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1. Introduction

For investigating the steady irrotational isentropic flow of a perfect
gas in two dimensions, the hodograph method is to determine in the first
instance the position coordinates x, y and the stream function ip as functions*
of velocity components, conveniently taken as q (the speed) and 6 (direction
angle). Inversion then gives ip, q, 0 as functions of x, y. The method has
the great advantage that its field equations are linear, so that it is practicable
to obtain exact solutions, and from any two solutions an infinity of others
are obtainable by superposition. For problems of flow past fixed boundaries
the linearity of the field equations is usually offset by non-linearity in the
boundary conditions, but this objection does not arise in problems of trans-
sonic nozzle design, where the rigid boundary is the end-point of the in-
vestigation.

Accordingly, this paper aims at showing something of the potentialities
of the hodograph method for constructing nozzle flows.

It is well known that, for a trans-sonic nozzle, supersonic velocities which
are near (in magnitude and direction) to the sonic velocity at the centre
of the throat occur at three distinct points (x, y); so on inversion x, y
must be three-valued functions of q, d. For applying the hodograph method
to nozzle-flows, therefore, the essential problem is to find solutions of the
hodograph equations that are three-valued in the neighbourhood of the
sonic point. In [1] I have given a method for constructing such 'trans-
sonic' solutions, with full numerical detail for one of them, here called
'Rli22\ From the nozzle flow specified by this solution an infinity of others
can be obtained by superposing other solutions (which in themselves may
be devoid of physical interest). In this paper I survey the solutions which
are readily available as the raw material for the superposition, and give
specific examples, calculated for y (the adiabatic index) equal to 1.4. For
application to conventional nozzle design the object of such constructions
would be to obtain a nozzle flow-field for which the throat region is suitably
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shaped and which is carried with adequate precision some distance into
the supersonic region; the designer can then prolong the flow field through
'simple wave' regions so as to merge it into a uniform supersonic flow.
In § 7, however, I show the possibility of avoiding the simple wave regions,
and by hodograph procedures arriving at nozzle shapes for which the
flow is everywhere analytic and ultimately uniform.

2. Field Equations

As fundamental dependent variable we take the Legendre potential Q,
whose field equation is

(1) q\\ - q*)Qqq + (1 - fVrf) (<A + Qee) = ^
here the unit for q is so chosen that q = 1 gives the limiting or cavitation
speed, while qa = \/{y — l)/(y + 1) gives the sonic speed. From any
solution of (1) the position coordinates are obtained, in non-dimensional
measure, by

(2) x = X cos 6 — Y sin 0, y = X sin 0 + Y cos 0,

where

(3) X = QQ,qY = Qe,

and the stream function is determined from the consistent equations

(4) V, = (1 - q*V(Y - Xe), Wd=- q(l - f)>(X + Y9),

where /? = l/(y — 1). In any practical case the inversion to get q, 6 as
functions of x, y has to be performed numerically; the first step is to deter-
mine loci ip = constant by interpolation in a table of ip{q, 6), and then
successions of points (x, y) on such loci are found via tables of X(q, 6)
and Y(q, 6). The arithmetic is elementary, and on modern standards not
too burdensome. An overall check can be made from the fact that the
slope of a streamline as found from its x, y coordinates must equal 0.

3. Standard Solutions

I. The Chafilygin set of potentials C(v) of the form

(5) Q = C(v) = qvFv(q
2) cos vB (v constant),

where Fv is in general a hypergeometric function*, is obtained from (1)
by separating the variables. This represents a flow having the line 0 = 0
as an axis of symmetry, but it runs into a limit-line at the sonic point on

* When v is a negative integer Fv is a logarithmically modified hypergeometric function.
The case v = —1 is notable in that F_x is an elementary function (Ringleb [2]).

https://doi.org/10.1017/S144678870002509X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002509X


82 T. M. Cherry [3]

the axis so it is useful only in superposition. Tables (Ferguson and Light-
hill [3], Huckel [4], Petschacker [5]) are available whereby, for y = 1.4,
the W, X, Y corresponding to C (v) can easily be found for a wide set of values
of v, q. In [3] are tabulated functions y)v{r), ip'v(r), where T = q*, and in
terms of these

(6)

[3] also gives the hypergeometric function Yv(r) = q~vy)v[r) and its deriva-
tive, and these are the functions tabulated in [4]. [5] gives the qvFv(r)
and Fv(r) of (5), but not their derivatives.

II. Radial flow. The solution

v y,(T)+2ty;(T)
xc(v) = —TT TJ ^ — cos vd,

v + 1 q(l-qr y V(T) + 2^(T) .
Y ^ = - q{i-fy

 smvd>
= (v— l)y>v(r)sinv6.

represents purely radial flow, and is closely related to the vacuous case
v = o of (5). Here also there is a limit line q = q8, and the solution is useful
only in superposition.

III. A trans-sonic set*. To obtain a flow unencumbered by limit lines the
method of [1] is to change the variables from q, d to q, <f>, where

a sin <j>
(8) 0 = 6 — 2a arc tan — ^—- , 2<x(l + a) = B, a > 0.

1 — q cos <f>

The singular locus ddjdcj) = 0 for this transformation is

(9) D = 1 — 2(1 + <x.)q cos 0 + (1 + 2a)?2 = 0,

or in terms of q, d

(10) 0 = ± I - arc tan [ / ^ y - arc tan [ T ^ 2 j = ±co(q)

The key fact is that this locus is characteristic for (1); hence it is that there
are potentials Q(q, <f>) which are single-valued across the locus and which
in terms of q, d are triple valued, as required for a nozzle-flow. The result
of transforming (1) by (8) is **

* Of the solutions Qv to be discussed only one represents a smooth trans-sonic nozzle-
flow, but I name the whole set from this one.

** It is to be noted that in the ^-context the suffix q indicates a y-derivative for <f> constant,
which is unequal to the ^-derivative for 0 constant implied by the suffix in (1), (3).
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D (fO,, + A + ^ - ^ ) + ^ sin * (

4a?(cos <f>-2q + q* cos

and in [1] a set of solutions Qo, Qlt • • • of this equation has been defined,
with full numerical detail as regards Do, Qx and I22. They have the general
form

(11) Q, = Hp{q, <f>) + Gp{q\ qe<%

where Hv is an explicit elementary function and Gp is a power series in
q2, qe'* which converges ior 0 ^ q2 < 1 and l^e^l < 1; the convergence is
fairly rapid for q as large as 0.75. It is hence practicable to use these solutions
for Im <f> > 0 as well as for <f> real, and an illustration of this will be given
in § 7. Regarding the elementary functions Hp it is sufficient to remark
that Hlt H2, • • • are regular on the singular locus D = 0, and indeed for
all q, <f> that come into question; but Ho is singular on this locus:

(1 _ ff2\l-/?/2

(12) Ho = Qo (princ. part) = • ^ '

The potential Qp is *-times the 0-derivative of Qp+i'. in terms of q, <f>

(13) DQ, = »(1 - 2<? c o s «A + f) (O^+iU •

Since the coefficients in (1) are real, the real and unreal parts of Qp (as
functions of q, 6) will separately satisfy (1), provided in the case where <f>
is unreal that (8) gives a real 0. Rl£?2 gives a trans-sonic nozzle flow,
plotted in figure 3.

For plotting the flow-field corresponding to the real or unreal part of
Qp we take <f> as an auxiliary parameter in the calculation of X, Y, ip. The
values Xv, Yv, ipp corresponding to Qp are found, via (3), (4), (8) and (13),
to be

( v - m \ _1 s i n <j> _ iQp_x

(14) ) X * - { U » } < - f ' Y v ~ ~ ~

Wp = - q{\ - q*y(iXp+1 + YP),

and corresponding to Rl Qp we take the real parts of these.

4. Symmetrization

To obtain a nozzle-flow having 6 = 0 as an axis of symmetry we require
a potential Q which is an even function of 6; for then X, x are even functions
and Y, y, xp odd. Now if Q = f(q, 6) is any solution of (1), f(q, 6Q + 6) and
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f(q,d0 — 6) also are solutions, and by superposition we obtain Q=f(q, 0o+0)
-j- f(q, 0O — 0) as an even solution.

This symmetrization process gives nothing new when applied to the
potentials C (v) or R, but as regards Qp it gives different flows for each value
of 0O. Starting from the potential QP{q, <f>), we obtain f(q, 0O + 0) = f'(q, 0)
say, and f{q, 0O — 0) = f"{q, 0) by applying in place of (8) the transfor-
mations

a sin <b
(15) 0O ± 0 = <f> — 2a arc tan * r

1 — q cos <f>

For the upper sign in (15) the formulae (14) remain valid, but for the lower
sign we have to reverse in (14) the signs of Yp, \pp. Hence if, for a given 0,
we call <f>', <f>" the values of <f> that satisfy (15) with the upper and lower
signs respectively; if X'p, Y'p, ipp are the values given by (14) for <f> = <f>'\
and if X'p, Yp, %p'p are the values given again by (14) for <f> = <f>": then the
symmetrized potential f -\- f" leads to the values

and thence the position coordinates x, y follow from (2).
We denote by Sp(60) the potential thus derived from Qp.

