homotopical
semantics directly in Top, by simply defining this to be the fibrational semantics
in HoF(Top).

The main problem with this is that, unlike in the case of suitable C, the h=-fibration
structure on HoF(Top) is given very inexplicitly, and hence we cannot say, for any
particular formula, what its interpretation in Top actually is.

However, it is worth noting that we can get a handle on some formulas, namely
those not involving implication and universal quantification, as Ff (Top) is a “∃ ∨∧=-
fibration” (and Ff (Top) → HoFf (Top) a morphism of such).

2.5.3. Convenient categories of spaces. One might hope to circumvent the failure
of Top to be locally cartesian by passing to a modified category of spaces; the well-
established solution to Top not being cartesian closed is to pass to a “convenient”
subcategory of Top (such as the compactly generated spaces) that is cartesian closed.
Unfortunately, the various categories used for this purpose are not (or at least not
known to be) locally cartesian closed.

However, there are well-known “enlargements” of subcategories of Top which are
locally cartesian closed, i.e., a (reasonably large) full subcategory C ⊂ Top with a
full and faithful functor i : C → D. An example is the category D of subsequential
spaces [11] (with C the category of sequential topological spaces).

Hence, one might hope to use such a category D for the homotopical semantics
instead, by extending to it the usual model structure(s) on Top. One can indeed
produce such model structures, at least in the case of subsequential spaces. However,
the result still fails to be suitable, and as a result suffers from the same problem
mentioned in the previous section: it becomes difficult to actually compute the
interpretation of any given formula (in particular, it requires taking cofibrant
replacements 12).

12Note that while there are model structures on Top, such as the Strøm model structure, in which
every object is cofibrant, the latter is not Quillen equivalent to sSet, and hence, with this model structure,
there is no reason why HoF(Top) should be an h-fibration.
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§3. The invariance theorem. We now formulate and prove the homotopy-
invariance property of the homotopical semantics; we first prove the “abstract”
version, which is purely categorical, and then deduce from it the “special” version
of the theorem, concerning the homotopical semantics.

The formulation and proof of the abstract invariance theorem is actually
independent of the results of the previous section; these were presented first only
in order to give some motivation for the abstract invariance theorem. The latter
involves an arbitrary h=-fibration C′, which for the special invariance theorem we
will want to take to be the h=-fibration HoFf (Kan) introduced above.

Moreover, C′
C′

↓
B′

is assumed to have the structure of a 1-discrete 2-fibration

(1D2F), which is a 2-categorical structure on C′ and B′ compatible with the fibration
in which the fibers are, however, still 1-categories (this is the “1-discreteness”)—see
[8, Section 6] for the definition and some motivation. However, the presence of a
1D2F structure on C′ is not really an extra requirement: in op. cit., it is proven
that every ∧=-fibration admits a “universal” 1D2F structure, and that, in the case
of HoFf (Cf ) (for any model category C), this recovers the familiar 2-category
structure on Ccf given in terms of homotopies (and we will show in Section 3.4 that
the 2-categorical structure on the total category of HoFf (Cf ) also has a natural
interpretation in terms of homotopies).

The abstract invariance theorem also involves a second fibration C
C
↓
B

which

is free on a signature � in the sense discussed in the introduction, so that the
morphisms C→ C′ correspond precisely to interpretations of� in C′ (the morphism
C → C′ then capturing the unique-up-to-isomorphism interpretation of � in C′

over B′); moreover, the natural isomorphisms between such morphisms, correspond
to isomorphisms of �-interpretations � → B. As discussed in the introduction, this
immediately leads to the isomorphism invariance property for interpretations in C′.
Note that the 1D2F structure on C′ plays no role in this.

Now, when the f.p. category B has a 2-categorical structure, there is a notion of
pseudonatural equivalence of interpretations � → B′, which correspond to homotopy
equivalences of interpretations in the case of Kan. On the other hand, we have a
notion of pseudonatural equivalence of morphisms C→ C′, and the existence of
one of these between the morphisms C→ C′ induced by two interpretations � → B′

recovers, in the case of HoFf (Kan), the homotopy invariance property asserted in
the special invariance theorem.

The import of the invariance theorem, then, is that the free fibration C satisfies
with respect to pseudonatural equivalence the same universal property that it
satisfies with respect to isomorphisms, i.e., that a pseudonatural equivalence between
two interpretations � → B′ induces a pseudonatural equivalence of the induced
morphisms C→ C′. This comprises two parts.

In the first part, we have B being an arbitrary f.p. category, and C a free h=

-fibration over B, so that an f.p. morphism B → B′ induces a morphism C→ C′. The
statement is then that a pseudonatural equivalence between two morphisms B → B′

induces a pseudonatural equivalence between the resulting morphisms C→ C′.
The second part only involves f.p. (2-)categories and makes no reference to

fibrations. Namely, here we take B to be free on �, so that each interpretation � → B′
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induces an f.p. morphism B → B′, and the statement is then that a pseudonatural
equivalence between interpretations � → B′ induces a pseudonatural equivalence
between the induced morphisms B → B′.

With the abstract invariance theorem in place, we then, in Section 3.4, prove the
“special” or “syntactic” invariance theorem which, unlike the abstract invariance
theorem, involves the interpretation of terms and formulas in an h=-fibration, as
introduced in Section 2.3. This is deduced easily from the abstract invariance theorem
by using the equivalence between the 2-categorical notions present in the abstract
invariance theorem and the corresponding “homotopical” notions in the particular
1D2F HoFf (Kan). Most of this equivalence was proven in or is deduced easily
from the work in [8]; however, there is one essential part (namely, the homotopical
interpretation of 2-cells in the total category of HoFf (Kan)) that is missing in op.
cit., and which is proven in Section 3.4.

The special invariance theorem is also proven in two “stages” (though these do
not correspond to the two parts of the abstract invariance theorem): the first is
to draw a general “homotopy-invariance” (or better, “pseudonatural-equivalence-
invariance”) conclusion about the interpretation of first-order logic in an arbitrary
h=-fibration C′, and the second is to specialize this to the case of HoFf (Kan).

We begin with some preliminaries on 2-categories, and we prove some facts about
1D2Fs that were not considered in [8] (but otherwise, we refer to the latter for
general background on 1D2Fs).

3.1. Preliminaries on 2-categories and 1D2Fs. We begin with some generalities
on 2-categories and 1D2Fs.

First, we will recall the notion of pseudonatural transformation and equivalence,
and some related notions. We note that this is a small part of a larger structure;
the totality of 2-categories forms a three-dimensional structure, which is more or less
elaborate depending on the weakness or strictness of the concepts being considered.
Our approach here is to strive for the minimal possible generality that suffices for
our purposes.

We then prove some basic facts that we will need about 1D2Fs. Each of them is a
generalization of a basic property of fibrations, in which equality of morphisms is
replaced by existence of a 2-cell.

Finally, we give the notion of pseudonatural equivalence of morphisms of
fibrations, which will be essential for the formulation of the abstract invariance
theorem.

Definition 3.1. Given a category C, a 2-category D, and functors F,G : C → D,
a pseudonatural transformation α : F → G consists of the following data (i)–(ii),
subject to the conditions (iii) and (iv):

(i) A 1-cell αA : FA→ GA for each A ∈ C.
(ii) An isomorphism 2-cell

FA FB

GA GB

Ff

αA αBαf

∼

Gf

for each morphism f : A→ B in C.
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(iii) For each pair A
f−→ B g−→ C of composable morphisms in C, we have

(1Gg ◦αf)(αg ◦ 1Ff) = αgf .
(iv) For each A ∈ C, we have α1A = 1αA .

Note that a pseudonatural transformation α with αf = 1 for all f is just a natural
transformation.

Given pseudonatural transformations F α−→ G �−→ H , their composite � ◦ α
is defined by the prescriptions (� ◦ α)A = �A ◦ αA and (� ◦ α)f = (�f ◦ αA)
(�A ◦ αf). We leave it to the reader to verify that this is again a pseudonatural
transformation.

A 1-cell f : A→ B in a 2-category is an equivalence if there exists a 1-cell
g : B → A and isomorphism 2-cells g ◦ f ∼= 1A and f ◦ g ∼= 1B—such a g is called
a quasi-inverse to f. The pseudonatural transformation α : F → G is a pseudonatural
equivalence if αA is an equivalence in D for each A ∈ C.

Definition 3.2. Given categories B and C, 2-categories D and E, functors
F : B → C and G,H : C → D, a 2-functor K : D → E, and a pseudonatural
transformation α : G → H , as in

B C D E,α
F

G

H

K

we define (i) the whiskering of α by K, which we denote by K ◦ α, to be
the pseudonatural transformation KG → KH defined by (K ◦ α)A = K(αA) and
(K ◦ α)f = K(αf) for A ∈ Ob C and f ∈ Ar C; and (ii) the whiskering of α by F,
denoted by α ◦ F , to be the pseudonatural transformation GF → HF defined by
(α ◦ F )A = αFA and (α ◦ F )f = αFf .

We leave to the reader the easy proof that these are in fact pseudonatural
transformations as claimed.

We note that the whiskering of a pseudonatural equivalence (on either side) is
again a pseudonatural equivalence.

Proposition 3.3. In a 1D2F, we have the following generalization of the universal
property for cartesian morphisms.

Let C
C
↓
B

be a 1D2F, and suppose we have a solid diagram

Q

P R

B

A C

q
c

p

r

gf

h

α

with q cartesian over g, r lying over h, and α a 2-cell h → gf.
Then there exists a unique 1-cellp : P → Q over f for which there exists a (necessarily

unique) 2-cell r → qp over α.
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Proof. We know that there is a unique 2-cell � : r → r′ over α with domain r,
and we can (and must) then take p to be unique morphism P → Q over f such that
qp = r′:

Q

P R

B

A C

q
c

p

r

r′

�

gf

h

α

�

Proposition 3.4. Next, we have a generalization in 1D2Fs of the uniqueness up to
isomorphism of cartesian morphisms in fibrations.

Given a 1D2F C
C
↓
B

and a diagram

P

R

Q

A B

p
c

r

q
c
�

∼

f

g

α∼

in which r, p, q, � lie over 1A, f, g, α, respectively, and p and q are cartesian: if α (and
hence �) is an isomorphism 2-cell, then r is an isomorphism 1-cell.

Proof. By Proposition 3.3, there is a unique morphism r′ : Q → P over A for
which there exists a (necessarily unique) 2-cell �′ : q → pr′ over α–1:

P

Q R

P

A B.

p
r

q

r′

�
∼

p
�′

∼

f

g

f

α∼

α–1∼

Then r′r and 1P are both the unique morphism t : P → P over 1A for which there
exists a 2-cell p → pt; hence r′r = 1P . Similarly, rr′ = 1Q. �

Proposition 3.5. We also have a generalization in 1D2Fs of the “2-of-3” property
of cartesian morphisms in fibrations.
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Given a 1D2F C
C
↓
B

and a diagram

Q

P R

B

A C

q
c

p

r
c
�∼

gf

h

α∼
with p, q, r, � lying over f, g, h, α, respectively, if α (and hence �) is invertible, and q
and r are cartesian, then so is p.

Proof. Choosing a cartesian lift ↑ : f∗Q → Q of f, we obtain a factorization
p = ↑p as in

f∗Q Q

P R.

↑
c

q
c

p

r
c

p
�∼

It then follows from Proposition 3.4 that p is an isomorphism, and hence that p is
cartesian. �

Definition 3.6. Let C
C
↓
B

be a fibration, C′
C′

↓
B′

be a 1D2F, ϕ,� : B → B′ functors,

and Φ,Ψ: C → C′ functors lying over ϕ and �. We say that a pseudonatural
transformation � : Φ → Ψ lies over a pseudonatural transformation α : ϕ → � if
C′ ◦ � = α ◦ C(here we are using the “whiskering” operations from Definition 3.2).

3.2. The abstract invariance theorem: first part. We now come to the proof of
the (first part of the) abstract version of the homotopy-invariance property. In
this generality, the theorem states that a free h=-fibration satisfies with respect to
pseudonatural transformations the same property which it satisfies with respect to
natural transformations.

We make a small digression to discuss freeness. In classical (“0-categorical”)
algebra, a free object (group, ring, etc.) is required to satisfy a certain universal
property, which then determines it up to isomorphism. In the case of categorical
structures, it is often more natural to impose conditions that determine the
object under consideration up to equivalence. However, there are usually different
conditions which do this.

In the case at hand, namely that of C
C
↓
B

being a free h=-fibration over B, the

weakest such condition one could impose is that, for any other h=-fibration C′
C′

↓
B

over B, there exists a morphism C→ C′ of fibrations over B, and that, any two such
morphisms are isomorphic; and this is in fact the definition we use.
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A slightly stronger condition one could demand is that, given any h=-fibration

C′
C′

↓
B′

, any f.p. functor ϕ : B → B′ can be extended to a morphism (Φ, ϕ) : C→ C′

of h=-fibrations, and for any natural isomorphism ϕ → � to another f.p. functor,
there is a natural isomorphism Φ → Ψ lying over it; let us call this the global universal
property, and the previous one the local universal property.

One can see that a free h=-fibration (in the above sense—i.e., satisfying the
local universal property) automatically satisfies the global universal property. The
invariance theorem then says that, when C′ is a 1D2F, C satisfies the global
universal property with respect to pseudonatural equivalences and not just natural
isomorphisms.

The proof of the global universal property from the local one is more or less the
same for natural isomorphisms and for pseudonatural equivalences—indeed, we
will prove both of them simultaneously—and proceeds (roughly) by pulling back
the fibration C′ along the given functors ϕ,� : B → B′ and then appealing to the
universal property of Cwith respect to h=-fibrations over B.

An essential step here is showing that the natural isomorphism or pseudonatural
equivalence ϕ → � induces an equivalence of fibrations ϕ∗C′ � �∗C′ over B
between the pullbacks. It is easy to see why this should work for pseudonatural
transformations and not just natural transformations, if we look at the situation
from the “pseudo-functor to Cat” perspective on fibrations (see, e.g., [8, Section 6]).
Namely, from this perspective, the pullbackϕ∗C′ of a fibration C′ along a morphism
ϕ : B → B′ is just given by composing ϕop : Bop → B′ op with the pseudo-functor
Ĉ′ : Bop → Cat. On the other hand, a morphism of fibrations over B corresponds to
a pseudonatural transformation of pseudo-functors from Bop to Cat. Hence, given
a natural isomorphism α : ϕ → �, the induced equivalence ϕ∗C′ � �∗C′ between
the pullbacks along ϕ and � is obtained as the whiskering

Bop B′ op Cat.αop

ϕop

�op

Ĉ′

The point is now that this whiskering can be carried out just as well if α is a
pseudo-natural transformation.

Definition 3.7. Given a prefibration C′
C′

↓
B′

and a functor F : B → B′, we define

the pullback F∗C
F∗C
↓
B

of Calong F to be the usual pullback

F ∗C′ C′

B B′

F ↑C′

F ∗C′
�

C′

F

in the (1-)category of categories, where we writeF ↑C′, as indicated, for the associated
functor F ∗C′ → C′. Explicitly, the objects of F ∗C′ are pairs (A,P) with A ∈ B and
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P ∈ C′FA, and the morphisms are pairs (f, p) with f ∈ Ar B and p ∈ Ar C′ lying
over Ff.

The prefibration F ∗C′ is a fibration if C′ is, and inherits many properties from
C′—in particular, if B is an f.p. category and F is an f.p. functor, then if C′ is
an h=-fibration, F ∗C′ is as well. The reason is that F ↑C′ induces isomorphisms
(F ∗C′)A → C′FA on fibers for each A ∈ B, and—if C′ is a fibration—a morphism
in F ∗C′ is cartesian or cocartesian if and only if its image under F ↑C

′
is, and

similarly the
∏

-diagrams in F ∗C′ are exactly those whose images under F ↑C ′ are∏
-diagrams. In particular, (F ↑C

′
, F ) is a morphism of (h=)-fibrations.

By the universal property of the pullback, given any other prefibration C
C
↓
B

over

B and any morphism (Φ, F ) : C→ C′ of prefibrations, we have a unique morphism
Φ: C→ F ∗C′ of prefibrations over B such that F ↑C

′ · Φ = Φ. It follows from the
above observations that Φ is a morphism of (h=-)fibrations whenever C′ and Care
(h=-)fibrations and (Φ, ϕ) is a morphism thereof.

If C′ is a 1D2F, then we define F ∗C′ to be the pullback of the underlying fibration
of C′ (thus F ∗C′ is a fibration of 1-categories).

Construction 3.8. Let B be a category, let C′
C′

↓
B′

be a cloven 1D2F (i.e., the

underlying fibration is cloven [8, Section 1.3]), let F,G : B → B′ be functors, and let
α : F → G be a pseudonatural transformation. We will construct from this a morphism
α̃ : G∗C′ → F ∗C′ of fibrations over B between the associated pullback fibrations, as
well as a pseudonatural transformation α̌ : F ↑C

′ ◦ α̃ → G↑C
′

over α, as shown below.
We will define these simultaneously.

F ∗C′

C′

G∗C′

B B′

F ↑C
′

F ∗C′
C′

α̃

G↑C
′

G∗C′

α̌

F

G

α

Given A ∈ B and (A,P) ∈ (G∗C′)A (i.e., P ∈ C′GA), we set α̃(A,P) =
(A, (αA)∗P) ∈ (F ∗C′)A, and we set α̌(A,P) to be the morphism (αA)↑P : α∗

AP → P.
Next, let (f, p) : (A,P) → (B,Q) be a morphism in G∗C′. Since we want α̃(f, p)

to be a morphism over f : A→ B in B, it must be of the form (f, p′) for some
p′ : (αA)∗P → (αA)∗Q over Ff. Seeing as we want there to be a 2-cell

α̌(f,p) : α̌(B,Q) · (F ↑C
′
)(α̃(f,p)) = (αB )↑Q · p′ −→ p · (αA)↑P = (G↑C

′
)(f,p) · α̌(A,P)
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lying over αf , we see that we are forced to define p′ to be the unique morphism over
Ff for which there exists a 2-cell

(αA)∗P (αB)∗Q

P Q

FA FB

GA GB

p′

(αA)↑P

(αB )↑Q
c

p

Ff

αA

αBαf

Gf

lying over αf (such a p′ exists by Proposition 3.3 since αf is invertible), and we must
take α̌f to be this 2-cell lying over αf .

We now prove simultaneously that α̃ is a functor and that α̌ is a pseudonatural
transformation.

Let (A,P)
(f,p)−−−→ (B,Q)

(g,q)−−−→ (C,R) be morphisms in G∗C′. Let us write (f, p′)
and (g, q′) for α̃(f, p) and α̃(g, q), as well as (gf, (qp)′) for α̃(gf, qp). We must
show that the 2-cells

α∗AP α∗BQ α∗CR

P Q R

FA FB FC

GA GC GC

p′

αA
↑P αB

↑Q
α̌(f,p)

q′

αC
↑Rα̌(g,q)

p q

Ff

αA
αB

αf

Fg

αCαg

Gf Gg

and
α∗AP α∗CR

P R

FA FC

GA GC

(qp)′

αA
↑P

αC
↑Rα̌(gf,qp)

qp

F (gf)

αA

αCαgf

G(gf)

are equal—i.e., that (1q ◦α̌(f,p))(α̌(g,q) ◦ 1p′) = α̌(gf,qp)—and also that q′p′ = (qp)′.
The first claim follows at once from the second by 1-discreteness. The second claim
is true since (qp)′ is by definition the unique morphism α∗

AP → α∗
CR over F (gf) for

which there exists a 2-cell as above on the right, and q′p′ also has this property.
The proof of the remaining (unitality) property of α̃ and α̌ is similar.
Finally, we must see that α̃ preserves cartesian morphisms. This follows from the

definition of α̃, Proposition 3.5, and the fact that a morphism (f, p) inF ∗C′ is cartesian
if and only if p is.

Definition 3.9. A morphism (Φ, ϕ) : C
C
↓
B
→ C′

C′

↓
B′

is a fiberwise equivalence if

the induced functor CA → C′ϕA is an equivalence for each A ∈ B.

Proposition 3.10. With C, F, G, and α as in Construction 3.8, if α is a
pseudonatural equivalence, then α̃ is a fiberwise equivalence and α̌ is a pseudonatural
equivalence.

Also, if α is natural transformation or natural isomorphism, then so is α̌.
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Proof. To see that α̃ is a fiberwise equivalence, note that the induced functor
α̃ : (G∗C)A → (F ∗C)A is (with respect to the identifications (F ∗C)A ∼= CFA

and (G∗C)A ∼= CFA) just the pullback functor (αA)∗ : CGA → CFA. This is an
equivalence, since, given a quasi-inverse �A for αA, we obtain a quasi-inverse (�A)∗

for (αA)∗.
We now prove that α̌ is a pseudonatural equivalence. Since each αA is an

equivalence in B′ and each α̌A is a cartesian lift of αA, it suffices to prove that
any cartesian lift of an equivalence in a 1D2F is again an equivalence.

Letf : A→ B be an equivalence with quasi-inverse g : B → A, so that there exist
isomorphism 2-cellsα : 1A

∼−→gf and � : 1B
∼−→fg, and letp : P → Q be a cartesian

lift of f. By Proposition 3.3, there exists a unique morphism q : Q → P over g for
which there exists a (necessarily invertible) 2-cell 1Q

∼−→pq over � . It remains to see
that qp ∼= 1P . By Proposition 3.5, q is cartesian, and hence, by the argument we just
gave, there exists p′ : P → Q with qp′ ∼= 1P . We then have p ∼= pqp′ ∼= p′ and hence
qp ∼= qp′ ∼= 1P .

The last statement follows immediately from the construction of α̌ and the fact
that any cartesian lift of an isomorphism is an isomorphism. �

Definition 3.11. An h=-fibration C
C
↓
B

is free over B if, for any h=-fibration C′
C′

↓
B

over B, there is up to isomorphism a unique morphism C→ C′ of h=-fibrations
over B; i.e., there exists such a morphism, and for any two such, there exists a natural
isomorphism over B between them.13

In Appendix A, it is shown that there exists a free h=-fibration over any f.p.
category B.

We see from the definition that any two free h=-fibrations over B are equivalent
over B.

We will now show that any such Calso satisfies a universal property with respect

to any h=-fibration C′
C′

↓
B′

(with possibly different base B′).

Proposition 3.12. If C
C
↓
B

is a free h=-fibration over B and C′
C′

↓
B′

is any h=-

fibration, then for any f.p. functorϕ : B → B′, there exists a morphism of h=-fibrations
(Φ, ϕ) : C→ C′ over ϕ. Moreover (though we will not need this), Φ is determined
uniquely up to natural isomorphism over ϕ.

Proof. Taking the pullback (ϕ↑C′, ϕ) : ϕ∗C′ → C of C′ along ϕ, we have by
the discussion in Definition 3.7 that ϕ∗C′ is an h=-fibration. Hence, by the freeness
of C, we then have a morphism Ψ: C→ ϕ∗C′ of h=-fibrations over B. Since the
composite of morphism of h=-fibrations is again one, (ϕ↑C′ ◦ Ψ, ϕ) is as desired.

For uniqueness: given morphisms (Φ, ϕ), (Φ′, ϕ) : C→ C′ of h=-fibrations, by
the universal property of ϕ∗C′, we have morphisms Ψ,Ψ′ : C→ ϕ∗C′ over B
with Φ = ϕ↑C′ ◦ Ψ′ and Φ′ = ϕ↑C′ ◦ Ψ′. By the freeness of C, we have a natural

13In fact, a free h=-fibration over B has the (categorically natural) stronger property that for any two
morphisms C→ C′ there is a unique isomorphism between them, as our Construction A.1 will show,
but we will not need this.
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isomorphism Ψ ∼−→Ψ′ over B, and whiskering withϕ↑C′ gives a natural isomorphism
Φ ∼−→Φ′ over ϕ as desired. �

Theorem 3.13. Suppose C
C
↓
B

is a free h=-fibration, C′
C′

↓
B′

is a 1D2F which is also an

h=-fibration, (Φ, ϕ), (Ψ, �) : C→ C′ are morphisms of h=-fibrations, andα : ϕ → �
is a pseudonatural equivalence.

Then there exists a pseudonatural equivalence Φ → Ψ lying over α (which, if α is a
natural isomorphism, can be taken to be a natural isomorphism).

In particular, for eachP ∈ C over someA ∈ B, there is an equivalencep : ΦP → ΨP
lying over the equivalence αA : ϕA→ �A (note that the natural additional condition
that p have a quasi-inverse q lying over a quasi-inverse of αA, so that the associated
2-cells 1ΦP

∼−→qp and 1ΨP
∼−→pq in C lie over the corresponding ones in B—cf.

Definition 2.25—is satisfied automatically)—and if α (and hence each αA) is an
isomorphism, then p can be taken to be one as well.

Proof. To begin, we choose a cleavage of C′ (which we can do by the axiom of
choice—otherwise, we must assume explicitly that C′ admits a cleavage). Consider
the pullbacks of C′ along ϕ and �. We then have the situation depicted in
Construction 3.8, with F = ϕ and G = �. By Proposition 3.10 the morphism
α̃ : �∗C′ → ϕ∗C′ of fibrations is a fiberwise equivalence and hence, by Lemma 3.14,
a morphism of h=-fibrations.

By the definition of the pullback, we have morphisms of fibrations Φ: C→ ϕ∗C

and Ψ: C→ �∗Cover B such that ϕ↑C
′ ◦ Φ = Φ and �↑C

′ ◦ Ψ = Ψ—and by the
discussion in Definition 3.8, these are morphisms of h=-fibrations. Hence, since
the composite of morphisms of h=-fibrations over B is again one, we have that
α̃ ◦ Ψ: C→ ϕ∗C′ is a morphism of h=-fibrations. Hence, by the freeness of C, we
have a natural isomorphism � : Φ → α̃Ψ of morphisms of h=-fibrations over B:

ϕ∗C′

C C′

�∗C′

B B′.

ϕ↑C
′

ϕ∗C′

Φ

Ψ

C
C′

α̃

�

∼

�↑C
′

�∗C′

α̌

ϕ

�

α

Hence, the “pasting” of � and α̌—i.e., the composite pseudonatural transformation
(α̌ ◦ 1Ψ) ◦ (1ϕ↑C′ ◦�)—is as desired (since it is an equivalence and lies over α).

In case α is a natural isomorphism, then Proposition 3.10 says that α̌ is a natural
isomorphism, and hence so is the pasting of � and α̌. �
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Lemma 3.14. Suppose C
C
↓
B

and C′
C′

↓
B′

are h=-fibrations, and (Φ, ϕ) : C
C
↓
B
→ C′

C′

↓
B′

is a morphism of fibrations which is a fiberwise equivalence with ϕ an f.p. functor. Then
(Φ, ϕ) is a morphism of h=-fibrations.

Proof. ϕ is product-preserving by assumption, and the induced functors
CB → C′ϕB are clearly bi-cartesian closed since they are equivalences. Hence, it
only remains to see that the relevant co-cartesian morphisms and

∏
-diagrams are

preserved.
In fact, all co-cartesian morphisms and

∏
-diagrams are preserved. This follows

easily from the fact that, in the present situation, given a morphism f : A→ B in
B and objects P and Q in CA and CB , Φ induces a bijection between morphisms
P → Q lying over f and morphisms ΦP → ΦQ lying over ϕf, and moreover that
p : P → Q is cartesian if and only if Φp is. �

3.3. The abstract invariance theorem: second part. The theorem proven in the
previous section was stated with respect to an arbitrary free h=-fibration Cover an
f.p. category B. However, in practice, we are interested in the particular case of B
being a free f.p. category on a given signature �.

As mentioned above, the definition of the latter is arranged so that the f.p.
functors B → B′ correspond precisely to the interpretations � → B′, and so that
the natural isomorphisms between functors B → B′ correspond to isomorphisms of
interpretations � → B′.

However, for the purpose of the homotopy invariance for the homotopical
semantics, we will want to start with a homotopy equivalence of interpretations
� → B′—which, in the context of a general 2-category B′, corresponds to a
pseudonatural equivalence of interpretations � → B′ (Definition 3.18).

Hence, the second part of the abstract invariance theorem will show that
a pseudonatural equivalence of interpretations � → B′ induces a pseudonatural
equivalence between the induced functors B → B′. Note that this is analogous to
the first part: in both cases, we have a universal property with respect to natural
isomorphisms, and want to show that it still holds for pseudonatural equivalences.

The proof proceeds by considering a modified arrow category (B′)
∼�, such that

the f.p. functors into (B′)
∼� are pseudonatural equivalences of f.p. functors into B′,

and the �-interpretations in (B′)
∼� are homotopy-equivalences of �-interpretations

into B′; this reduces the claim to the original freeness property of B.

Definition 3.15. Given a 2-category C, we define C�, the pseudo-arrow category
of C, to have as objects functors 2 → C—i.e., 1-cells in C—and to have as morphisms
pseudonatural transformations, with composition being given by composition
of pseudonatural transformations which, as we leave to the reader to verify, is
associative and has identities

In other words a morphism α fromf1 : A1 → B1 tof2 : A2 → B2 in C� is a triple
(αA, αB, αf) with αA : A1 → A2, αB : B1 → B2, and αf : αB ◦ f1

∼−→ f2 ◦ αA.
There are obvious domain and codomain functors dom, cod: C� → C.
We define C

∼� to be the full subcategory of C� with objects the equivalences in C.
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Proposition 3.16. Given a 2-category C, if C has finite 2-categorical products (see
[8, Definition 7.1]), then the categories C� and C

∼� have finite products. Moreover,
the inclusion functor C

∼� ↪→ C�, as well as the functors dom, cod: C� → C, are f.p.
functors.

Proof. Given 1-cells g : A→ C and h : B → D and productsA× B andC ×D
in C, we will show that the morphisms g × h → g and g × h → h in C� given by
(�1, �1, 1g�1) and (�2, �2, 1h�2) exhibit g × h as a product of g and h. It follows that
dom and cod are f.p.

Given a 1-cellf : X → Y in C and morphisms (s, t, α) : f → g and (u, v, �) : f →
h in C�, we must show that there is a unique morphism (w, x, 	) : f → g × h such
that �1w = s , �2w = u, �1x = t, �2x = v, 1�1 ◦	 = α, and 1�2 ◦	 = � . Clearly, we
must take w = 〈s, u〉 and x = 〈t, v〉. Then, since C ×D is a 2-categorical product,
there is a unique 2-cell 	 : 〈gs, hu〉 → 〈tf, vf〉 such that 1�1 ◦	 = α and 1�2 ◦	 = � .

Finally, we must see that if f and g are equivalences in C, then f × g is one as
well. In fact, if f–1 and g–1 are quasi-inverses to f and g, then f–1 × g–1 is easily
seen to be a quasi-inverse to f × g. �

Proposition 3.17. Given a category C, a 2-category D, and functors F,G : C → D,
the functors F and G are pseudonaturally equivalent if and only if there exists a functor
H : C → D

∼� such that dom ◦H = F and cod ◦H = G .

Proof. The proof is by inspection, the point being that the data of a functor
H : C → D

∼� are precisely the data of a pseudonatural equivalence dom ◦H →
cod ◦H , and the condition that H be a functor is equivalent to the given data
defining a pseudonatural transformation. �

Definition 3.18. Given a signature � and a 2-category C with finite 2-categorical
products, the underlying category of C also has finite products, and we can
consider interpretations � → C. Given two such interpretations M,N : � → C,
a pseudohomomorphism α : M → N consists of a 1-cell αA : M → N for each
A ∈ Ob �, such that there exists an invertible 2-cell αB ◦Mf → Nf ◦ α �A for each
f ∈ �( �A,B) (where α �A is defined as in Definition 2.24).

A pseudonatural homomorphism α : M → N is a pseudoequivalence14 if αA is an
equivalence in C for each A ∈ Ob �. If such an α exists, we say that M and N are
pseudoequivalent.

Note that when C is the category of cofibrant-fibrant objects in a model category,
endowed with the Quillen 2-categorical structure [8, Definition 15.7], then the
notions of pseudohomomorphism and pseudoequivalence specialize to those of
homotopy homomorphism and homotopy equivalence (Definition 2.24).

Proposition 3.19. Two interpretationsM,N : � → C are pseudoequivalent if and
only if there exists an interpretation H : � → C

∼� such that dom ◦H =M and
cod ◦H = N .

Proof. Given a pseudoequivalence α : M → N , we define the interpretation
H : � → C

∼� by setting HA = αA : MA→ NA for A ∈ Ob �; H �A = α �A : M �A→

14Perhaps “pseudoisomorphism” would be more appropriate?
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N �A and �Hi = (�Mi , �
N
i , 1) for �A ∈ (Ob �)<� ; and for f ∈ �( �A,B), we take Hf to

be (Mf,Nf, �), where � : αB ◦Mf → Nf ◦ α �A is any invertible 2-cell (which exists
since αA is a pseudohomomorphism).

The proof of the converse (which we will not need) is similar; given H, we define
αA = HA for A ∈ Ob �. The fact that α satisfies the required property then follows
from the existence of the morphismsHf ∈ Ar C� forf ∈ �( �A,B), and the fact that
H �A and α �A are isomorphic (but not necessarily equal!) for each �A ∈ (Ob �)<� . �

Definition 3.20. Given a signature � and an f.p. category C, the interpretations
� → C and homomorphisms form a category in an obvious manner, which we
denote by Int(�,C).

Given two f.p. functorsF,G : C → D and a natural transformationα : F → G , we
have the interpretations F ◦M,G ◦M : � → D, and we obtain a homomorphism
α ◦M : F ◦M → G ◦M by setting (α ◦M )A = αMA.

This defines, for eachM : � → C, a functor (– ◦M ) : FPFun(C,D) → Int(�,D).
Given an interpretation i : � → C, we say that the f.p. category C is free on � (via i)

if (– ◦ i) : FPFun(C,D) → Int(�,D) is an isomorphism of categories for each f.p.
category D.15 Note that this property determines C up to isomorphism.

It is well-known that there exists a free f.p. category on any signature � (see
Proposition A.6 in Appendix A).

Theorem 3.21. Let C be a free f.p. category on the algebraic signature � via
i : � → C, and letM,N : � → D be two interpretations into an f.p. 2-category D. Then
M and N are pseudoequivalent if and only if the induced f.p. functors M̃ , Ñ : C → D
are pseudonaturally equivalent.

Moreover, for any pseudoequivalence α : M → N , there is a pseudonatural
equivalence α̃ : M̃ → Ñ with α̃iA = αA for all A ∈ Ob � (and vice versa).

Proof. We have, by definition, that M̃ ◦ i =M and Ñ ◦ i = N .
Given a pseudonatural equivalence α̃ : M̃ → Ñ , we thus have a pseudoequiva-

lence

M = M̃ ◦ i α̃◦i−−→ Ñ ◦ i = N,

where α̃ ◦ i is the pseudoequivalence given by (α̃ ◦ i)A = α̃iA for each A ∈ Ob �. To
see that (α̃ ◦ i)B ◦Mf ∼= Nf ◦ (α̃ ◦ i) �A for f ∈ �( �A,B), first note that (α̃ ◦ i)B ◦
Mf = α̃iB ◦ M̃ (if) ∼= Ñ (if) ◦ α̃i �A = Nf ◦ α̃i �A by pseudonaturality of α̃. But one
can also see that α̃i �A ∼= (α̃ ◦ i) �A using the pseudonaturality of α̃, the product-
preservation of N, and the 2-categorical universal property of the product N �A,
and hence Nf ◦ αi �A ∼= Nf ◦ (α ◦ i) �A.

Conversely, given a pseudoequivalence α : M → N , we have by Proposition 3.19
an interpretation H : � → D

∼� with dom ◦H =M and cod ◦H = N . Hence, we
have an induced f.p. functor H̃ : C → D

∼� with H̃ ◦ i = H and hence

(dom ◦H̃ ) ◦ i =M and (cod ◦H̃ ) ◦ i = N

15It would be more natural, perhaps, to demand that this is only an equivalence, and not an
isomorphism, but it will be convenient to assume the stronger property.

https://doi.org/10.1017/jsl.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.68


40 JOSEPH HELFER

(here, we are using that composition of f.p. functors is associative with composition
of an interpretation and an f.p. functor). Hence, using the freeness of C again, we
have dom ◦H̃ = M̃ and cod ◦H̃ = Ñ . By Proposition 3.17, we have a pseudonatural
equivalence α̃ : dom ◦H̃ → cod ◦H̃ , and hence we obtain the desired pseudonatural
equivalence

M̃ = dom ◦H̃ α̃−→ cod ◦H̃ = Ñ .

The “moreover” statement is clear from the two constructions just given. �

3.4. The special invariance theorem. We now show how to derive syntactic
conclusions from the abstract invariance theorem. This follows the general pattern
in abstract/categorical logic (described, for example, in [22]) of a theorem about
syntax and a purely algebraic theorem being related by an appropriate “translation”
theorem, describing the relationship between the algebraic structures and the syntax
being considered.

In the present case, if we were to follow the usual procedure, this would involve

showing that the free f.p. category B on a signature � and the free h=-fibration C
C
↓
B

over B can be constructed “out of the syntax” of first-order logic over �—specifically,
in such a way that the morphisms of B are given by the �-terms, and the objects of
C by the formulas (the morphisms then being certain equivalence classes of formal
deductions).

In Appendix A, we will (mostly) show that C indeed admits such a description.
However, for the purposes of deriving the special invariance theorem from the
abstract one, this description is actually not needed; we only need the existence
of the free f.p. category B and h=-fibration C. That is, the only thing we use about
these objects is their defining universal property, and nothing else. We would only
need the full syntactic description of C if we wanted to go in the other direction
and deduce the abstract invariance theorem from the syntactic one (this would also
require “packing more” into the syntactic invariance theorem than is really natural
from the syntactic point of view).

The reason that we don’t need the syntactic description of C is that, even without
it, we can still interpret logic over � into C, and transport this interpretation along
any morphism of h=-fibrations C→ C′. Knowing that two such morphisms are
pseudonaturally equivalent is then enough to deduce the desired invariance property
for the resulting interpretations in C′.

We first work in the context of a general h=-fibration C′ (which automatically
inherits a 1D2F structure from the results of [8]), showing that the abstract
invariance theorem implies a syntactic invariance theorem for interpretations in
C′, involving the 2-categorical structure. We then deduce the invariance theorem for
the homotopical semantics by specializing to the case C′ = HoFf (Kan).

This involves translating between the 2-categorical structure on HoFf (Kan) and
the model structure on Kan (or rather sSet). The main point is that the resulting
2-categorical structure on Kan is the same as the Quillen 2-categorical structure, as
was proven in [8, Part IV]. However, we also need to know that the 2-cells in the
total category of HoFf (Kan) are given by homotopies lying over homotopies in the
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base, as defined in Section 2.4. This result really “should” have been included in op.
cit., but it was not, so we prove it here.

Theorem 3.22. Let � be a signature, let C′
C′

↓
B′

be an h=-fibration, and let

(M̂ ,M ), (N̂ ,N ) : � → C′ be interpretations in C′.
Now suppose that C′ has a 1D2F structure such that B has 2-categorical products

( for example, it could be the “universal” 1D2F structure from [8]).
Then given any pseudoequivalence α : M → N , there exists, for each formula-in-

context (ϕ, �x) over �, an equivalence M̂ �x(ϕ) → N̂ �x(ϕ) in C′ lying over the equivalence
αtp �x : M ( �x) → N ( �x) in B′.

Proof. Let B be a free f.p. category on � (via i : � → B) and let C
C
↓
B

be a free

h=-fibration over B.
By the universal properties of each of these (and Proposition 3.12), we have

f.p. functors ϕ,� : B → B′ with ϕ ◦ i =M and �f ◦ i = N , and morphisms
(Φ, ϕ), (Ψ, �) : C→ C′ of h=-fibrations over ϕ and �.

Now let α : M → N be a pseudoequivalence. By Theorem 3.21, we have a
pseudonatural equivalence α̃ : ϕ → � with α̃iA = αA for A ∈ Ob �, from which it
follows that α̃i �A ∼= α �A for �A ∈ (Ob �)<� , as explained in the proof of that theorem.

Next, by Theorem 3.13, we have for each A ∈ B and P ∈ C an equivalence
�P : ΦP → ΨP in C′ lying over the equivalence αA : MA→ NA in B′.

Now let ı̂ be an interpretation in Cover i. Then Φ ◦ ı̂ and Ψ ◦ ı̂ are interpretations
in C′ over M and N, and hence are isomorphic to M̂ and N̂ , respectively.

Given a formula-in-context (, �x), we have the object ı̂ �x() in C, and hence
an equivalence �ı̂ �x () : Φ(ı̂ �x()) → Ψ(ı̂ �x()) over the equivalence α̃i( �x) : M ( �x) →
N ( �x). Using the isomorphisms Φ(ı̂ �x()) ∼= M̂ �x() and Ψ(ı̂ �x()) ∼= N̂ �x() over
M ( �x) and N ( �x), and the isomorphism α̃i( �x)

∼= αtp �x , it follows that there is also
an equivalence M̂ �x() → N̂ �x() over the equivalence αtp �x , as desired. �

Theorem 3.23. Let C be a model category, and consider the h=-fibration

HoFf (Cf ) with its 1D2F structure from [8, Theorem 6.11]. Let A Bα

f

g

be

a 2-cell in Cf with A cofibrant. According to [8, Section 15], such a 2-cell is given by a
homotopy class of homotopies f → g.

Next, let (p,f), (q, g) : (X,A, x) → (Y,B, y) be morphisms in (C→)f (i.e., mor-
phisms in C→ with x and y fibrant—note that we are using, as usual, the model
structure on C→ from [8, Definition 11.1], not the one referenced in the proof of
Proposition 2.26) and assume X is cofibrant.

X Y

A B.

p

q
x y

f

g
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Recall from [8, Definition 11.7] that we write 	(p,f), 	(q, g) : (X,A, x) → (Y,B, y)
for the images of (p,f) and (g, q) in Ho(C→)f .

We now claim that there exists a 2-cell 	(p,f) → 	(q, g) over α if and only if there
is a homotopy from p to q over α, regarded as a homotopy (class of homotopies) from
f to g (this only depends on the homotopy class α by Proposition 2.26).

Proof. Let k : A→ BI be a representative of α.
We first unwind the definition of the 2-cells in the total category of HoFf (Cf ). Let

us write P and Q for (X, x) and (Y, y), respectively. By definition (see [8, Theorem
6.11 and Definition 6.4]), there exists a 2-cell 	(p,f) → 	(q, g) if and only if the
diagram

�∗1Q ∧ EqB

P �∗2Q

A B × B

subQB

	(q,g)

〈〈	(p,f),α!〉〉

〈f,g〉

commutes. Now, inserting the definitions of P and Q, and of the pullback functors
�∗1 and �∗2 and the equality object EqB in the ∧=-cloven ∧=-fibration HoFf (Cf )
(see [8, Section 15.1]), this is the same as diagram on the left below (where, for
conciseness, we are identifying objects and morphisms in C→ with their domains),
where the fiber product Y ×B BI is taken with respect to d1 : BI → B .

Y ×B BI

X B × Y

A B × B

subQB

	(〈fx,q〉)

	(〈p,kx〉)

〈f,g〉

Z

X B × Y

A B × B

�

〈fx,q〉

z

〈f,g〉

(3.1)

We would now like to reformulate the commutativity of this diagram in simpler
terms.

Note that the morphism 〈y, sy〉 : Y → Y ×B BI is a weak equivalence, since
composing it with the trivial fibration �1 : Y ×B BI → Y (which is pulled back
from the trivial fibration d1 : BI → B) yields 1Y . Hence, we may factor it as a trivial

cofibration followed by a trivial fibration Y i−→ Z �−→ Y ×B BI ; we consider Z an
object overB × B via (1B ×y)�. Next, suppose we have a morphism � : Z → B × Y
over B × B such that 	(�)	(�)–1 = subQB (we will find such a � below).

Now choose a lift z : X → Z of 〈p, kx〉 along �. Since (X,A, x) is cofibrant and
(B × Y,B × B, 1×y) fibrant, the commutativity of the diagram on the left above is
then equivalent to the commutativity of the diagram on the right up to homotopy in
C→. As remarked at the end of Definition 2.25, this is equivalent to �z and 〈fx, q〉
being homotopic over the trivial homotopy from 〈f, g〉 to itself. Since we must have
�1�z = fx, this is in turn equivalent to �2�z and q being homotopic over the trivial
homotopy from g to itself.
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We conclude that the left side of the equivalence in the theorem statement is
equivalent to �2�z and q being homotopic over the trivial homotopy from g to itself.

We still need to define �. To do so, first consider a pullback (Y × Y ) ×B×B BI
with respect to y × y and 〈d1, d2〉, and factor 〈ΔY , sy〉 : Y → (Y × Y ) ×B×B BI

as a trivial cofibration and fibration Y s−→ YI 〈〈d1,d2〉,yI 〉−−−−−−−→ (Y × Y ) ×B×B BI (thus
producing the situation in the last diagram of (2.1) in Definition 2.25) and choose
a diagonal filler j in the following square.

Y YI

Z Y ×B BI
i

s

〈d1,y
I 〉

�

j

Now define � = 〈yd1, d2〉j : Z → B × Y (note that this is indeed a morphism over
B × B). Let us verify that it satisfies the required condition 	(�)	(�)–1 = subQB .
By the definition of subQB , this means that the triangle below on the left should
commute in Ho(C→)f , or equivalently, that the isomorphic diagram in the center
should commute. But in fact, the diagram on the right in C→ already commutes
before applying 	.

Y ×B BI

Y B × Y

A B × B

	(�)	(�)

	(〈y,1Y 〉)

	(〈y,sy〉)

〈f,g〉

Z

Y B × Y

A B × B

	(�)

	(〈y,1Y 〉)

	(i)

〈f,g〉

Z

Y B × Y

A B × B

�

〈y,1Y 〉

i

〈f,g〉

Now, since (by definition) �z = 〈p, kx〉 : X → Y ×B BI , the composite jz : X →
YI gives a homotopy from p to d2jz = �2�z over k. Hence, by Proposition 2.26, we
conclude that p and q are homotopic over k if and only if q and �2�z are homotopic
over the trivial homotopy on g, as desired. �

Theorem 3.24. Let C be a suitable model category and let M,N : � → Cf be
�-interpretations, and suppose we have a homotopy equivalence α : M → N .

Then, given homotopical �-interpretations M̂ and N̂ over M and N, there exists,
for each formula-in-context (ϕ, �x) over �, a homotopy equivalence M̂ �x(ϕ) → N̂ �x(ϕ)
over the homotopy equivalence αtp �x : M ( �x) → N ( �x).

Proof. As remarked in Definition 3.18, a homotopy equivalence of �-
interpretations in Cf = Ccf is the same thing as a pseudoequivalence with respect to
the Quillen 2-category structure. Moreover, it follows from Theorem 3.23 that there
is a homotopy equivalence M̂ �x(ϕ) → N̂ �x(ϕ) over the homotopy equivalence αtp �x
if and only if there is an equivalence M̂ �x(ϕ) → N̂ �x(ϕ) over the equivalence αtp �x in
the 1D2F HoFf (Cf ).

Since, by Proposition 2.23, 	 ◦ M̂ and 	 ◦ N̂ are �-interpretations in HoFf (Cf )
over M and N, the claim now follows from Theorem 3.22. �
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§4. Examples and further questions. We now give some examples of sentences
and their interpretation under the homotopical semantics. In each case, we fix some
algebraic signature � and a �-interpretation M in Kan (or in Topc—the category
of topological spaces which are homotopy equivalent to a CW complex—and then
consider the interpretation Sing ◦M , as discussed in Section 2.5). We then take
some first-order sentence over this signature and see what it means for it to be
satisfied in M (or in the case of Topc, in Sing ◦M )—i.e., for its interpretation to
be a non-empty space with respect to any homotopical interpretation M̂ over M
(or Sing ◦M ).

Though the notion of satisfaction in M is independent of the choice of
homotopical interpretation M̂ , it will be convenient to use this freedom to choose
a particular such M̂ , where we recall that (up to isomorphism) our only freedom
is in the choice of equality objects; we take these to be the “standard” path-spaces
XI → X × X in sSet, where I is the simplicial interval Δ1.

After the examples, we consider some further questions regarding the material of
this paper.

4.1. Examples of interpretations of sentences.

4.1.1. Contractibility. First, we consider the signature � consisting of a single
sort A and having no operation symbols, and the sentence in this language

∃x ∀y (x = y).

We claim that this is interpreted under the semantics as “A is contractible.”
Fix a �-interpretation in Kan, i.e., a Kan complex X.
Now, the formula x = y in the context 〈x, y〉 is interpreted as the path-space

fibration XI
〈d1,d2〉−−−−→ X × X . Next, the formula ∀y (x = y) is interpreted as an

indexed product
∏
�1

(XI , 〈d2, d2〉). Finally, ∃x ∀y (x = y) is interpreted (as always,
up to isomorphism) as the domain of

∏
�1

(XI , 〈d2, d2〉).
Hence, we are interested in when the domain of

∏
�1

(XI , 〈d1, d2〉) is non-empty.
This will hold if and only if there is a morphism (1sSet, x) →

∏
�1

(XI , 〈d1, d2〉) in
sSet/X for some x : 1sSet → X . By the adjunction (Remark 2.6), this is equivalent to
having a morphism from �∗1 (1sSet, x) ∼= (X, 〈x! , 1X 〉) to (XI , 〈d1, d2〉) in C/X × X :

XI

X X × X.
〈d1,d2〉

〈x!,1X 〉

But this is by definition a (right-)homotopy between X and the constant map x!,
i.e., a contraction of X onto x.

If we start with a topological space X ∈ Topc instead of a Kan complex, then
the above shows that X satisfies the sentence in question if and only if the singular
simplicial set of X is contractible. But as is well-known, this holds if and only if X
itself is contractible.
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4.1.2. Homotopies. Now let � be the signature consisting of two sorts A,B and
two function symbols f, g : A→ B . We consider the sentence

∀x ∈ A (f(x) = g(x)).

We claim that this is interpreted as “f is homotopic to g.”
Suppose we have a �-interpretation in Kan; that is, two Kan complexes X,Y , and

two morphisms f, g : X → Y . The formula y1 = y2 (in the context 〈y1, y2〉) will

(again) be interpreted as the path-space fibration YI
〈d1,d2〉−−−−→ Y × Y . Now, we have

the morphism 〈f, g〉 : X → Y × Y , and f(x) = g(x) (in the context 〈x〉) will be
interpreted as 〈f, g〉∗(YI , 〈d1, d2〉). Finally, the above sentence will be interpreted
as

∏
! 〈f, g〉

∗(YI , 〈d1, d2〉), the points of which are (by the adjunction) in bijection
with the sections of 〈f, g〉∗(YI , 〈d1, d2〉), which are in turn in bijection with the lifts

YI

X Y × Y
〈d1,d2〉

〈f,g〉

which are, of course, by definition (right-)homotopies f ∼ g.
For a �-interpretation in Topc, i.e., a pair of maps f, g : X → Y , we thus see that

the above sentence is satisfied if and only if Sing(f) and Sing(g) are homotopic and,
again, this is the case if and only if f and g are homotopic.

Now considering a signature with two sorts A,B and two function symbols
f : A→ B and g : B → A, we have by the same reasoning as above that

∀x ∈ A (g(f(x)) = x) ∧ ∀y ∈ B (f(g(y)) = y)

is interpreted (in both Topc and Kan) as “f and g constitute a homotopy equivalence”
(i.e., both composites are homotopic to the identity).

Similarly, for the signature consisting of a single sort A and binary function
symbol f : A× A→ A,

∀x, y, z ∈ A [f(f(x, y), z) = f(x,f(y, z))]

is interpreted as “f is homotopy-associative.”

4.1.3. Classical logic. We now give an example showing that the homotopical
semantics are not sound with respect to classical logic. By this we mean that there
is a formula of the form ¬¬P⇒P over some signature � and a �-interpretation (in
Topc and Kan) under which the interpretation of this formula is empty.

First, we note that it is important that P is not a closed formula. Indeed, a
closed formula is interpreted as a Kan complex X, and its negation is interpreted
as an empty Kan complex or one-point Kan complex according to whether X is
non-empty or empty. From this it follows that the interpretation of ¬¬P⇒P (and
similarly P ∨ ¬P) is always non-empty. This circumstance is familiar, for example,
from Kleene’s realizability semantics for intuitionistic arithmetic.
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Now, for our example, we consider, in the signature � consisting of a single sort
A and no function symbols, the sentence

(∃x ∀y (¬¬x = y))⇒(∃x ∀y (x = y)). (4.1)

Given a structure X (in Kan or Topc) for� we have already seen that the interpretation
of the right side of this implication is inhabited if and only if X is contractible. Let
us consider the left side. We first consider the case of X in Kan. We will show that
this sentence is satisfied if and only if X is non-empty and path-connected (i.e., for
any vertices x, y ∈ X0 there is an edge e ∈ X1 from x to y).

We have, again, that x = y is interpreted as the path space (XI , 〈d1, d2〉). We
recall that ¬¬x = y is an abbreviation of (x = y⇒⊥)⇒⊥. Here, ⊥ is interpreted as
the initial Kan fibration (∅, ¡, X ).

Now, it easy to see that in any category (such as Kan/X ) with a strong initial
object 0 (i.e., every morphism with codomain 0 is an isomorphism), any exponential
object A⇒0 is a subsingleton (i.e., the morphism !A⇒0 to the terminal object is a
monomorphism). Since there exists a morphism A→ ((A⇒0)⇒0), it follows that
the unique morphism A→ 1 factors through (A⇒0)⇒0.

In the case of a Kan fibration (E, e) in Kan/X , this tells us that ¬¬(E, e) is a
monomorphism into X whose image contains the image of e. In particular, if E is
surjective onto X, then ¬¬(E, e) is an isomorphism.

Now, if X is path-connected, then the path spaceXI is clearly surjective on vertices.
But as an easy inductive argument shows, any Kan fibration which is surjective on
vertices is surjective. Hence, for X path-connected, ¬¬x = y is interpreted as an
isomorphism, whence it follows that, for X non-empty and path-connected, the
following sentence is satisfied.

∃x ∀y (¬¬x = y). (4.2)

For the other direction, it suffices to see that if a Kan fibration (E, e) in Kan/X is not
surjective, then neither is¬¬(E, e), since if¬¬x = y is interpreted as a non-surjective
morphism, the interpretation of (4.2) must be empty. Suppose e is not surjective and
let p ∈ X0 be a vertex not in the image of e. Then the minimal sub-simplicial set 〈p〉
of X containing p is disjoint from the image of e. Hence (〈p〉, i) ∧ (E, e) ∼= 0, where
i : 〈p〉 → E is the inclusion, so we have a morphism (〈p〉, i) → ¬(E, e). In particular,
(〈p〉, i) ∧ ¬(E, e) is non-empty, so there cannot be a morphism (〈p〉, i) → ¬¬(E, e).

Note that by the same kind of argument as in the previous examples, we also
have that the interpretation of the sentence (4.2) in Topc is “A is non-empty path-
connected.”

Now suppose X is a Kan complex or a topological space in Topc which is path-
connected but not contractible (for instance, the circle). Then the sentence (4.1) is
interpreted as a non-empty Kan complex, whereas the conclusion is interpreted as
the empty Kan complex. Hence the implication is empty.

Finally, we note that this implies that (the universal closure of)

¬¬x = y⇒x = y

cannot be satisfied for such an X since this would imply (by the soundness of the
interpretation with respect to intuitionistic logic) that (4.1) would also be satisfied.
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4.1.4. Homotopy-equivalence. We saw above that we can easily express that two
morphisms constitute a homotopy equivalence, in the same way as we would
classically express that they constitute a bijection. We can also classically express
that a single function f : A→ B is a bijection by

∀b ∈ B ∃a ∈ A (fa = b ∧ ∀a′ ∈ A (fa′ = b⇒a′ = a)).

Let us see that the interpretation of this sentence (in Kan, and hence in Topc) is
non-empty if and only if the interpretation of f is a homotopy equivalence.

First of all, the sentence is equivalent to the conjunction of

∀b ∈ B ∃a ∈ A (fa = b) and ∀b ∈ B ∃a ∈ A ∀a′ ∈ A (fa′ = b⇒a′ = a).

The same reasoning as in Section 4.1.2 shows that the first part is satisfied by a map
f : X → Y if and only if there exists a map g : Y → X such thatf ◦ g is homotopic
to 1Y .

The second part, with the quantifiers removed, is interpreted as a certain fibration
over Y × X × X . By making use of the relevant adjunctions, we can see that the
space which is the interpretation of the quantified sentence is inhabited if and only
if there exist a map g : Y → X and a dotted lift in the following diagram.

Y × XI

(Y × X ) ×Y×X×X (X × (X ×Y Y I )) Y × X × X

〈�1,d2�2,d1�2〉
k

Here, in X ×Y Y I , X is mapping to Y via f and YI is mapping to Y via d1; and in
the object on the bottom-left of the diagram, Y × X is mapping to Y × X × X via
〈�1, g�1, �2〉, and X × (X ×Y Y I ) is mapping to Y × X × X via 〈d2�2�2, �1, �1�2〉.

We claim that such a lift exists if and only if g ◦ f is homotopic to 1X .
In one direction, we have a map q : X → (Y × X ) ×Y×X×X (X × (X ×Y Y I ))

which is given by 〈〈f, 1X 〉, 〈gf, 〈1X , sf〉〉〉 (where s is, as usual, the canonical map
Y → YI ). Hence, given a lift k as above, the composite �2kq gives a homotopy
X → XI from 1X to gf.

In the other direction, suppose we have a homotopy h : X → XI from 1X to gf.
We then define k as 〈�1�1, h

′〉, where h′ is the composite

(Y × X ) ×Y×X×X (X × (X ×Y Y I ))
〈h�2�1,g

I �2�2�2〉−−−−−−−−−−→ XI ×X X I → XI

in which the second map is composition of paths.

4.2. Further problems and questions. We mention some possible further
directions.

4.2.1. Completeness. This is probably the most natural question to ask about the
homotopical semantics: are they a complete semantics for intuitionistic logic? I.e.,
is it the case that, if a sentence ϕ over a signature � is satisfied by every �-structure
in Kan, then ϕ is intuitionistically provable?
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And if it is not complete for intuitionistic logic, then (as was pointed out to me
by Thomas Icard) we can still try to characterize the “intermediate” logic between
intuitionistic and classical for which it is complete.

4.2.2. Limited expressivity. We mentioned at the end of Section 1.1 that first-
order homotopical logic is much less expressive than homotopy type theory.
However, we have not proven that any particular property is inexpressible, and
it would be interesting to do so—for example, to prove that over the trivial signature
with a single sort A and no function symbols, there is no sentence ϕ satisfied by
exactly those spaces X which are simply connected. Or to give another example,
there should be no sentence over the signature consisting of one sort and a single
binary operation which is satisfied exactly by those operations satisfying the “A4”
(or “Stasheff pentagon”) condition.

4.2.3. Higher-dimensional generalizations. Given this lack of expressiveness, it is
natural to seek extensions of first-order logic which increase the expressiveness. For
example, one could add some, but not all, of what is present in type theory—say, an
additional sort s =A t for any two terms s and t of sort A, so that one could express
that “two homotopies are homotopic”: e =s=At e

′.
One would hope to have a nice categorical formulation of the corresponding

semantics, as we have for first-order homotopical logic. Indeed, it is also natural to
seek “higher-dimensional” generalizations of the fibrational semantics. For example,
the fact that we can only express “one level” of homotopies in the language seems
to correspond to the fact that the fibrations we are considering are (“only”)
two-dimensional. On the “semantic” side, there are natural higher-dimensional
categories close at hand—for example, instead of having the fibers of HoF(C) be
the homotopy categories of the slices C/A, one could try to take the corresponding
∞-categories (or some truncation thereof). We might then seek a higher-dimensional
analogue of the syntactic fibration, morphisms out of which would give the semantics
for such “higher-dimensional” extensions of first-order logic.

4.2.4. Relationship to univalence. Steve Awodey and Ulrik Buchholtz (indepen-
dently) suggested an interesting alternative approach to proving the homotopy
invariance of the homotopical semantics for first-order logic by working within
HoTT.

Namely, in that context, we could understand the homotopical semantics to
simply assign a typeM (ϕ) to each sentence ϕ, given a structure M defined within
type theory. The homotopy invariance should then say that given an isomorphic
structureM ′ ∼=M , we should haveM (ϕ) ∼=M ′(ϕ).

But using an appropriate version of univalence (or rather, a “structure-identity
principle” [30, Section 9.8]), one would then conclude thatM =U M

′ (U being an
appropriate type with M,M ′ : U), from which we immediately conclude M (ϕ) =
M ′(ϕ).

Appendix A. The syntactic fibration The main purpose of this appendix is to
construct a free h=-fibration Cover any f.p. category B. When B is itself a free f.p.
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category on some signature �, this is the “syntactic” fibration associated with �, such
that the morphisms out of it into some fibration C′ correspond to interpretations
of � in C′.

The construction of C closely parallels the analogous construction for proposi-
tional logic from [7], to which we refer for a thorough discussion of and motivation
behind the construction.

In op. cit., the construction (which is of a category and not a fibration) is
directly “syntactic”; the objects of the category are propositional formulas, and
the morphisms are equivalence classes of logical deductions.16 In an earlier version
of this paper, we similarly provided a “syntactic” construction of C (which in
particular could only be carried out in the case that B is free), but in the present
version, we provide a more direct construction, in line with the usual construction
of free structures.

We note that in op. cit, the “direct” construction and the “syntactic” construction
are one and the same. This is because of the observation due to Lambek that
the inference rules of intuitionistic propositional logic precisely correspond to the
universal properties of the operations in a bicartesian closed category.

In the case of intuitionistic first-order logic, there is an analogous situation (this
being an observation of Lawvere), but with h=-fibrations instead of bicartesian
closed categories. The reason that the two constructions of the free h=-fibration are
no longer identical is that there is a slight discrepancy between the syntax of first-
order logic (as it is usually construed) and the operations in a fibration; in the latter,
“substitution” (i.e., pullbacks) is a “primitive” operation, whereas in the syntax it is
not, and also, the fibrational and syntactic treatments of equalities and quantifiers
differs slightly as well.

This complicates considerably the task of showing that the “syntactically”
constructed fibration is in fact an h=-fibration, and that it is free. This—in addition
to the advantage of it working over arbitrary B—is why we opt here for the direct
construction.

On the other hand, the advantage of the syntactic construction is that it makes
it clear that the morphisms are precisely equivalence classes of deductions, and this
fact is obscured in the present construction. It is still “almost” obvious from the
construction (the only problem being the discrepancies mentioned above between
the syntax and the h=-fibration operations), but to actually prove it is non-trivial,
and we do not attempt to do so, though we discuss the matter in Section A.3.

We will, however, show the weaker result that, for two objects P and Q in the
free h=-fibration corresponding to given formulas ϕ and �, there exists a morphism
P → Q if and only if ϕ⇒� is intuitionistically provable.

A.1. The free h=-fibration over an f.p. category B. We now construct the free
h=-fibration over an arbitrary finite product category B. As we have mentioned,
this notion of freeness is given by a certain universal property which determines the
fibration up to equivalence over B.

16Though note that their construction is with respect to an arbitrary theory over the given
propositional language, whereas ours only covers the “empty theory.”
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However, the construction will proceed by producing (in the standard way) a
structure which is free in the stricter (“0-categorical”) sense (thus determining it up
to isomorphism—though we will not make use of this fact).

To perform the latter construction, we will have to specify what kind of free
structure we want to construct, and for this we will deploy the notion of multi-
sorted algebraic signature in a different way than in the rest of the paper (but in the
same way as in [7]); in particular, in this case, we will be concerned with ordinary
set-based structures for the signature, rather than ones valued in simplicial sets or
in other categories.

Definition A.1.1. We recall the standard construction of an initial structure (or
free structure with no generators) on a multi-sorted algebraic signature �, which we
will use twice in what follows.17

Recall from Definition 2.18 that the set of terms over � was defined relative
to a fixed infinite set Varn of variable names. In fact, the set thus constructed—
or better, the Ob �-indexed family of sets—is precisely the free �-structure on the
(Ob �-indexed) set Var� = Ob � × Varn. If we instead take Varn = ∅—or, what
amounts to the same thing—if we take only the closed �-terms (those not having any
free variables)—we obtain the definition of the initial �-structure. This structure is
characterized up to isomorphism by an obvious universal property—this is precisely
the “principal of structural recursion” mentioned in Definition 2.18. As was said
there, we will freely make use of this—as well as the corresponding principle of
structural induction—when dealing with the initial �-structure.

We will also need to make use of the initial model of an algebraic theory—i.e., of
an algebraic signature � together with a set of identities, each identity being given by
a pair of �-terms of the same sort. Concretely, this initial model is obtained as the
quotient of the initial �-structure by a certain equivalence relation: to begin with,
we have a relation R consisting of all pairs of closed terms obtained by substituting
arbitrary closed terms for the variables in each of the given identities. We then take
the least congruence relation containing R, i.e., the least equivalence relation ∼
satisfying ft1 ... tn ∼ ft′1 ... t′n whenever t1 ∼ t′1, ... , tn ∼ t′n for any function symbol
f of �.

Again, this structure has a universal property, now with respect to all �-structures
satisfying the given identities.

Construction A.1. Let B be a finite product category. We will define the free h=-
fibration over B in terms of initial structures on certain signatures associated with B.

To begin with, we describe a certain multi-sorted algebraic signature �B associated
with B. For the set of sorts, we set Ob �B := Ob B, and it has function symbols:

(i) 
A,⊥A ∈ �B(∅, A) for each A ∈ B and EqΔ ∈ �B(∅, B) of sort B for each
diagonal morphism Δ: A→ B in B,

(ii) ∧A,∨A,⇒A ∈ �B(〈A,A〉, A) for each A ∈ B,
(iii)

∏
�,

∑
� ∈ �B(A,B) for each product projection � : A→ B in B and f∗ ∈

�B(B,A) for each morphism f : A→ B in B.

17We note that one can also prove the existence of such structures using the adjoint functor theorem,
but we will need to make use of the details of the explicit construction.
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Let Ob C be the initial structure on the above signature, as described in Definition
A.1.1 and, for A ∈ B, denote by Ob CA its set of elements of sort A (the notation
will be justified soon).

Next, we describe a second algebraic signature �′B whose set Ob �′B of sorts is
the set of triples (P,Q,f), with P ∈ CA and Q ∈ CB for some A,B ∈ B, and with
f : A→ B a morphism in B.

The function symbols of this signature are given schematically below (compare
[7, p. 210]). Each figure indicates a set of operations, one for each of the possible
values of the relevant parametersA,B,C,f, g, P,Q,R, S, T,Δ, A′, B ′, �, �′, h, k. The
range of these parameters is given as follows: A,B,C ∈ Ob B; f : A→ B and
g : B → C are morphisms in B; P,Q,R ∈ Ob CA, S ∈ Ob CB , and T ∈ Ob CC ;
Δ: A→ B is a diagonal morphism; and finally, A′, B ′, �, �′, h, k are objects and
morphisms in B forming a pullback square

A′ B ′

A B

�′

h

�
k

�

with � (and hence �′) a product projection.
Each figure below displays, above the horizontal line, the arity of the operation,

and below, the codomain sort, and also introduces a notation for the function
symbol (i.e., recalling that normally, for a function symbol f and terms t1, ... , tk
of the appropriate sorts, we write ft1 ... tk for the resulting term, we introduce an
alternative notation for ft1 ... tk). To indicate that a term p is of sort (P,Q,f), we
write p : P −→

f
Q. If the subscript f is omitted, it is assumed to be 1A.

Category and fibration structure:

1P : P −→ P

p : P −→
f
S q : S −→

g
T

q ◦ p : P −→
gf
T f↑S : f∗S −→

f
S

p : P −→
gf
T

pf,g : P −→
f
g∗T

Finite products and coproducts:

!P : P → 
A ¡P : ⊥A → P

�PQ : P ∧Q → P �′PQ : P ∧Q → Q
p : P → Q q : P → R
〈p, q〉 : P → Q ∧R

κPQ : P → P ∨Q κ′PQ : Q → P ∨Q
p : P → R q : Q → R

[p, q] : P ∨Q → R

Exponentials:

εPQ : (P⇒Q) ∧ P → Q
p : P ∧Q → R
p∼ : P → Q⇒R
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Indexed products and sums:

εΠ
�,P : �∗

∏
� P −→

1A
P

p : �∗S −→
1A
P

�p : S −→
1B

∏
� P P↑� : P −→

�

∑
� P

p : P −→
�
S

p :
∑
� P −→

1B
S

Equality objects:

�Δ : 
A −→
Δ

EqΔ

f : 
A −→
Δ
S

�f : EqΔ −→
1B
S

Stability of the operations under pullbacks

inv�A : 
A′ −−→
1A′
h∗
A inv⊥A : h∗⊥A −−→

1A′
⊥A′

inv∧PQ : h∗P ∧ h∗Q −−→
1A′
h∗(P ∧Q) inv∨PQ : h∗(P ∨Q) −−→

1A′
h∗P ∨ h∗Q

inv⇒
PQ : h∗P⇒h∗Q −−→

1A′
h∗(P⇒Q)

invΣ
��′hk : k∗

∑
� P →

∑
�′ h

∗P invΠ
��′hk :

∏
�′ h

∗P → k∗
∏
� P

Next, we will define certain identities defined over �′B.
Each figure below represents a set of identities, one (or more) for each possible

value of the relevant parameters A,B,C,f, g, P,Q,R, S, T,Δ, A′, B ′, �, �′, h, k,D,
g ′, T ′. The range of these parameters is as above, and in addition, D ∈ Ob B, g ′ is
a morphism C → D, and T ′ ∈ Ob CD .

We introduce certain abbreviations: under “Exponentials,” we write x ∧ y for
〈x ◦ �PQ, y ◦ �′PQ〉; under “Stability of the operations under pullbacks,” for an

expression x : X −→
1A
Y , we write h∗x for x ◦ h↑Y

1A′ ,h , and similarly with �∗x under

“Indexed products and sums”; finally, under “Stability of the operations under
pullbacks,” we write “X = Y –1” as a shorthand for the two identities Y ◦ X = 1W
and X ◦ Y = 1Z with appropriate W and Z.

Category:

p : P −→
f
S q : S −→

g
T r : T −→

h
T ′

p ◦ 1P = p 1S ◦ p = p (r ◦ q) ◦ p = r ◦ (q ◦ p)

Fibration:

p : P −→
gf
T

g↑T ◦ pf,g = p

p : P −→
f
g∗T

g↑T ◦ p
f,g

= p
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Finite products and coproducts:

p : P → 
A
p =!P

p : ⊥A → P
p = ¡P

p : P → Q q : P → R
�QR ◦ 〈p, q〉 = p �′QR ◦ 〈p, q〉 = q

p : P → Q ∧R
〈�QR ◦ p, �′QR ◦ p〉 = p

p : P → R q : Q → R
[p, q] ◦ κPQ = p [p, q] ◦ κ′PQ = q

p : P ∨Q → R
[p ◦ κPQ, p ◦ κ′PQ] = p

Exponentials:

p : P ∧Q → R
εQR ◦ (p∼ ∧ 1Q) = p

p : P → (Q ⇒ R)
(εQR ◦ (p ∧ 1Q))∼ = p

Indexed products and sums:

p : �∗S −→
1A
P

εΠ
�,P ◦ �∗�p = p

p : S −→
1B

∏
� P

�(εΠ
�,P ◦ �∗p) = p

p : P −→
�
S

p ◦ P↑� = p

p :
∑
� P −→

1B
S

p ◦ P↑� = p

Equality objects:

p : 
A −→
Δ
S

�Δ ◦ (�p) = p

p : EqB −→
1B
S

�(p ◦ �Δ) = p

Stability of the operations under pullbacks

inv�A ◦!h∗�A = 1h∗�A ¡h∗⊥A ◦ inv⊥
A = 1h∗⊥A

〈h∗�PQ, h∗�′PQ〉 = (inv∧
PQ)–1 [h∗κPQ, h∗κ′PQ] = (inv∨

PQ)–1

h∗εQR ◦ inv∧(Q→R)Q = (inv⇒
QR)–1

(�↑P) ◦ (h↑P)
�′,k

= (invΣ
��′hk)–1 �

(
h∗εΠ

�,P ◦ (k↑
∏
�P) ◦ (�′↑(k∗

∏
�P))

h,�
1A′ ,h)

= (invΠ
��′hk)–1

We now consider the initial model of the algebraic theory given by the above

signature and identities, and we define a fibration C
C
↓
B

by taking the set of objects

of C to be Ob C (as defined above)—and in particular taking the objects in the fiber
over A ∈ B to be Ob CA (as defined above). Next, for a morphism f : A→ B in B
and objectsP ∈ Ob CA andQ ∈ Ob CB , we take the set of morphismsP → Q lying
over f to be the set of elements of this initial model of sort (P,Q,f) (i.e., P −→

f
Q in

the above notation).
For composition of morphisms in C, we take the operation ◦. It follows from the

“Category” identities that this makes C into a category, and by the definition of the
operation ◦, we have that this makes Ca prefibration (i.e., a functor).

The remaining operations and equations were chosen in precisely such a way so
as to ensure that C is an h=-fibration.
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Proposition A.2. The h=-fibration C
C
↓
B

defined above is free over B.

Proof. Let C′
C′

↓
B

be a second h=-fibration over B. We must show that there is up

to isomorphism a unique functor C→ C′ of h=-fibrations over B (for general C′,
this will require the axiom of choice).

By “specifying all the operations” in C′—i.e., choosing cartesian lifts (a cleavage),
fiberwise products, coproducts, and exponentials, indexed products and sums along
product projections, and equality objects—we obtain a �B-structure with underlying
(Ob �B = Ob B-indexed-)set Ob C′.

By the initiality of the �B-structure Ob C, this gives us a function Φ: Ob C →
Ob C′ over B and preserving the specified operations.

We now consider a structure over �′B, where the set of elements of sort (P,Q,f) is

the set HomC′
f (ΦP,ΦQ) of morphisms ΦP → ΦQ in C′ lying over f. The operations

are given in the obvious way. For instance, given f : A→ B in B and P ∈ CA, the
element f↑P of sort (f∗P,P,f) should be a morphism Φ(f∗P) → ΦP lying over f.
But by the definition of Φ, we know that Φ(f∗P) is equal to the specified pullback
f∗(ΦP), and hence we can take the morphism in question to be the specified
cartesian lift f↑(ΦP) : f∗(ΦP) → ΦP.

It follows from the fact that C′ is an h=-fibration that this structure satisfies all
the identities listed above. Hence, by the initiality (with respect to the structures
satisfying those identities) of the �′B-structure given by the morphisms of C, we

obtain a function HomC
f (P,Q) → HomC′

f (ΦP,ΦQ) preserving all of the operations.
In particular, preservation of ◦ and 1 implies that this is a functor, and it is then by
definition a morphism of prefibrations.

The preservation of the remaining operations prove that this morphism of
prefibrations preserve the specified h=-fibration structure (the specified fiberwise
product and coproducts, etc.), from which it follows that all instances of such
operations (arbitrary fiberwise products and coproducts, etc.) are preserved.

This gives us the existence in the freeness statement.
Now suppose that we have two morphisms of h=-fibrations Φ,Φ′ : C→ C′ over

B. We would like to show that they are isomorphic over B.
We define isomorphisms αP : ΦP ∼−→Φ′P by structural recursion on P. In each

case, the isomorphism is determined by the universal properties of ΦP and Φ′P
using the isomorphisms already established. For example, suppose P is of the form
Q ∧R, and we have already isomorphisms ΦQ ∼−→Φ′Q and ΦR ∼−→Φ′R. We know
that ΦP is a product of ΦQ and ΦR and that Φ′P is a product of Φ′Q and Φ′R,
and so we have an induced isomorphism ΦP ∼−→Φ′P.

It remains to see that α is a natural isomorphism over B. Note first of all that the
isomorphisms all lie over identity morphisms in B, as required.

We check the naturality condition for morphisms p in C by structural induction
on p (that is, recalling that the morphisms of C are equivalence classes of closed
�′B-terms, we do an induction on the �′B-terms themselves). The base cases of this
induction correspond to the 0-ary operations in �′B. In each case, the naturality
condition follows from the definition of α. For instance, the isomorphism αP∧Q is
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defined precisely in such a way that the naturality squares for �PQ and �′PQ commute.
(The base cases also include the various “inv” morphisms under “Stability of the
operations under pullbacks”; in this case, naturality follows from the fact that the
naturality condition for a morphism implies the naturality condition for its inverse.)

The various induction steps all amount to showing that the naturality condition
for a morphism induced by a certain universal property follows from the
naturality conditions for the morphisms it is induced from. This can be checked
straightforwardly in each case. �

Remark A.1.2. We now explain a possible second, more conceptual (though not
necessarily simpler) approach to proving the existence of a free h=-fibration over an
f.p. category B, using the “two-dimensional monad theory” of [3].

We first observe that the h=-fibrations over B in which all of the operations
(cartesian lifts fiberwise products and coproducts, etc.) have been specified—let us
call these “h=-cloven” h=-fibrations—form a category, in which the morphisms are
morphisms of h=-fibrations over B that preserve all of the specified operations; and
in fact, this category has a natural 2-categorical structure, in which we take as 2-cells
all natural transformations over B. It also comes with a forgetful 2-functor to the
2-category Cat/B of categories over B.

We now would like to say that this forgetful functor is monadic; i.e., that the h=-
cloven h=-fibrations are precisely the T-algebras for a (in fact finitary) 2-monad T
on Cat/B. One can imagine constructing this monad by hand; for instance, the total

category of T (C
C
↓
B
) should have as objects terms over the multi-sorted signature �B

introduced in Construction A.1, with Ob C as the set of (sorted) variables, and as
morphisms (equivalence classes of) terms over the signature �′B with Ar C as the
set of sorted variables. Alternatively, one might hope to appeal to a Cat-enriched
version of the Beck monadicity theorem.

In any case, if this monadicity is established—and assuming, as one would expect,
that the morphisms of T-algebras (and 2-cells between them) in the sense of [3, p. 3]
are precisely the morphisms of h=-fibrations (and natural transformations)—then
the existence of the free h=-fibration over B follows easily from the results of op. cit.

Namely, we have (as usual) that the free h=-cloven h=-fibration C produced
in Construction A.1 is the free T-algebra on the empty category ∅ → B over B
(i.e., the value at ∅ → B of the left adjoint to the forgetful functor from h=-cloven
h=-fibrations). The desired universal property is then established as follows.
According to [3, Corollary 5.6], C (and more generally any free T-algebra) is
“flexible,” which implies by [3, Theorem 4.7] that every morphism out of C is
isomorphic to a strict one. Since, for each h=-fibration C′ over B (once we make C′

into a T-algebra by arbitrarily specifying operations on it), there is a unique strict
morphism C→ C′, it follows that any two morphisms C→ C′ are isomorphic, as
desired.

A.2. Deductions. We will now formally introduce the notion of “intuitionistic
validity” of first-order formulas; i.e., we introduce the (or rather a) deductive system
for intuitionistic first-order logic.

https://doi.org/10.1017/jsl.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.68


56 JOSEPH HELFER

The axiomatization we present is the one due to Lambek (for the propositional
part) and Lawvere, in which the rules of inference corresponding to each logical
connective correspond to the universal property of the corresponding categorical
operation. As a result, we do not even need to state most of the rules, but rather just
refer to the corresponding h=-fibration operations as listed in Construction A.1.

As we mentioned in the introduction to Appendix A, this makes it “almost”
obvious that the morphisms in the free h=-fibration are given by equivalence classes
of deductions. But, as we also mentioned there, there are exceptions: namely, the
rules for quantification, equality, and substitution take on a different form.

For quantification, the difference is that in the syntax, we only quantify over
a single variable at a time, whereas in the fibration, we take indexed sums and
products along arbitrary product projections (corresponding to quantifying over
several variables at once).

For equality, there is a similar circumstance, that we consider cocartesian lifts of
arbitrary diagonal morphisms (corresponding to equating several pairs of terms at
once). In addition, these cocartesian lifts correspond to equalities between variables,
whereas in the syntax, we have equalities between arbitrary terms.

Finally, the substitution rule below corresponds to the pullback operation
p �→ f∗p, which is not primitive among the operations listed in Construction A.1,
but rather is derived from the cartesian lifts and their universal property.

Our definition of “deduction” will be given in terms of an initial structure for
a certain algebraic signature, just as were the morphisms for the free h=-fibration
in Construction A.1. Hence, the deductions are given by closed terms over this
signature (“proof terms” as they are often called in the context of dependent type
theory) rather than the traditional “trees”; but of course, the tree corresponding to
a certain deduction is recovered as the “syntax tree” of the corresponding term.

After introducing the notion of deduction, we prove the fundamental soundness
property: that provable formulas are satisfied by all interpretations into a fibration;
and for that purpose, we need another fundamental fact about fibrations which we
have not mentioned explicitly, and which we state in Lemma A.4, namely the one
relating pullbacks in a fibration to the syntactic operation of substitution.

Definition A.3. Let � be a signature. We now define the set of deductions of
first-order formulas over �. Associated with each premise is a context �x, which is
(as usual) a tuple of sorted variables, as well as a premise and conclusion, which are �-
formulas whose free variables are among those in �x. To indicate that p is a deduction
with the context, premise, and conclusion �x, ϕ, and �, we write p : ϕ ≤ �x �.

Now, the set of deductions is defined inductively, and is in fact the initial
structure for a certain multi-sorted algebraic signature, whose sorts are the triples
ϕ ≤ �x � as above, which we call sequents. We must now describe the function
symbols—which we will call “rules of inference”—and their arities and output
sorts. For the most part, these are given as a subset of those listed in the first
table in Construction A.1 (on page 39)—namely, those under “Finite products
and coproducts” and “Exponentials” and the first two under “Category and
fibration structure”—with certain modifications. The modifications are: (i) we now
allow P,Q,R to be arbitrary formulas (so that for each figure in the table, we
get one rule of inference for each choice of such formulas), (ii) we ignore the
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subscripts f , g , gf , and A in the figures for q ◦ p, !P and ¡P , and (iii) we replace each
arrow → with ≤ �x , where �x is an arbitrary context containing all the free variables
of the formulas P,Q,R involved (so that, again, we get one rule of inference for
each possible value of �x). The arities and output sorts of the function symbols are
to be understood in the same way as in Construction A.1 (e.g., the arity of the rule
of inference corresponding to the function symbol “◦” is 〈P ≤ �x Q,Q ≤ �x R〉 and its
output sort is P ≤ �x R).

Finally, we have the following rules of inference (corresponding to the rest of the
operations in the table on page 39, except for the “stability” ones), where again the
arities and output sorts are to be understood in the same way as above. Note that
unlike in the table on page 39, we are not introducing any notation for these function
symbols (i.e., rules of inference).

Again, each figure below presents a set of inference rules, one for each value
of the relevant parameters. Here, �x, �y are arbitrary sequences of variables, and
y, z are arbitrary variables, with z and y of the same sort in the final rule; P,Q,R
are arbitrary formulas, with certain restrictions on the free variables; namely, they
should be among those in �y in the “Substitution rule,” among those in �xz in the
“Quantifiers” rules, and among those in �xyz in the “Equality rule,” and moreover
z should not be free in P and Q, respectively, in the first and third quantifier rules;
and �t is an arbitrary tuple of terms with free variables among those in �x and with
tp �t = tp �y.

We denote by X [�a := �b] the result of (simultaneously) substituting the terms �b
for the variables �a in a term or formula X (where we may assume that the none of
the variables in �a are bound in X—see Definition 2.18).

Substitution:
P ≤�y Q

P[�y := �t] ≤ �x Q[�y := �t]
Quantifiers:

P ≤ �xz Q
P ≤ �x ∀zQ ∀zP ≤ �xz P

P ≤ �xz Q
∃zP ≤ �x Q P ≤ �xz ∃zP

Equality:


 ≤ �xz z = z

 ≤ �xy P[z := y]
y = z ≤ �xyz P

We say that a sequent ϕ ≤ �x � is provable if it is the sort of some deduction, and
that a formula ϕ is provable if 
 ≤ �x ϕ is provable for some (and hence, by the
substitution rule, every) context �x containing the free variables of ϕ.

Generalizing Definition 2.19, given an h=-fibration C
C
↓
B

and an interpretation

(M̂ ,M ) : � → C, we say that M satisfies the sequent ϕ ≤ �x � if there exists a
morphism M̂ �x(ϕ) → M̂ �x(�) overM ( �x).

Lemma A.4. Let B be an f.p. category, and let M : � → B be an interpretation.
Then for any tuples-of-terms-in-context (�t, �y) and (�s, �x) with tp(�s) = �y, we have
M�y �t ·M �x �s =M �x(�t[�y := �s]).
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Next, given an h=-fibration C
C
↓
B

over B and an interpretation M̂ in C over M,

then for any tuple-of-terms-in-context (�t, �x) and any formula-in-context (ϕ, �y) with
tp(�t) = tp(�y), we have (M �x �t)∗(M̂�yϕ) ∼= M̂ �x(ϕ[ �x := �t]).

Proof. This is well-known (and as we mentioned, is fundamental to the role of
fibrations in logic). Both claims are proven by induction. The second claim uses the
first claim for the base case of equality, and the remaining induction steps all make
use of the various stability conditions in an h=-fibration. We leave the details to
the reader. �

Proposition A.5. Given any interpretation (M̂ ,M ) : � → C of a signature �, M
satisfies every provable sequent ϕ ≤ �x � over �.

Proof. We need to show that for every deduction p : ϕ ≤ �x �, there exists a
morphism M̂ �x(ϕ) → M̂ �x(�) overM ( �x) and of course, we prove this by induction
on p.

But in each induction step, it follows immediately from the definition of M̂ that
such a morphism exists, where for the “Substitution,” “Quantifier,” and “Equality”
rules, we must use Lemma A.4 concerning pullbacks and substitution (and the
special case of it that says that if z is not free in ϕ, thenM �xz(ϕ) = �∗M �x(ϕ), with
� = 〈�M1 , ... , �M�( �x)〉).

For the “Equality” rule, we also need to use the stability of equality morphisms
(i.e., cocartesian lifts of generalized diagonal morphisms—see [8, Sections 1.6 and
1.7]), which holds in h=-fibrations by Proposition 2.4. �

A.3. The free h=-fibration over a free f.p. category. We now specialize to the
case of a free h=-fibration over the free f.p. category on some signature �, and
draw certain “syntactic” conclusions. Namely, in this case, as we have said, the free
h=-fibration can be given a direct, syntactic construction, in which the objects of the
total category are formulas and the morphisms are equivalence classes of deductions,
and we would like to recover this description from our construction.

Here, we will recover only part of this description: we will show that the objects of
the total category “are” the formulas (more precisely, that each object is isomorphic
to the interpretation of some formula), and that a morphism exists between two of
these if and only if the corresponding implication is provable (as we explain in the
proof, this amounts to a completeness theorem for the fibrational semantics).

We note that the “posetal” version of the syntactic construction of the free
h=-fibration is much simpler, and in fact, we will make use of it in the proof of
said completeness theorem.

We would like to mention a second way to recover the morphisms-as-deductions
description of the free h=-fibration. Namely, rather than adapting the construction
of the fibration to conform to the syntax, we can observe that the “syntax of first-
order logic” is not absolute; one could also just use a different syntax and deductive
system so as to be adapted to the above construction of the free h=-fibration. This
would involve slightly modifying the implementation of equality and quantification
in the syntax, as well as introducing “explicit substitutions,” i.e., substitution as a
primitive operation.
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To begin with, we recall the well-known construction, due to Lawvere, of a free
f.p. category associated with an algebraic signature � (cf. [20, p. 473]).

Proposition A.6. Given an algebraic signature �, there exists a free f.p. category
B over � via an interpretation i : � → B. Moreover any such B and i have the following
property: every object in B is of the form i( �A) for a unique �A ∈ (Ob �)<� , and every
morphism i( �A) → i( �B) is of the form i �x(�t) for a tuple-of-terms-in-context (�t, �x),
unique up to substituting �x for a different sequence �y of variables with tp(�y) = �A (i.e.,
replacing (�t, �x) with (�t[ �x := �y], �y).

Proof. The stated property together with the first part of Lemma A.4 determines
B and i : � → B up to isomorphism, and it is straightforward to verify that this
indeed produces an f.p. category and has the required universal property. �

Definition A.7. Proposition A.6 gives an explicit description of a free f.p.
category on an algebraic signature �: the set of objects is (Ob �)<� , the morphisms
are equivalence classes of tuples-of-terms-in-context up to renaming of variables,
and composition is given by substitution as in Lemma A.4.

We denote the resulting category by Tm� and the associated �-interpretation
(which is the identity on (Ob �)<� and takes each tuple-of-terms-in-context to its
equivalence class) by i : � → Tm� .

Proposition A.8. Given a free h=-fibration C
C
↓

Tm�
over Tm� and an interpretation

ı̂ in Cover i, each object in C is isomorphic to ı̂ �xϕ for some ( �x, ϕ).

Proof. Let A ⊂ Ob C be the set of objects which are isomorphic to some ı̂ �xϕ. It
suffices to see that A is closed under all of the operations which inductively define
the set Ob C.

It is obvious from the definition of ı̂ �xϕ that A is closed under fiberwise products,
coproducts, and exponentials and since every object of Tm� is of the form i( �A), it
follows that A includes initial and terminal objects in each fiber. By Lemma A.4 and
since every morphism in Tm� is of the form i �x(�t), A is also closed under pullbacks.

Next, we have that A is closed under certain indexed products and sums, namely
the ones along projections of the form 〈�i1, ... , �i�( �A)

〉 : i( �AB) → i( �A). We also know
that A is closed under indexed product and sums along isomorphisms, as these are
the same as pullbacks. Also, if A is closed under indexed products and sums of any
two composable morphisms, then the same is true of the composite (this is because∏
gf P

∼=
∏
g

∏
f P and similarly with

∑
gf , since a composite of (ana-)adjoints is

an (ana-)adjoint of the composite).
But now it is easy to see that every product projection in Tm� is a composite of

the above particular product projections and isomorphisms.
Finally, we need to see that A contains an equality object EqA for every diagonal

morphisms Δ: A→ A× A. Firstly, it suffices to do this for some diagonal morphism
for each object A (since, for example, A is closed under isomorphisms, as every
isomorphism is cartesian). Next, for a product A× B , we have that EqA×B is a
fiberwise product of pullbacks of EqA and EqB (see [15, p. 10] or [8, Theorem
7.2]), so the claim for A× B follows from that of A and B. Hence, by induction, it
suffices to show the claim for each i(〈A〉), for which we have Eq〈A〉

∼= ı̂〈x,y〉(x = y)
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(with tp(x) = tp(y) = A), and for the terminal object 1 = i(∅), for which Eq1
∼=


C1×1 . �

Theorem A.9. Let C
C
↓

Tm�
be a free h=-fibration over Tm� , and fix an interpretation

ı̂ in Cover i. Then a sequent ϕ ≤ �x � is satisfied by i if and only if it is provable.

Proof. The (⇐=) implication follows from soundness (Proposition A.5). We
now consider the other implication.

Fix a sequent ϕ ≤ �x �, and suppose it is satisfied by i, i.e., there exists a morphism
ı̂ �x(ϕ) → ı̂ �x(�) over i( �x). Note that it is then satisfied by any interpretation in any

h=-fibration C′
C′

↓
B′

. Indeed, given an interpretation (M̂ ,M ) : � → C′, we have, by

the freeness of C, a morphism (Ξ, �) : C→ C′ with � ◦ i =M . Then Ξ ◦ ı̂ and M̂
will be isomorphic interpretations over M, and the morphism ı̂ �x(ϕ) → ı̂ �x(�) then
gives a morphism

M̂ �x(ϕ) ∼= (Ξ ◦ ı̂) �x(ϕ) → (Ξ ◦ ı̂) �x(�) ∼= M̂ �x(�)

overM ( �x).
Hence, it suffices to show the completeness of the fibrational semantics—i.e., that

if a sequent is satisfied by every interpretation in an h=-fibration, then it is provable.
A heavy-handed way to do this is to appeal, for example, to Kripke’s completeness

theorem for intuitionistic logic. Kripke models are precisely interpretations in the
h=-fibrations P(SetP) with P an arbitrary poset. Kripke’s completeness theorem
then says that if a sequent is satisfied by every interpretation in such an h=-fibration,
then it is provable.

Besides being overkill, this proof has the following disadvantage: we might like to
deduce Kripke’s completeness theorem from its categorical formulation in [19, 20],
and this proof would make such a deduction circular. Hence, we now give a more
direct proof.

Namely, we will produce a single fibration C′
C′

↓
B

over B such that any sequent

satisfied by i (with respect to C′) is provable.
C′ will be a posetal fibration (i.e., the fibers are posets), where each fiber is

a “Lindenbaum–Tarski (Heyting) algebra.” Namely, to define the fiber over �A,
consider the preorder whose objects are formulas-in-context (ϕ, �x) with tp( �x) = �A,
with the ordering given by provability (i.e., (ϕ, �x) ≤ (�, �y) if ϕ ≤ �x �[�y := �x] is
provable), and take its “posetal collapse (or reflection)” (i.e., identify objects that
are equal in the ordering).

Organizing these fibers into a fibration amounts to defining a functor Tmop
� →

Poset to the category of posets with the given action on objects, and we do this
by sending [�t, �x] (square brackets denotes the equivalence class) to the function
(C′)tp �t → (C′)tp �x taking [ϕ, �y] to [ϕ[�y := �t], �x]. That this is well-defined and a
morphism of posets follows from the substitution rule, and it follows from the fact
that ϕ[�y := �t][ �x := �s] = ϕ[�y := (�t[ �x := �s])] that this defines a functor.

That the resulting fibration is fiberwise bicartesian-closed (i.e., has Heyting
algebra fibers) follows immediately from the rules of inference for the propositional
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connectives. The rules of inference for equality and quantifiers give the existence of
equality objects and indexed products and sums over certain (generalized) diagonal
and projection morphisms, but as in the proof of Proposition A.8, these morphisms
generate all of the diagonal morphisms and projections. We leave the details to the
reader.

The resulting fibration is in fact the posetal reflection of the free fibration C, and
is the free posetal h=-fibration over C(see [19, p. 349]), though we will need neither
of these facts.

In fact, we are done, as it is immediate from the definition that, under the obvious
interpretation ı̂ in C′ over i, that a sequent is provable if and only if it is satisfied
by i. �

Corollary A.10. For any signature �, there exists a free h=-fibration Pf
Pf
↓

Tm�
and

an interpretation ı̂ in Cover i such that

• The objects in Pf
�A are equivalence classes [ϕ, �x] of formulas-in-context with

tp �x = �A (the equivalence relation being renaming of variables—i.e., (ϕ, �x) and
(�, �y) are equivalent iff � = ϕ[ �x := �y]).

• We have ı̂ �xϕ = [ϕ, �x] for all (ϕ, �x).
• There is a morphism [ϕ, �x] → [�, �x] in Pftp �x if and only if ϕ ≤ �x � is provable.

Proof. Given an arbitrary free h=-fibration over Tm� , Proposition A.8 shows
that there is an equivalent (and hence still free) h=-fibration satisfying the first two
properties.

The third property then follows from Theorem A.9. �

Acknowledgments. I am grateful to McGill’s Logic, Category Theory, and
Computation seminar and Carnegie Mellon’s Homotopy Type Theory seminar
for allowing me to speak about this project at a very early stage, and to Steve
Awodey for encouraging me to write it up, and also for pointing out an interesting
connection between our invariance theorem and the Univalence Axiom (which was
also independently observed by Ulrik Buchholtz).

I would also like to acknowledge the various contributors to ncatlab.org, which
is an invaluable resource in general, and has been no less for this project.

Finally, I am grateful to the referee for suggesting several changes which improved
the paper.

REFERENCES

[1] S. Awodey and M. A. Warren, Homotopy theoretic models of identity types. Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 146 (2009), no. 1, pp. 45–55.

[2] J. Baez, The homotopy hypothesis, 2007. Available at https://math.ucr.edu/home/baez/
homotopy/.

[3] R. Blackwell, G. M. Kelly, and A. J. Power, Two-dimensional monad theory. Journal of Pure
and Applied Algebra, vol. 59 (1989), no. 1, pp. 1–41.

[4] J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces,
Lecture Notes in Mathematics, vol. 347, Springer, Berlin–New York, 1973.

[5] P. Cagne, Towards a Homotopical Algebra of Dependent Types, Universitë Sorbonne Paris Citë,
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