A clever boy or girl will not be confused by such a treatment of the problem as that given in the Report, but, in my experience, the average pupil is only confused by such tacit approximations in method. In this particular case of expansion this vague confusion in such a pupil's mind causes trouble when the gaseous laws are considered, viz.: why should the volume of a gas be referred back to $0^{\circ} \mathrm{C}$. and not to the temperature of the room? Or difficulties arise in problems where the Fahrenbeit scale is used, and so on.

The example is_" A brass rod is 25 metres long at $10^{\circ} \mathrm{C}$., find its length at $50^{\circ} \mathrm{C}$., if the coefficient of linear expansion of brass is 000018 ."

One metre of brass at $0^{\circ} \mathrm{C}$. heated $1^{\circ} \mathrm{C}$. expands so as to have length

$$
1+\cdot 000018 \text { metres. }
$$

One metre at $0^{\circ} \mathrm{C}$. heated to $10^{\circ} \mathrm{C}$. expands so as to have length

$$
1+10 \times 000018 \text { metres }
$$

\therefore one metre at $10^{\circ} \mathrm{C}$. if cooled to $0^{\circ} \mathrm{C}$. has length

$$
1 /(1+10 \times 000018) \text { metres. }
$$

$\therefore 25$ metres at $10^{\circ} \mathrm{C}$. if cooled to $0^{\circ} \mathrm{C}$. has length

$$
25 /(1+10 \times \cdot 000018) \text { metres. }
$$

One metre of brass at $0^{\circ} \mathrm{C}$. when heated to 50° expands so as to have length $1+50 \times 000018$ metres.
$\therefore 25 /(1+10 \times 000018)$ metres at 0° when heated to 50° expands so as to have length $25 \frac{1+50 \times 000018}{1+10 \times 000018}$.

This can be worked out by logarithms, or else continued

$$
\begin{align*}
& =25(1+50 \times 000018)(1-10 \times 000018) \text { nearly } \ldots \ldots \ldots \ldots \ldots(a) \\
& =25(1+40 \times \cdot 000018) \text { nearly } \quad \ldots \ldots(b) \tag{b}\\
& =25 \cdot 018,
\end{align*}
$$

and the degree of approximation at stages (α) and (b) can be seen at once by any student familiar with elementary approximate methods in Algebra.

This is certainly somewhat longer than as given in the Report, but if our object be to correlate Mathematics and Physics at school, why should we teach our Physics both vaguely and illogically from the given definitions merely in order to avoid giving our boys and girls a little practice in elementary mathematics? Yours, etc.,

Edith A. Stoney,

Lecturer in Physics, London School of Medicine for Women ; formerly Assistant Mathematical Mistress, T'he Ladies' College, Cheltenham.

To the Editor of the Mathematical Gazette.

Sir,-In a recent issue you threw out a suggestion for a pillory for examination questious. I beg to enter the following:
"The exterual measurements of a closed box are 36 inches, 2.2 feet, and -506 yards. Find the cubic space within if the wood of which it is made has a uniform thickness of one-tenth of a foot."-Board of Education, 1904.

Note the useful 'it,' the mixture of units, and the recurring decimal. English grammar, ordinary common sense, and physical possibility smashed in one question! Can anyone beat this?

Some obvi,us and rather painful reflections are suggested by the fact that the question emanates not from an obscure and ill-paid schoolmaster, but from the Board of Education. Yours faithfully,

Aleff.