5. The Axial qur-Relation

When the speed q of a nozzle flow on the axis of symmetry Ox is known
or prescribed the whole flow pattern is determinate, and an approximation
to it is furnished by the 'hydraulic' approximation that yq(l — q2)fi is
constant on any streamline. A rough comparison of two flow patterns may
accordingly be inferred from their axial ^re-relations. On the hodograph
method, inversely, we consider x as a function of q, and by (2) x = X
when 0 = 0, so by (3) the axial relation is x = dQ/dq.

This remark is significant in relation to the superposition of standard
solutions; the functions X attaching to them are primary numerical data,
so the axial a^-relation for a given superposition can be tabulated by trivial
labour.

In figure 1 are shown the axial ar^-relations for the potentials R l Q2

and R. The former shows a trans-sonic flow originating at a stagnation point
(x finite for q = 0). For the latter, the minimum at q = qs indicates a flow
with the limit-line mentioned in § 3 II. The figure shows also the axial
relations for the potential

(17) Rl Q^-AR
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for certain values of A. The leading feature here is that for q ~ 0 the
term — AR is dominant, so on the subsonic side we get a flow coming
from infinity, approximately radially. Another feature, which however, for
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Fig. 1. Axial ^-relations for the potentials: Curve 1: R : (a;-scale on right). Curves 2, 3, 4, 5:
B1Q2 — AR, for A = 0, 1, 2, 3, (z-scale on left).

practical purposes is likely to be less important, is that for q <**-> 1 the in-
curve is steeper than that for Rl Q2, so (17) must give dx/dq = 0 for some
supersonic q depending on A, and specifies a nozzle-flow terminating in a
limit line in the far supersonic region*.

For the potential C(v) the axial relation is x = d{qvFv)Jdq. For 0 < v < 1
its graph is qualitatively like that for R, the significant distinction being
that for q ~ 0, x r+~, vqv~x. For a certain negative range v0 < v < 0 also the

* The behaviour for q ~ 1 is
for Rl^ , z~A,(l - q)l-fil*
for R x ~ (1 - q)-0
for C(v) x~Av{\ — g-)-^,

where Av changes sign at transitional values of v.
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graph is like that for R, but the other way up; v0 = (13—\/889)/10 = —1.68
fory = 1.4. As v decreases from v0 the graph developes turning points
additional to that at q8, while in transitional cases x remains finite at q = 1;
for example Fv is a quadratic in q2 when v = v0.

From these facts the general march of the axial a^-relations for C(v)
superposed on Rl Q2 can be inferred; for example for v = v0 the relation
is monotonic over the whole range 0 < q < 1 and the superposition gives
a nozzle unencumbered by limit lines anywhere near its axis. In general,
for q ~ 0 the flow is dominated by the component C (v) and the streamlines
are approximately x = (const.) l-v

0.1 0.2 0.3 0.4 0.5 0,6 0.7

Fig. 2. Axial ^-relations derived from Rli22 by symmetrization, for d0 = 0°, 5°, 10°, 20°,
30°, 40°, 80° 120°, 180°. (For compactness the curves for 80°, 120°, 180° have been displaced

upwards 2, 3, 3-5 units respectively).

In fig. 2 are shown the axial ^-relations derived from the potential
Rl D2 by symmetrization (§ 4) for various values of the parameter d0. For
0O = 0 the curve branches into two at q = qs; this is because the inversion
of (8) gives <f> as a multiple valued function of 6. The smooth branch of this
curve belongs to a smooth trans-sonic flow, but all the others have dx/dq—0
for q — qs. For 00 around 120° the relation is remarkable in that x is almost
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constant over a long range of q.
An arbitrary a^-relation can be fitted in the Fourier manner by a series

of the X's derived from a suitably chosen sequence of potentials, at least
provided the relation is analytic. I shall not here enter into any general
theory on this matter, but I give an example of a fitting arrived at by
judicious trial. By finite difference methods Emmons [6] approximated
to the trans-sonic solution of the non-linear physical flow equations (for
y = 1.4) for the region bounded by a hyperbola and its minor axis. His
paper gives a graph of the axial a^-relation which emerged from this solu-
tion. An engineering friend converted the graph into a table, by
machine readings recorded (rather speculatively) 'correct' to 0.001 inch,
and I fitted this table by superposing four of the standard solutions, viz.

