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Abstract

We show that the properties of being rationally K-stable passes from the fibres of a continuous
C(X)-algebra to the ambient algebra, under the assumption that the underlying space X is compact,
metrizable, and of finite covering dimension. As an application, we show that a crossed product
C*-algebra is (rationally) K-stable provided the underlying C*-algebra is (rationally) K-stable, and the
action has finite Rokhlin dimension with commuting towers.
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1. Introduction

Given a compact Hausdorff space X, a continuous C(X)-algebra is the section algebra
of a continuous field of C*-algebras over X. Such algebras form an important class of
nonsimple C*-algebras, and it is often of interest to understand those properties of a
C*-algebra which pass from the fibres to the ambient C(X)-algebra.

Given a unital C*-algebra A, we writeUn(A) for the group of n × n unitary matrices
over A. This is a topological group, and its homotopy groups πj(Un(A)) are termed the
nonstable K-theory groups of A. These groups were first systematically studied by
Rieffel [20] in the context of noncommutative tori. Thomsen [26] built on this work,
and developed the notion of quasiunitaries, thus constructing a homology theory for
(possibly nonunital) C*-algebras.

Unfortunately, the nonstable K-theory for a given C*-algebra is notoriously difficult
to compute explicitly. Even for the algebra of complex numbers, these groups are
naturally related to the homotopy groups of spheres πj(Sn), which are not known for
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many values of j and n. It is here that rational homotopy theory has proved to be useful
to topologists and, in this paper, we employ this tool in the context of C*-algebras.

A C*-algebra A is said to be K-stable if the homotopy groups πj(Un(A)) are naturally
isomorphic to the K-theory groups Kj+1(A), and rationally K-stable if the analogous
statement holds for the rational homotopy groups (see Definition 2.3). In [23], we
proved that, for a continuous C(X)-algebra, the properties of being K-stable passes
from the fibres to the whole algebra, provided the underlying space X is metrizable
and has finite covering dimension. The goal of this paper is to prove an analogous
result for rational K-stability.

THEOREM A. Let X be a compact metric space of finite covering dimension and let A
be a continuous C(X)-algebra. If each fibre of A is rationally K-stable, then so is A.

As an interesting application of these results, we consider crossed product
C*-algebras where the action has finite Rokhlin dimension (with commuting towers).
A theorem of Gardella et al. [11] states that such a crossed product C*-algebra can be
locally approximated by a continuous C(X)-algebra (see Definition 4.3). This leads to
the following result.

THEOREM B. Let α : G→ Aut(A) be an action of a compact Lie group on a separable
C*-algebra A such that α has finite Rokhlin dimension with commuting towers. If A is
rationally K-stable (K-stable), then so is A �α G.

The paper is organized as follows. In Section 2 we introduce the basic notions
used throughout the paper: those of nonstable K-groups, C(X)-algebras, and the
rationalization of H-spaces. In Section 3, we prove Theorem A along with some
applications and examples. Finally, Section 4 is devoted to the proof of Theorem B.

2. Preliminaries

2.1. Nonstable K-theory. We begin by reviewing the work of Thomsen in construct-
ing the nonstable K-groups associated to a C*-algebra. For the proofs of the results
mentioned in this section, the reader is referred to [26].

Let A be a C*-algebra (not necessarily unital). Define an associative composition ·
on A by

a · b = a + b − ab. (2-1)

An element u ∈ A is said to be a quasiunitary if

u · u∗ = u∗ · u = 0.

We write Û(A) for the set of all quasiunitary elements in A. For elements u, v ∈ Û(A),
we write u ∼ v if there is a continuous function f : [0, 1]→ Û(A) such that f (0) =
u and f (1) = v. We write Û0(A) for the set of u ∈ Û(A) such that u ∼ 0. Note that
Û0(A) is a closed, normal subgroup of Û(A). We now define the two functors we are
interested in.
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DEFINITION 2.1. Let A be a C∗-algebra, and k ≥ 0 and m ≥ 1 be integers. Define

Gk(A) := πk(Û(A)) and Fm(A) := πm(Û0(A)) ⊗ Q � Gm(A) ⊗ Q.

Recall [21] that a homology theory on the category of C∗-algebras is a sequence
{hn} of covariant, homotopy-invariant functors from the category of C∗-algebras to the
category of abelian groups such that, if 0→ J

ι−→ B
p
−→ A→ 0 is a short exact sequence

of C∗-algebras, then for each n ∈ N, there exists a connecting map ∂ : hn(A)→ hn−1(J),
making the sequence

· · · ∂−→ hn(J)
hn(ι)
−−−→ hn(B)

hn(p)
−−−→ hn(A)

∂−→ hn−1(J)→ · · ·

exact, and furthermore, ∂ is natural with respect to morphisms of short exact
sequences. Furthermore, we say that a homology theory {hn} is continuous if, whenever
A = lim Ai is an inductive limit in the category of C∗-algebras, then hn(A) = lim hn(Ai)
in the category of abelian groups. The next proposition is a consequence of [26,
Proposition 2.1] and [9, Theorem 4.4].

PROPOSITION 2.2. For each m ≥ 1, Gm and Fm are continuous homology theories.

The notion of K-stability given below is due to Thomsen [26, Definition 3.1], and
that of rational K-stability has been studied by Farjoun and Schochet [5, Definition
1.2], where it was termed rational Bott-stability.

DEFINITION 2.3. Let A be a C∗-algebra and j ≥ 2. Define ιj : Mj−1(A)→ Mj(A) to be
the natural inclusion map

a �→
(
a 0
0 0

)
.

A is said to be K-stable if Gk(ιj) : Gk(Mj−1(A))→ Gk(Mj(A)) is an isomorphism for all
k ≥ 0 and all j ≥ 2. Furthermore, A is said to be rationally K-stable if the induced map
Fm(ιj) : Fm(Mj−1(A))→ Fm(Mj(A)) is an isomorphism for all m ≥ 1 and all j ≥ 2.

Note that, for a K-stable C∗-algebra, Gk(A) � Kk+1(A), and for a rationally K-stable
C∗-algebra, Fm(A) � Km+1(A) ⊗ Q. A variety of interesting C*-algebras are known to
be K-stable (see [23, Remark 1.5]). Clearly, K-stability implies rational K-stability.
By [22, Theorem B], the converse is true for approximately finite-dimensional (AF)
algebras. However, as Example 3.1 shows, the converse is not true in general.

2.2. C(X)-algebras. Let A be a C∗-algebra, and X a compact Hausdorff space. We
say that A is a C(X)-algebra [13, Definition 1.5] if there is a unital ∗-homomorphism
θ : C(X)→ Z(M(A)), where Z(M(A)) denotes the center of the multiplier algebra of
A. For simplicity of notation, if f ∈ C(X) and a ∈ A, we write f a := θ( f )(a).

If Y ⊂ X is closed, the set C0(X, Y) of functions in C(X) that vanish on Y is a closed
ideal of C(X). Hence, C0(X, Y)A is a closed, two-sided ideal of A. The quotient of A
by this ideal is denoted by A(Y), and we write πY : A→ A(Y) for the quotient map
(also referred to as the restriction map). If Z ⊂ Y is a closed subset of Y, we write
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πY
Z : A(Y)→ A(Z) for the natural restriction map, so that πZ = π

Y
Z ◦ πY . If Y = {x} is a

singleton, we write A(x) for A({x}) and πx for π{x}. The algebra A(x) is called the fibre
of A at x. For a ∈ A, write a(x) for πx(a). For each a ∈ A, there is a map

Γa : X → R given by x �→ ‖a(x)‖.

This map is, in general, upper semicontinuous [14, Lemma 2.3]. We say that A is a
continuous C(X)-algebra if Γa is continuous for each a ∈ A.

If A is a C(X)-algebra, we often have reason to consider other C(X)-algebras
obtained from A. For this purpose, the following result of Kirchberg and Wasserman
is useful.

THEOREM 2.4 [14, Remark 2.6]. Let X be a compact Hausdorff space, and let A be
a continuous C(X)-algebra. If B is a nuclear C∗-algebra, then A ⊗ B is a continuous
C(X)-algebra whose fibre at a point x ∈ X is A(x) ⊗ B.

In particular, if A is a continuous C(X)-algebra, then so is M2(A). If Y ⊂ X is a
closed set, we denote the restriction map by ηY : M2(A)→ M2(A(Y)), and we write
ιY : A(Y)→ M2(A(Y)) for the natural inclusion map. If Y = X, we simply write ι (or
ιA) for ιX . Note that ηY ◦ ι = ιY ◦ πY . Once again, if Y = {x}, we simply write ιx for ι{x}.

Finally, the notion of a pullback is important for our investigation. Let B, C, and D
be C∗-algebras, and δ : B→ D and γ : C → D be ∗-homomorphisms. We define the
pullback of this system to be

A = B ⊕D C := {(b, c) ∈ B ⊕ C : δ(b) = γ(c)}.

This is described by a diagram

A
φ ��

ψ

��

B

δ
��

C
γ �� D

(2-2)

where φ(b, c) = b and ψ(b, c) = c. The next lemma allows us to inductively put together
a C(X)-algebra from its natural quotients.

LEMMA 2.5 [2, Lemma 2.4]. Let X be a compact Hausdorff space and Y and Z be two
closed subsets of X such that X = Y ∪ Z. If A is a C(X)-algebra, then A is isomorphic
to the pullback

A
πY ��

πZ

��

A(Y)

πY
Y∩Z

��
A(Z)

πZ
Y∩Z �� A(Y ∩ Z)

2.3. Rational homotopy theory. We now discuss some basic facts about the
rationalization of groups and spaces as developed in [10].
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A connected CW complex Y is said to be nilpotent if π1(Y) is a nilpotent group and
π1(Y) acts nilpotently on πj(Y) for all j ≥ 2. A nilpotent space Y is a rational space
if, for each j ≥ 1, the homotopy group πj(Y) is a Q-vector space. A continuous map
r : Y → Z is said to be a rationalization of Y if Z is a rational space and

r∗ ⊗ id : π∗(Y) ⊗ Q→ π∗(Z) ⊗ Q � π∗(Z)

is an isomorphism. The next theorem (see [10, Theorem II.3A]) is fundamental to the
theory.

THEOREM 2.6 (Hilton, Mislin, and Roitberg). Every nilpotent CW complex Y has a
rationalization r : Y → YQ, where YQ is a CW complex. The space YQ is uniquely
determined up to homotopy equivalence.

We now specialize to the situation of our interest. Recall that an H-space is a
pointed space (Y , e) endowed with a ‘multiplication’ map μ : Y × Y → Y such that
e is a homotopy unit, that is, the maps λ, ρ : Y → Y given by λ(y) := μ(e, y) and
ρ(y) := μ(y, e) are both homotopic to idY . We denote this H-space by the triple (Y , e, μ).
We say that (Y , e, μ) is homotopy-associative if the maps

μ ◦ ( μ × idY ) and μ ◦ (idY × μ) : Y × Y × Y → Y

are homotopic. In what follows, we implicitly assume that the H-spaces under
consideration are all homotopy-associative.

Now suppose (Y , e, μ) is an H-space, where the space Y is a connected CW complex.
Since Y is nilpotent, it has a rationalization r : Y → YQ by Theorem 2.6. Now, by
[16, Theorem 6.2.3], r × r : Y × Y → YQ × YQ is a rationalization. By the universal
properties of the rationalization, there is a unique map ρ : YQ × YQ → YQ such that the
following diagram commutes up to homotopy:

Y × Y
μ ��

r×r
��

Y

r
��

YQ × YQ
ρ �� YQ

(2-3)

By the mapping cylinder construction, we may assume that r is a cofibration. Then
r × r is also a cofibration as it is the composition of two cofibrations

Y × Y → Y × YQ → YQ × YQ.

Hence, by [24, Problem 5.3], we may assume that the above diagram commutes
strictly. If we set eQ := r(e), then it follows from [16, Proposition 6.6.2] that the triple
(YQ, eQ, ρ) is an H-space. Furthermore, by universality, we may also ensure that the
triple (Y , eQ, ρ) is homotopy-associative. We summarize this result below.

PROPOSITION 2.7. If (Y , e, μ) is a homotopy-associative H-space, where Y is a
connected CW complex, then there is a homotopy-associative H-space (YQ, eQ, ρ) and a
map r : Y → YQ such that r is a rationalization, and Diagram (2-3) commutes strictly.
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If A is a C*-algebra, then Û(A) has the homotopy type of a CW complex [26,
Corollary 1.6]. Therefore, Û0(A) may be regarded as a connected CW complex.
Since Û0(A) is a topological group (and hence a connected H-space), it has a
rationalization r : Û0(A)→ Û0(A)Q. By Proposition 2.7, Û0(A)Q has the structure of
an H-space, which we write as (Û0(A)Q, eQ, ρ), where eQ = r(0). Finally, observe that
the commutativity of Diagram (2-3) implies that ρ(eQ, eQ) = eQ.

2.4. Notational conventions. If A and B are two C∗-algebras, the symbol A ⊗ B will
always denote the minimal tensor product. If B = C0(X) is commutative, we identify
C0(X) ⊗ A with C0(X, A), the space of continuous A-valued functions on X that vanish
at infinity.

Suppose f and g are two continuous paths in a topological space Y. If f (1) = g(0),
we write f • g for the concatenation of the two paths. If f and g agree at end-points,
we write f ∼h g if there is a path homotopy between them. Furthermore, we write f
for the path f (t) := f (1 − t) and the constant path at a point ∗ as e∗.

If X and Y are two pointed spaces, we write C∗(X, Y) for the space of
base-point-preserving continuous functions from X to Y. Note that if A is a C*-algebra,
and Y is either A or Û0(A), then we always take 0 to be the base point. In that case,
C∗(X, A) is a C*-algebra, and, for any path-connected space X, there is a natural
isomorphism

Û(C∗(X, A)) � C∗(X, Û0(A)).

Henceforth, we identify these two spaces without further comment.
If (Y , e, μ) is an H-space and a ∈ Y , we may define nonnegative powers of a

inductively by μ0(a) := e and μn(a) := μ(μn−1(a), a). Similarly, if f : X → Y is any
function, we define nonnegative powers of f pointwise, that is, μn( f )(x) := μn( f (x))
for all n ≥ 0. Note that, if f ∈ C∗(S j, Y), then [μn( f )] = n[ f ] in πj(Y) by [28, Theorem
4.7]. Throughout the rest of the paper, for any C∗-algebra B, we write μB for the
multiplication in Û0(B) given by Equation (2-1), and ρB for the multiplication in
Û0(B)Q given by Proposition 2.7.

3. Main results

The goal of this section is to provide a proof for Theorem A. To put things in
perspective, we begin by constructing an example of a C*-algebra that is rationally
K-stable, but not K-stable.

EXAMPLE 3.1. Let X be a connected, finite CW complex such that Hi(X;Z) is a finite
group for all i ≥ 1 (for instance, we may take X to be the real projective space RP2),
and set

A := C∗(X,C).
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Note that, for all n, m ≥ 1,

Fn(Mm(A)) = πn(C∗(X;Um)) ⊗ Q =
⊕

l≥n

H̃l−n(X; πl(Um) ⊗ Q) = 0

by [19, Theorem 4.20]. Hence, A is rationally K-stable.
Now suppose that A is K-stable. We fix a path connected H-space Y, and consider

the following fibration sequence (see the proof of [19, Proposition 4.9]):

C∗(X, Y)→ C(X, Y)→ Y .

This fibration has a section, hence the long exact homotopy sequence breaks into split
short exact sequences

0→ πn(C∗(X, Y))→ πn(C(X, Y))→ πn(Y)→ 0 (3-1)

for all n ∈ N. By a result of Thom [25, Theorem 2], if Y = S1 = K(Z, 1), then
πn(C(X, S1)) � H1−n(X;Z). It follows that

Gn(A) = πn(Û(C∗(X,C))) � πn(C∗(X, S1)) = 0

for all n ≥ 1. If A were K-stable, it would follow that

πn(C∗(X,Um)) � Gn(Mm(A)) � Gn(A) = 0

for all n, m ≥ 1. Hence, πn(C∗(X, Û(K))) � Gn(A ⊗ K) = 0 for all n ≥ 1. Taking Y =
Û(K) in Equation (3-1), we conclude that

πn(C(X, Û(K))) � πn(Û(K)) =

⎧⎪⎪⎨⎪⎪⎩Z if n is odd
0 if n is even.

(3-2)

Thus, in order to show that A is not K-stable, it suffices to show that Equation (3-2)
cannot hold. To do this, we consider the work of Federer [6], who constructed a spectral
sequence converging to these homotopy groups (note that X is a finite CW complex,
and Û(K) is a simple space, so the results of [6] do apply). The first page of this
spectral sequence, which converges to πp(C(X, Û(K))), is of the form

C(1)
p,q � Hq(X; πp+q(Û(K)))

with differential d : C(1)
p,q → C(1)

p−1,q+2. Therefore, for C(1)
p,q to be nonzero, p + q must be

odd. But in that case, C(1)
p−1,q+2 is zero. Hence, the spectral sequence collapses at the

very first page, so C(1)
p,q = C(∞)

p,q . Therefore,

πn(C(X, Û(K))) =
⊕
q≥0

Hq(X; πn+q(Û(K)))

for all n ≥ 1. This is a finite sum of finite groups (by our choice of X), contradicting
Equation (3-2). Thus, A is not K-stable.
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We now turn to the proof of Theorem A, and begin with some lemmas that will be
useful to us. The first lemma, which we use repeatedly throughout the paper, follows
from [26, Theorem 1.9] and [3, Theorem 4.8].

LEMMA 3.2. Let ϕ : A→ B be a surjective ∗-homomorphism between two
C*-algebras. Then the induced maps ϕ : Û(A)→ ϕ(Û(A)) and ϕ : Û0(A)→ Û0(B)
are both Serre fibrations.

LEMMA 3.3 [23, Lemma 2.2]. Let a, b ∈ Û(A) such that ‖a − b‖ < 2. Then a ∼ b in
Û(A).

Note that, for any element a in a C*-algebra A (not necessarily a quasiunitary), we
write μA

N(a) for a · a · · · a (N times). The next lemma is a variation of [23, Lemma 2.3]
that we need for our purposes.

LEMMA 3.4. For any ε > 0 and any N ∈ N, there exists δ > 0 satisfying the following
condition. For any C*-algebra A, and any element a ∈ A such that ‖a‖ ≤ 2, ‖a · a∗‖ < δ,
and ‖a∗ · a‖ < δ, there exists a quasiunitary u ∈ Û(A) such that

‖μA
N(u) − μA

N(a)‖ < ε.

PROOF. Note that the function d �→ μA
N(d) is a polynomial in d (that is independent

of A). Thus, for any ε > 0, there exists η > 0 satisfying the following condition. For
any C*-algebra A and any c, d ∈ A with ‖c‖, ‖d‖ ≤ 2 such that ‖c − d‖ < η, we have
‖μA

N(c) − μA
N(d)‖ < ε.

We choose δ > 0 satisfying the conditions of [23, Lemma 2.3] with ε = η. Then
there exists u ∈ Û(A) such that ‖u − a‖ < η, so that ‖μA

N(u) − μA
N(a)‖ < ε. �

Our proof of Theorem A is by induction on the covering dimension of the
underlying space. The next theorem is the base case, and it holds even if the space is
not metrizable. In what follows we repeatedly use the fact that, for any abelian group A,
any element in A ⊗ Q can be represented as an elementary tensor of the form u ⊗ 1/m
for some u ∈ A and m ∈ Z.

THEOREM 3.5. Let X be a compact Hausdorff space of zero covering dimension, and
let A be a continuous C(X)-algebra. If each fibre of A is rationally K-stable, then
so is A.

PROOF. We show that the map

ι∗ ⊗ id : πj(Û0(A)) ⊗ Q→ πj(Û0(Mn(A))) ⊗ Q

is an isomorphism for each n ≥ 2 and j ≥ 1. For simplicity of notation, we fix n = 2.
We first consider injectivity. Suppose [ f ] ∈ πj(Û0(A)) and q ∈ Q are such

that[ι ◦ f ] ⊗ q = 0 in πj(Û0(M2(A)) ⊗ Q. Then, by elementary group theory, [ι ◦ f ]
has finite order in πj(Û0(M2(A))). Thus, for x ∈ X, [ιx ◦ πx ◦ f ] has finite order
in πj(Û0(M2(A(x))). Since A(x) is rationally K-stable, [πx ◦ f ] has finite order in

https://doi.org/10.1017/S144678872200009X Published online by Cambridge University Press

https://doi.org/10.1017/S144678872200009X


[9] Rational K-stability of continuous C(X)-algebras 127

πj(Û0(A(x))). Hence, there exist Nx ∈ N and a path F : [0, 1]→ C∗(S j, Û0(A(x))) such
that

F(0) = 0 and F(1) = μA(x)
Nx

(πx ◦ f ).

Note that by [23, Lemma 2.4], there is a closed neighbourhood Yx of x such that
μA(Yx)

Nx
(πYx ◦ f ) ∼ 0 in C∗(S j, Û0(A(Yx))). Since X is zero-dimensional, we may assume

that the sets {Yx : x ∈ X} are clopen and disjoint. Since X is compact, we may obtain a
finite subcover {Yx1 , Yx2 , . . . , Yxn}. By Lemma 2.5,

A � A(Yx1 ) ⊕ A(Yx2 ) ⊕ · · · ⊕ A(Yxn )

via the map b �→ (πYx1
(b), πYx2

(b), . . . , πYxn
(b)). If N := lcm1≤i≤n(Nxi ), then we must

have μ
A(Yxi )
N (πYxi

◦ f ) ∼ 0 in C∗(S j, Û0(A(Yxi ))), for each 1 ≤ i ≤ n. Thus, μN( f ) ∼ 0 in
πj(Û0(A)). Hence, [ f ] has finite order in πj(Û0(A)), so [ f ] ⊗ q = 0 in πj(Û0(A)) ⊗ Q.
Thus, ι∗ ⊗ id is injective.

For surjectivity, choose [u] ∈ πj(Û0(M2(A))) and m ∈ Z nonzero. We wish to
construct an element [ω] ∈ πj(Û0(A)) and q ∈ Q such that

ι∗ ⊗ id([ω] ⊗ q) = [u] ⊗ 1
m

.

To this end, fix x ∈ X. Since A(x) is rationally K-stable, there exist [ fx] ∈ πj(Û0(A(x)))
and qx ∈ Q such that

(ιx)∗ ⊗ id([ fx] ⊗ qx) = [ηx ◦ u] ⊗ 1
m

.

Replacing fx by a multiple of itself if need be, we obtain integers Lx, Nx ∈ N such that

Nx[ιx ◦ fx] = Lx[ηx ◦ u]

in πj(Û0(M2(A(x)))). Hence, there is a path gx : [0, 1]→ C∗(S j, Û0(M2(A(x)))) such
that gx(0) = μM2(A(x))

Lx
(ηx ◦ u) and gx(1) = μM2(A(x))

Nx
(ιx ◦ fx). Choose ex ∈ C∗(S j, A) such

that πx ◦ ex = fx. Note that ex may not be a quasiunitary, but we may ensure that ‖ex‖ =
‖ fx‖ ≤ 2. Since the map

ηx : C∗(S j, Û0(M2(A)))→ ηx(C∗(S j, Û0(M2(A))))

is a fibration, gx lifts to a path Gx : [0, 1]→ C∗(S j, Û0(M2(A))) such that Gx(0) =
μM2(A)

Lx
(u). Let bx := Gx(1), so that ηx ◦ bx = μ

M2(A(x))
Nx

(ιx ◦ πx ◦ ex). Choose δ > 0 so that
the conclusion of Lemma 3.4 holds for ε = 1 and N = Nx. Since A is a continuous
C(X)-algebra, there is a closed neighbourhood Yx of x such that

‖πYx ◦ (e∗x · ex)‖ < δ, ‖πYx ◦ (ex · e∗x)‖ < δ,
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and ‖ηYx ◦ bx − μM2(A(Yx))
Nx

(ηYx ◦ ι ◦ ex)‖ < 1. By Lemma 3.4, there is a quasiunitary dx ∈
C∗(S j, Û0(A(Yx))) such that ‖μA(Yx)

Nx
(dx) − μA(Yx)

Nx
(πYx ◦ ex)‖ < 1, so that

‖μM2(A(Yx))
Nx

(ιYx ◦ dx) − ηYx ◦ bx‖ < 2.

By Lemma 3.3, μM2(A(Yx))
Nx

(ιYx ◦ dx) ∼ ηYx ◦ bx in C∗(S j, Û0(M2(A(Yx))). Hence,
we have ιYx ◦ μ

A(Yx)
Nx

(dx) ∼ μM2(A(Yx))
Lx

(ηYx ◦ u). As before, since X is compact and
zero-dimensional, we may choose a finite refinement of {Yx : x ∈ X} consisting of
disjoint clopen sets, which we denote by {Yx1 , Yx2 , . . . , Yxn}. Then, by Lemma 2.5,

A � A(Yx1 ) ⊕ A(Yx2 ) ⊕ · · · ⊕ A(Yxn )

via the map a �→ (πYx1
(a), πYx2

(a), . . . , πYxn
(a)). Similarly,

M2(A) � M2(A(Yx1 )) ⊕M2(A(Yx2 )) ⊕ · · · ⊕M2(A(Yxn ))

via the map b �→ (ηYx1
(b), ηYx2

(b), . . . , ηYxn
(b)). Define L := lcm1≤i≤n(Lxi ), so that

ιYxi
◦ cxi ∼ μ

M2(A(Yxi ))
L (ηYxi

◦ u)

in C∗(S j, Û0(M2(A(Yxi )))), where cxi ∈ C∗(S j, Û0(A(Yxi ))) is an appropriate power of
dxi . Choose ω ∈ C∗(S j, Û0(A)) such that πYxi

◦ ω = cxi for all 1 ≤ i ≤ n. Furthermore,
for each 1 ≤ i ≤ n,

ηYxi
◦ ι ◦ ω = ιYxi

◦ cxi ∼ μ
M2(A(Yxi ))
L (ηYxi

◦ u)

in C∗(S j, Û0(M2(A(Yxi )))), so that ι ◦ ω ∼ μM2(A)
L (u) in C∗(S j, Û0(M2(A))). Thus,

ι∗ ⊗ id
(
[ω] ⊗ 1

Lm

)
= [u] ⊗ 1

m
.

This proves the surjectivity of ι∗ ⊗ id. �

The next few lemmas allow us to extend this argument to higher-dimensional
spaces.

LEMMA 3.6. Let (Y , e, μ) be an H-space, where Y is a connected CW complex. Let
r : (Y , e, μ)→ (YQ, eQ, ρ) be the rationalization map from Proposition 2.7, and let j ≥ 1
be a fixed integer.

(1) Let [ f ] ∈ πj(Y) and n ∈ N, and suppose there is a path H : [0, 1]→ C∗(S j, Y)
such that H(0) = e and H(1) = μn( f ). Then there exists a path G : [0, 1]→
C∗(S j, YQ) with G(0) = eQ and G(1) = r ◦ f , such that

r ◦ H ∼h ρn(G)

in C∗(S j, YQ).
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(2) Let [ f ] ∈ πj(Y), and suppose there is a path G′ : [0, 1]→ C∗(S j, YQ) such that
G′(0) = eQ and G′(1) = r ◦ f . Then there exists a natural number N ∈ N and a
path H′ : [0, 1]→ C∗(S j, Y) with H′(0) = e and H′(1) = μN( f ), such that

r ◦ H′ ∼h ρN(G′)

in C∗(S j, YQ).

PROOF. (1) Since YQ is a rational space, [r ◦ f ] = 0 in πj(YQ). Then, there
is a path L : [0, 1]→ C∗(S j, YQ) such that L(0) = eQ and L(1) = r ◦ f . Thus,
ρn(L) : [0, 1]→ C∗(S j, YQ) is a path that satisfies ρn(L)(0) = eQ and ρn(L)(1) =
ρn(r ◦ f ). Note that π1(C∗(S j, YQ)) is itself a Q-vector space [10, Theorem II.3.11]
and (r ◦ H) • ρn(L) is a loop in C∗(S j, YQ). Thus, there exists [T] ∈ π1(C∗(S j, YQ)) such
that

[(r ◦ H) • ρn(L)] = n[T] = [ ρn(T)].

Hence, G := T • L is the required homotopy (since the operation ρn respects concate-
nation).

(2) Since [r ◦ f ] = 0, in πj(YQ), under r∗ ⊗ Q : πj(Y) ⊗ Q→ πj(YQ) it follows that
[r ◦ f ] � [ f ] ⊗ 1 = 0 in πj(Y) ⊗ Q. Hence, by elementary group theory, this implies
that [ f ] has finite order in πj(Y). Thus, there exists n ∈ N such that n[ f ] = 0 in πj(Y),
say, by homotopy K : [0, 1]→ C∗(S j, Y) such that

K(0) = e, K(1) = μn( f ).

Now, by a similar argument to that of part (1), (r ◦ K) • ρn(G′) is a loop in C∗(S j, YQ),
which is a rational space. Hence, there exists [T] ∈ π1(C∗(S j, YQ)) satisfying

n[T] = [ρn(T)] = [r ◦ K • ρn(G′)].

Now n[T] ∈ π1(C∗(S j, YQ)) � π1(C∗(S j, Y)) ⊗ Q, so there exist [h] ∈ π1(C∗(S j, Y)) and
m ∈ Z such that

n[T] =
[r ◦ h]

m
.

Thus, by the fact that ρ is homotopy-associative,

m[r ◦ K • ρn(G′)] = [ ρm(r ◦ K) • ρmn(G′)] = mn[T] = [r ◦ h].

Thus, if H′ := h • μm(K) and N := mn, then H′(0) = e, H′(1) = μN( f ), and r ◦ H′ is
path homotopic to ρN(G′). �

The next result will be useful to us in the following context. Suppose that B, C,
and D are C∗-algebras, and δ : B→ D and γ : C → D are ∗-homomorphisms. Let
A = B ⊕D C be the pullback as in Equation (2-2). Then Û(A) may be described as
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a pullback (in the category of pointed topological spaces) by the induced diagram

Û(A)
φ ��

ψ
��

Û(B)

δ
��

Û(C) γ
�� Û(D)

In other words, a pair (b, c) ∈ A is in Û(A) if and only if b ∈ Û(B) and c ∈ Û(C). We
now introduce some notation for later use. Given a path G : [0, 1]→ Y in a topological
space Y, G̃ is a path given by

G̃(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
eG(0)(3s) if 0 ≤ x ≤ 1

3

G(3s − 1) if 1
3 ≤ x ≤ 2

3

eG(1)(3s − 2) if 2
3 ≤ x ≤ 1.

(3-3)

LEMMA 3.7. Consider a pullback diagram of pointed topological spaces given by

P
φ1 ��

φ2

��

X

π1

��
Y π2

�� Z

such that one of the maps π1 or π2 is a Serre fibration. Let p = (x, y), p′ = (x′, y′) be in
P, such that there exist paths

G1 : [0, 1]→ X, G2 : [0, 1]→ Y

with the properties that G1(0) = x, G1(1) = x′, G2(0) = y, G2(1) = y′ and π1 ◦ G1 ∼h

π2 ◦ G2 in Z. Then there is a path H : [0, 1]→ P such that H(0) = p and H(1) = p′.

PROOF. Assume without loss of generality that π1 is a Serre fibration. Then since
π1 ◦ G1 ∼h π2 ◦ G2, there is a homotopy F : [0, 1] × [0, 1]→ D such that

F(s, 0) = π1 ◦ G1(s), F(s, 1) = π2 ◦ G2(s),
F(0, t) = π1(x) = π2(y), F(1, t) = π1(x′) = π2(y′).

Then F lifts to a homotopy F′ : [0, 1] × [0, 1]→ X, such that

F′(s, 0) = G1, π1 ◦ F′ = F, π1 ◦ F′(t, 1) = π2 ◦ G2(t).

So if we define

GX(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F′(0, 3s) if 0 ≤ s ≤ 1

3

F′(3s − 1, 1) if 1
3 ≤ s ≤ 2

3

F′(1, 3 − 3s) if 2
3 ≤ s ≤ 1

then π1 ◦ GX = π2 ◦ G̃2. Therefore, the pair (GX , G̃2) defines a path in P from
p to p′. �
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LEMMA 3.8. Let X and Y be two connected topological spaces, and i : X → Y and
q : Y → X be homotopy inverses of each other. For x ∈ X, let H : [0, 1]→ Y be a path
in Y, such that

H(0) = i(x), H(1) = i ◦ q ◦ i(x).

Then there exists a path T : [0, 1]→ X such that

T(0) = x, T(1) = q ◦ i(x)

and i ◦ T is path homotopic to H in Y.

PROOF. Since q ◦ i ∼h idX , there is a path S : [0, 1]→ X such that S(0) = q ◦ i(x), and
S(1) = x. Thus, H • (i ◦ S) is a loop in Y based at i(x). Since π1(Y) = i∗(π1(X)), there
exists a loop L based at x in X such that

i∗[L] = [H • (i ◦ S)].

Then T := L • S is the required path. �

Note that, if B is a C*-algebra, then the rationalization Û0(B)Q of Û0(B) carries
an H-space structure by Proposition 2.7. We use ρB to denote this multiplication
map. Furthermore, we write eQ and e2

Q
for the units of Û0(B)Q and Û0(M2(B))Q,

respectively.

PROPOSITION 3.9. Let B be a rationally K-stable C*-algebra, [ f ] ∈ πj(Û0(B)) and
n ∈ N such that [ι ◦ f ] is an element of order n in πj(Û0(M2(B)). Consider a path
H : [0, 1]→ C∗(S j, Û0(M2(B))) satisfying

H(0) = 0 and H(1) = μM2(B)
n (ι ◦ f ) = ι ◦ μB

n ( f ).

Then there exist a natural number N ∈ N and a path H′ : [0, 1]→ C∗(S j, Û0(B)) such
that

μM2(B)
N (H) ∼h ι ◦ H′

in C∗(S j, Û0(M2(B))).

PROOF. Since B is rationally K-stable, there are maps Û0(B)Q → Û0(M2(B))Q and
Û0(M2(B))Q → Û0(B)Q which are homotopy inverses of each other. Therefore, we get
a commuting diagram

C∗(S j, Û0(B)) ι ��

r
��

C∗(S j, Û0(M2(B)))

R
��

C∗(S j, Û0(B)Q) i �� C∗(S j, Û0(M2(B))Q)

where r and R represent the rationalization maps. Furthermore, i has a homotopy
inverse q : C∗(S j, Û0(M2(B))Q)→C∗(S j, Û0(B)Q). Let H : [0, 1]→C∗(S j, Û0(M2(B)))
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as above. Since R is a rationalization map, applying Lemma 3.6, we get a homotopy
G : [0, 1]→ C∗(S j, Û0(M2(B))Q) such that

G(0) = e2
Q, and G(1) = R ◦ ι ◦ f = ι ◦ r ◦ f .

Furthermore, ρM2(B)
n (G) is path homotopic to R ◦ H in C∗(S j, Û0(M2(B))Q). Now,

q ◦ G : [0, 1]→ C∗(S j, Û0(B)Q) is such that

q ◦ G(0) = eQ and q ◦ G(1) = q ◦ i ◦ r ◦ f .

Note that i and q are homotopy equivalences, hence G and i ◦ q ◦ G are homotopic in
C∗(S j, Û0(M2(B))Q), say, by K : [0, 1] × [0, 1]→ C∗(S j, Û0(M2(B))Q) satisfying

K(s, 0) = G(s), K(s, 1) = i ◦ q ◦ G(s), K(0, t) = e2
Q.

Define T : [0, 1]→ C∗(S j, Û0(M2(B))Q) as T(t) = K(1, 1 − t). Then

T(0) = i ◦ q ◦ i ◦ r ◦ f , T(1) = i ◦ r ◦ f .

Thus, by Lemma 3.8, there is a homotopy S : [0, 1]→ C∗(S j, Û0(B)Q) such that

S(0) = q ◦ i ◦ r ◦ f , S(1) = r ◦ f

and i ◦ S is path homotopic to T in C∗(S j, Û0(M2(B))Q). Since (i ◦ q ◦ G) • T is
path homotopic to G, this implies (i ◦ q ◦ G) • (i ◦ S) is path homotopic to G in
C∗(S j, Û0(M2(B))Q). Thus, we get a path (q ◦ G) • S : [0, 1]→ C∗(S j, Û0(B)Q) so that

(q ◦ G) • S(0) = eQ, q ◦ G • S(1) = r ◦ f , i ◦ (q ◦ G • S) ∼h G.

Again, since r is a rationalization map, by Lemma 3.6, there exist a natural number
m ∈ N and a path H′ : [0, 1]→ C∗(S j, Û0(B)) such that

H′(0) = 0, H′(1) = μB
m( f ), r ◦ H′ ∼h ρ

B
m((q ◦ G) • S).

Take k = lcm{n, m}, and write k = n�1 = m�2 for some �1, �2 ∈ N. Then the path
μB

l2
(H′) : [0, 1]→ C∗(S j, Û0(B)) is such that

μB
�2

(H′)(0) = 0, μB
�2

(H′)(1) = μB
k ( f ) and r ◦ μB

�2
(H′) ∼h ρ

B
k ((q ◦ G) • S).

Also μM2(B)
�1

(H) : [0, 1]→ C∗(S j, Û0(M2(B))) is such that

μM2(B)
�1

(H)(0) = 0, μM2(B)
�1

(H)(1) = ι ◦ μB
k ( f ) and R ◦ μM2(B)

�1
(H) ∼h ρ

M2(B)
k (G).

Then, from the earlier arguments, we have the relations

ρM2(B)
k (G) ∼h R ◦ μM2(B)

�1
(H),

i ◦ ((q ◦ G) • S) ∼h G,

r ◦ μB
�2

(H′) ∼h ρ
B
k ((q ◦ G) • S).
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Also i ◦ r ◦ H′ = R ◦ ι ◦ H′. Hence,

R ◦ ι ◦ μB
�2

(H′) = i ◦ r ◦ μB
�2

(H′) ∼h ρ
M2(B)
k (i ◦ ((q ◦ G) • S))

∼h ρ
M2(B)
k (G) ∼h R ◦ μM2(B)

�1
(H).

Thus

[R ◦ (ι ◦ μB
�2

(H′) • μM2(B)
�1

(H))] = 0

in π1(C∗(S j, Û0(M2(B))Q)). Then, by Lemma 3.6, there exists a natural number P ∈ N
such that

ι ◦ μB
P�2

(H′) = μM2(B)
P (ι ◦ μB

�2
(H′)) ∼h μ

M2(B)
P (μM2(B)

�1
(H)) = μM2(B)

P�1
(H)

in C∗(S1, Û0(M2(B))). Thus, replacing H′ by μB
P�2

(H′) and taking N := P�1, we have

ι ◦ H′ ∼h μ
M2(B)
N (H),

proving the result. �

The next lemma is an analogue of [23, Lemma 2.7], and is a consequence of that
result and Proposition 3.9.

LEMMA 3.10. Let X be a compact Hausdorff space, A a continuous C(X)-algebra,
and x ∈ X such that A(x) is rationally K-stable. For [ f ] ∈ πj(Û0(A)), let F : [0, 1]→
C∗(S j, Û0(M2(A)) ) be a path and n ∈ N such that

F(0) = 0 and F(1) = μM2(A)
n (ι ◦ f ).

Then there is a closed neighbourhood Y of x, a natural number Nx ∈ N, and a path
LY : [0, 1]→ C∗(S j, Û0(A(Y))) such that LY (0) = 0, LY (1) = μA(Y)

Nxn (πY ◦ f ), and

ιY ◦ LY ∼h μ
M2(A(Y))
Nx

(ηY ◦ F)

in C∗(S j, Û0(M2(A(Y)))).

REMARK 3.11. We are now in a position to prove Theorem A, but first, we need one
important fact, which allows us to use induction. If X is a finite-dimensional compact
metric space, then the covering dimension agrees with the small inductive dimension
[4, Theorem 1.7.7]. Therefore, by [4, Theorem 1.1.6], X has an open cover B such that,
for each U ∈ B,

dim(∂U) ≤ dim(X) − 1.

Now suppose {U1, U2, . . . , Um} is an open cover of X such that dim(∂Ui) ≤ dim(X) − 1
for 1 ≤ i ≤ m. We define sets {Vi : 1 ≤ i ≤ m} inductively by

V1 := U1, and Vk := Uk \
(⋃

i<k

Ui

)
for k > 1,
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and subsets {Wj : 1 ≤ j ≤ m − 1} by

Wj :=
( j⋃

i=1

Vi

)
∩ Vj+1.

It is easy to see that Wj ⊂
⋃ j

i=1 ∂Ui, so by [4, Theorem 1.5.3], dim(Wj) ≤ dim(X) − 1
for all 1 ≤ j ≤ m − 1.

PROOF OF THEOREM A. Let A be a continuous C(X)-algebra such that each fibre of
A is rationally K-stable. By Theorem 3.5, we assume that dim(X) ≥ 1, and we assume
that A(Y) is rationally K-stable for any closed subset Y ⊂ X with dim(Y) ≤ dim(X) − 1.
We now show that the map

ι∗ ⊗ id : πj(Û0(Mn(A))) ⊗ Q→ πj(Û0(Mn+1(A))) ⊗ Q

is an isomorphism for j ≥ 1, n ≥ 1. For simplicity of notation, we assume that n = 1.
We first prove injectivity. Fix [ f ] ∈ πj(Û0(A)) such that [ι ◦ f ] has order n in

πj(Û0(M2(A))). Then we wish to prove that [ f ] has finite order in πj(Û0(A)). For this
purpose consider F : [0, 1]→ C∗(S j, Û0(M2(A))) such that

F(0) = 0, F(1) = μM2(A)
n (ι ◦ f ).

For x ∈ X, by Lemma 3.10, there is a closed neighbourhood Yx of x, Nx ∈ N, and a path
LYx : [0, 1]→ C∗(S j, Û0(A(Yx))) such that

LYx (0) = 0, LYx (1) = μA(Yx)
Nxn (πYx ◦ f )

and ιYx ◦ LYx ∼h μ
M2(A(Yx))
Nx

(ηYx ◦ F) in C∗(S j, Û0(M2(A(Yx)))). We may choose Yx to be
the closure of a basic open set Ux such that dim(∂Ux) ≤ dim(X) − 1. Since X is com-
pact, we may choose a finite subcover {U1, U2, . . . , Um}. Now define {V1, V2, . . . , Vm}
and {W1, W2, . . . , Wm−1} as in Remark 3.11. We observe that each Vi is a closed set such
that μA(Vi)

Nin
(πVi ◦ f ) ∼ 0 in C∗(S j, Û0(A(Vi))) since Vi ⊂ Ui for all 1 ≤ i ≤ m.

Note that W1 = V1 ∩ V2, and dim(W1) ≤ dim(X) − 1. By the induction hypothesis,
A(W1) is rationally K-stable. Let Hi : [0, 1]→ C∗(S j, Û0(A(Vi))), i = 1, 2, be paths
such that Hi(0) = 0, Hi(1) = μA(Vi)

Nin
(πVi ◦ f ), and

ιVi ◦ Hi ∼h μ
M2(A(Vi))
Ni

(ηVi ◦ F).

Setting M := lcm(N1, N2), we may assume that Hi : [0, 1]→ C∗(S j, Û0(A(Vi))),
i = 1, 2, are paths such that Hi(0) = 0, Hi(1) = μA(Vi)

Mn (πVi ◦ f ), and

ιVi ◦ Hi ∼h μ
M2(A(Vi))
M (ηVi ◦ F).

Let S : [0, 1]→ C∗(S j, Û0(A(W1))) be the path

S := (πV1
W1
◦ H1) • (πV2

W1
◦ H2).

https://doi.org/10.1017/S144678872200009X Published online by Cambridge University Press

https://doi.org/10.1017/S144678872200009X


[17] Rational K-stability of continuous C(X)-algebras 135

Note that S(0) = S(1) = 0, so S is a loop in C∗(S j, Û0(A(W1))), and

ιW1 ◦ S = (ηV1
W1
◦ ιV1 ◦ H1) • (ηV2

W1
◦ ιV2 ◦ H2)

∼h μ
M2(A(W1))
M (ηW1 ◦ F • (ηW1 ◦ F)) ∼h 0.

Also, since A(W1) is rationally K-stable,

ι∗W1
⊗ id : π1(C∗(S j, Û0(A(W1)))) ⊗ Q→ π1(C∗(S j, Û0(M2(A(W1))))) ⊗ Q

is an isomorphism. Hence, there is m ∈ N such that m[S] = 0 in π1(C∗(S j, Û0(A(W1)))).
Thus

πV1
W1
◦ μA(V1)

m (H1) = μA(W1)
m (πV1

W1
◦ H1) ∼h μ

A(W1)
m (πV2

W1
◦ H2) = πV2

W1
◦ μA(V2)

m (H2)

in C∗(S j, Û0(A(W1))). Now, by Lemma 2.5, and [18, Theorem 3.9], we have a pullback
diagram

C∗(S j, A(V1 ∪ V2))
π

V1∪V2
V1 ��

π
V1∪V2
V2 ��

C∗(S j, A(V1))

π
V1
W1��

C∗(S j, A(V2))
π

V2
W1 �� C∗(S j, A(W1))

As mentioned before, this induces a pullback diagram of groups of quasiunitaries.
Furthermore, the map πV1

W1
: Û0(A(V1))→ Û0(A(W1)) is a Serre fibration. Thus, by

Lemma 3.7,

μA(V1∪V2)
mMn (πV1∪V2 ◦ f ) ∼h 0

in C∗(S j, Û0(A(V1 ∪ V2))). Thus, mMn[πV1∪V2 ◦ f ] = 0, so that [πV1∪V2 ◦ f ] has finite
order in πj(Û0(A(V1 ∪ V2))).

Now observe that W2 = (V1 ∪ V2) ∩ V3, and dim(W2) ≤ dim(X) − 1. Replacing V1
by V1 ∪ V2 and V2 by V3 in the above argument, we may repeat the earlier procedure.
By induction on the number of elements in the finite subcover, we conclude that [ f ]
has finite order in πj(Û0(A)), as required.

We now prove surjectivity of ι∗ ⊗ id. Choose [u] ∈ πj(Û0(M2(A))) and m ∈ Z
nonzero. We wish to construct an element [ω] ∈ πj(Û0(A)) and q ∈ Q such that

ι∗ ⊗ id([ω] ⊗ q) = [u] ⊗ 1
m

.

So, fix x ∈ X. Then, by rationally K-stability of A(x) (as in the proof of Theorem 3.5),
there is a closed neighbourhood Yx of x, a natural number Lx ∈ N, and a quasiunitary
cx ∈ C∗(S j, Û0(A(Yx))) such that

μM2(A(Yx))
Lx

(ηYx ◦ u) ∼h ιYx ◦ cx.
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As in the first part of the proof, we may reduce to the case where X = V1 ∪ V2, and
there are quasiunitaries cV1 ∈ C∗(S j, Û0(A(V1))), cV2 ∈ C∗(S j, Û0(A(V2))) such that

μM2(A(Vi))
Li

(ηVi ◦ u) ∼ ιVi ◦ cVi in C∗(S j, Û0(M2(A(Vi)))), i = 1, 2,

and if W := V1 ∩ V2, then dim(W) ≤ dim(X) − 1. Furthermore, by replacing the {Li}
by their least common multiple, we may assume that L1 = L2 =: L. Now, fix paths
Hi : [0, 1]→ C∗(S j, Û0(M2(A(Vi)))) such that

H1(0) = ιV1 ◦ cV1 , H1(1) = μM2(A(V1))
L (ηV1 ◦ u)

H2(0) = μM2(A(V2))
L (ηV2 ◦ u), H2(1) = ιV2 ◦ cV2 .

Consider the path F : [0, 1]→ C∗(S j, Û0(M2(A(W)))) given by

F := (ηV1
W ◦ H1) • (ηV2

W ◦ H2).

Then F(0) = ιW ◦ πV1
W ◦ cV1 and F(1) = ιW ◦ πV2

W ◦ cV2 . Then since A(W) is rationally
K-stable, by Proposition 3.9, there exist a path F′ : [0, 1]→ C∗(S j, Û0(A(W))) and a
natural number N ∈ N such that

F′(0) = μA(W)
N (πV1

W ◦ cV1 ), F′(1) = μA(W)
N (πV2

W ◦ cV2 )

and ιW ◦ F′ is path homotopic to μM2(A(W))
N (F) in C∗(S j, Û0(M2(A(W)))). The map

πV2
W : C∗(S j, Û0(A(V2)))→ πV2

W (C∗(S j, Û0(A(V2)))) is a fibration, so there is a path
F′′ : [0, 1]→ C∗(S j, Û0(A(V2))) such that

F′′(1) = μA(V2)
N (cV2 ), and πV2

W ