Dear Editor,
Characterizing the negative binomial distribution

Recently the authors, Cacoullos and Papageorgiou (1982) and Papageorgiou
(1982), have been doing some work on characterizing a discrete random variable
Y which has a mixture representation in terms of another discrete random
variable X(t), where the parameter ¢ plays the role of the mixing variable. Of
special interest is the case of a Poisson process {X(t),t >0} where the time
parameter ¢ may be regarded as a random variable. The probability function
p(y) of Y, in such a case, is given by the Poisson mixture

p)= [ e riytare),

where F denotes the distribution function of t.

Engel and Zijlstra (1980), ‘investigating a practical problem. .. met a charac-
terization, not mentioned in these surveys’; they refer to surveys in characteriza-
tions of the gamma distribution. Assuming that delivery orders for some product
follow a Poisson process, they show, in effect, that the distribution of (the
number of orders) Y (during a lead time) is negative binomial if and only if (the
lead time) ¢ has a gamma distribution.

The purpose of this note is twofold. First, to point out that the preceding
characterization of the negative binomial distribution follows from the identifia-
bility of Poisson mixtures, that is, the one-to-one correspondence between p(y)
and F(t), as shown by Teicher (1961); that a gamma F yields a negative binomial
Y is a rather old and well-known result. Second, to indicate briefly a related
characterization, which may be of some practical interest as well.

Consider the regression m(y) of the time variable ¢t on Y and suppose this is
linear, namely, m(y)=a +By, a >0, 0<B <1. Then ¢ follows a gamma
distribution (with scale parameter A = B/(1 — B) and shape parameter k = a/B)
and Y follows the negative binomial distribution

p(y)= (k +yy _1) A+ A,

This is a special case of a more general result: if Y is a Poisson mixture, then
the regression function m(y) of ¢t on Y determines uniquely both the distribu-
tion of ¢ and Y. To show this, it is enough to establish that

m(y)=(y +Dp(y + )/p(y),

which is a first-order difference equation, with a unique solution p(y).
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Another simple application of the general result yields a characterization of
the ‘Poisson-Lindley’ distribution (cf. Sankaran (1970)): if for some 6 >0,

m(y)=(y+1)(0 +3+y)/(0+1)(6 +2+y),
then ¢ and Y have p.f.’s given by

_6 —or _g2yt6+2 =0.1---
f(t)—o+1(t+1)e ('>O)’ p()’)—o (0+1)y+3, Y—O,I,

It should be mentioned that similar results hold for mixtures of the negative
binomial with respect to the index parameter k. Now the corresponding
difference equation becomes

m(y) =237 v+ ) Py

Detailed results on characterizations of mixtures with X(¢) and ¢ both
discrete, univariate or multivariate, will appear shortly, as stated earlier.

Statistical Unit, Yours sincerely,
Athens THeopPHILOS CACOULLOS
H. PAPAGEORGIOU
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