(18) 1.27 «(Emmons) ~ Rl X2 — 1.091 XR — 0.331 XiS(22.) — 8.35XC(10).

The fitting was made at 19 points ranging from q = 0.176 x = —3.995 to
q = 0.648, x = 3.108, (specimens are shown in the table below) and the
maximum residual was 0.004, a proportional accuracy of about 1 in 1000.

q ~R\X2 — 1-091X/? — 0-331Xs(22°) —8-35Xc(i0) sum sum-i-1-270 XE

0.176 3.737 —6.703 —2.110 0.000 —5.076 —3.997 —3.995
0.400 5.756 —4.218 —2.138 —0.015 —0.615 -0.484 —0.483
0.566 9.594 —5.058 —2.512 +0.040 2.064 1.625 1.627
0.648 13.828 —6.571 —3.296 —0.010 3.951 3.111 3.108

The streamline calculated thence from the hodograph formulae, with a
view to fitting Emmons's hyperbolic boundary, is however discrepant by
about 1 in 30 at its subsonic end. The explanation, in view of the close
axial fitting, is perhaps that Emmons's numerical solution was more ac-
curate — as a solution of the flow equations — near the axis than at remote
points.

6. Flow-Fields Calculated by Superposition

For the potential Rl 422 — AR the flow-field is shown in figure 3 for
A = 0, and in figure 4 for A = 1.012, 1.840. In figure 3 the whole flow-
field, up to the bounding limit-lines, is indicated. In figure 4 the fields are
carried far enough transversely to show the breakdown of regular flow
by the appearance of limit-lines in the throat region; the outermost regular
streamline has infinite curvature at the point of appearance (cusp) of the
limit-lines, and this point is upstream from the geometrical throat for
A = 1.012, but about at the throat for A = 1.84.

Figure 5 shows (i) one streamline for the superposition of four standard
potentials used to imitate Emmons's solution as in (18), in comparison with
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1.59

Fig. 3. Flow-field for potential Rl£ 2 . Streamlines: thick. lsovels: thin. Limit lines: chain dot.

- o , *

0.4

0.6

Fig. 4. Flow-fields for potentials Rl£>2 — AR. A = 1-012: lower half. A = 1-840: upper
half. In each case the isovels are, from the left, qjq, = 0-34, 0-69, 0-98, 1-20, 1-39, 1-55, 1-70
i.e. M = 0-32, 0-66, 0-98, 1-26, 1-53, 1-83, 2-15. Enlargements show incipient limit lines (dotted). 1https://doi.org/10.1017/S144678870002509X Published online by Cambridge University Press
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Fig. 5. Flows close to that of Emmons (see text). Isovels for M = 0-46, 0-75, 1-0, 1-32, 1-68,
1*90 are shown fro solution (i) above and solution (iii) below.

(ii) Emmons's hyperbolic boundary and (iii) a streamline for a superposition
of three standard potentials Rli22 — \.0\2R + 4.86C(5). The comparison
between (i) and (iii) is of interest because their axial a^-relations agree
to about 1 in 1000 over the range 0.3 ^ q ^ 0.52.

7. Nozzles in Which the Supersonic Flow is Ultimately Uniform

A supersonic wind tunnel has to have a test-section in which the velocity
is uniform. In practice this section must be not too far downstream from
the throat, and the transition to uniform flow from the non-uniform flow
in the throat requires that there be at least two surfaces which in the
analytical sense are singular for the flow, in that certain velocity-derivatives
are there discontinuous. However, there are flows without singularities for
which the velocity tends to uniformity at infinity downstream, and such a
flow might be a good enough approximation to what is practically required.

Such asymptotically uniform nozzle flows may be constructed by the

https://doi.org/10.1017/S144678870002509X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002509X


90 T. M. Cherry [11]

hodograph method. The ideas underlying what follows are (1) that because
of the possibility of symmetrization (§ 4) we can in the first instance disregard
the requirement of symmetry; (2) that to require q -> q0 as x ->• co is in
hodograph terms to require x -> oo as q ->• q0, and by (12), (14) we get this
infinity on the singular locus D = 0 for the flow determined by the potential
Qv By reference to (10) we see then that, for a given limiting q0, the 0O

to use in the symmetrization process will be 0O = co(q0).
Working now with the variables q, <f>, (15) gives on the axis of the proposed

nozzle
q s i n <j>

(19) 0O = <f> - 2a arc t a n —2 ?— = f(q, <f>), say,
1 — q cos <f>

which is to be satisfied by a point (q0, <£0) on the singular locus D = 0.
For neighbouring points (q0 + dq, <f>0 + d<f>) on the axis the relation

between dq, 6<f> is found from a Taylor expansion. We have

df D df 2a s i n <f>

d<j> 1 — 2q cos <f> + q*' dq 1 — 2q cos <f) + q2

and when D = 0,

d2f _ 2(1 + a )

l _ 2q cos <f> + q2

Hence the Taylor series for points on the axis is

(20) 0 = —
2a s i n <f>

1 — 2q cos <f> +

(1 + <*)q s in cf>
1 — 2q cos <f> + q2 +

and since for a trans-sonic nozzle the relevant values of dq are negative,
6<f> must be to a first approximation pure-imaginary. Hence, for real 0O,
q, it is an unreal solution <f> of (19) that is relevant; and since the non-
elementary parts of the potentials Qo, Qv D2 are power series in q2, q%i(t>,
computation will be easier if we take <£ to have a positive imaginary part.

We have now to show that the complete ranges of q, 6 that can occur
in a nozzle such as is proposed are furnished by unreal solutions of (15).

If <f> = a + i£, the condition that (15) gives 0O ± 0 real is

sinh (f/«) + q2 sinh (2f + £/«)
c o s cr — •

2q sinh (C + C/a)
and then
_ , 2<7 cosh t sin a — q2 sin 2<r
(22) 0O ± 0 = a — a arc tan

1 — 2^ cosh t cos a + q2 cos 2cr

For a given t, (21) gives a real a between ±\n if
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sinh (£/2q) < < cosh (£/2a)

sinh (£ + £/2a) "" 7 ~~ cosh (£ + £/2a)

and it is easily shown that as q runs over this range (so that a makes an
excursion from 0 towards ±\n and then back to 0), the inverse tangent
in (22) runs from 0 to ±71, so that d0 ± 0 runs from 0 to ^na.. By con-
tinuation, values of 60 i 6 outside (—no., no.) are obtained by further
excursions of q over the range (23), so all values of 0 are attainable. Finally,
in the limit £ = 0, (21) gives cos <f> = cos a = {1 + (l + 2a)?2}/2(l + at)q,
so that (q, <f>) is on the singular locus D = 0; and as £ increases to 00 the
grange (23) contracts continuously towards q = 0. Hence all relevant
values of q, 6 are covered; it may be noted that for 6 = cat, (10) gives
q = 1, so any supersonic speed in the ultimate test-section can be secured
by suitably choosing 60 between 0 and cat.

The potential Qx is unreal, and we shall show that a flow having the
desired character when (q, <f>) is near the singular locus is obtained by
symmetrizing its real part. In the desired neighbourhood C is small, and (2)
gives (suppressing till the end the zero suffix from qQ, a0)

2(1 + a)q ^ ^ h

and thence

D = 1 + (1 + 2a)?2—2(l+a)£ cos a cosh f + 2*(1 + «-)q sin a sinh £

Hence (11) and (12) give

0(1).= _^ J
0 2(1 +a)2?£sin<r

The principal parts of Xv Ylt y)x now follow from (14), viz.

(24)

x = - g ( 1 ~ g2)1 4-
1 (1 + )2?(l 2?cos + ?2)£

(1 _ ^2)
y ^ 1J (_ 0(1)

1 2(1 + a ) 2 ? 2 s i n a £ V '

and taking real parts leaves these unaffected.
For the symmetrization we must form combinations, as in (16), of the

values (24) that belong to the two transformations (22). At the point
(q, a) on the singular locus with which we are concerned the right hand side
of (22) (with £ = 0) reduces to 0O. For a neighbouring point (q — Q,
a + d<f>), we obtain as a generalization of (20)
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2asincr-0 (l + a)0sincr
(25 ±6 = - H v )Y (66)* H ,v ' ^ 1 - 2q cos <r + q2 1 - 2? cos a + ?2 V ^ ;

and for 0 small this gives

(26, f = _
( + )? 2a sin a (?/

Distinguishing as £', £" the values of £ belonging to the two signs, the
principal part of ip becomes

Now near the throat of the proposed nozzle all the formulae are regular
and it will be sufficient to restrict y> to be bounded. Since xp is constant
along a streamline we may therefore restrict B so that in (27) l/£' — l/£"
is bounded, and by (26) the condition for this is

(28) B = 0(Q3'>).

Hence the values of l/£', l/£" derived from (26) may be expressed as
binomial series in B/Q, and for the symmetrized solution we obtain from (24)
the principal parts

_ (1 qfr-W (1 l\
' a)«jSsincro\r C'7

,2 9 ) I (1+a) 2 ? 0 ( l -2? 0 cos<r 0 +

(1 - ?o)W / 2 / 1 1 \ BO
2(1 +

where

=
 A / I 2 * ! 1 + «)?(>} ' ~ *" l2(! + «)sin a0;

in arriving at these values of A, B we have used the relation

(1 + a) (1 — 2q0 cos aQ + $?) = a(l — jj),

which says that (£<,, a0) is on the singular locus D = 0. By (2) the relations
between position and velocity coordinates are accordingly, to leading order,

For the leading approximation to tp we require by (16) the principal
part of i{X'i — X^), which like Y'x — Y'-[ is in general 0(1). This is

(32) iX2(q,
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where i{d<f>' - dcf>") = £" - £' and by (26), \{ty + dcf>") = i{2xQ/{l+a,.)q}y\
Now from (13) and (14) we find

( 3 3 ) iX**=i-2qcos<f, + q*'

and thence (32) is found to reduce to

i(x'2 - x'D = ex,
to leading order. Thus by (2), (16) becomes

(34) y, = - q{\ - q*Y(dX + Y) = -q{\ - q^y,

which could indeed have been asserted ab initio as the hydraulic ap-
proximation. However, by suitably judged work with expansions the ap-
proximations such as (32) can be refined; the result is

(35) y, = - q{\ - q*) 0R1 (iX'2 - iX'± + Y[- Y1/)
= - q(l - q*)0{Y + 6X- %Yd*/Q + O(6*Q-*l*)},

where X, Y are given by (29) with errors 0(1), 0(OQ~Vz) respectively. Also
by (2), to the same approximation as (35), Y -f- OX = y, and

q{\ - q*y = qo(l - £)>(1 + CQ),

where C = (q% — f̂j/̂ o f̂ (̂  ~ ^ ) - Thus finally we find, on substituting
for Q and 6 from (29)

(36) „ = - ft(l - &y jl + J (l - J)) + 0 g) ,
with

, _ Htilf. - i) , _ 2
9.0- -

The approximation (36) is of course valid only when x is large, but it
suggests a nozzle with a throat, as in figure 6; the flow is in the direction
of x decreasing because of the negative sign in (29).

Fig. 6. Nozzle with ultimately uniform section.

So much for the approximation at the supersonic end q ~ q0. At the
subsonic end q ~ 0, and as we have seen <f> ~ ico. More precisely, the leading
approximation to the transformation (8) is here

1 — qe-** ~ (qe-*6)1/",
so
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Now in (11) Hx = - log (1 - qe~**) and Go = (1 + a)"1 + O(qe**). Hence

Qo I/a - (qe-")W/{l + a)2,
and by (14)

X ~ e"1'0 , 2i s i n 0I1 + a(ge-^)1/g/(l + a)2}
1 ~ 1 - qe~** (i —qe-i*)(\ — qe**)

(1 + a)

provided I/a < 2, which is so if /? > f, y < §. Hence

(38) X ~ — 2a/(l + a ) 2 ? ~ — oo.

Since also by (29) X ~ — oo for q ~ q0, the axial ^-relation for the
symmetrized flow Rl (Qx{q, 0O + 0) + ^ ( ^ 0O — 0)) must have a maximum
— which in fact occurs for q = qs — and the flow has a limit-line. To arrive
at a smooth trans-sonic nozzle flow we therefore superpose the potential
—A Rli22, with A > 0. The maximum of the axial relation is thereby
displaced to a subsonic q, say at (xlf qx), and the corresponding singularity
of the flow ([1], Appendix 1) is that the axial streamline is prolonged by
two non-axial branches meeting at a cusp at xv Finally this singularity
can be removed, if desired, by superposing also a suitable multiple of the
potential R.
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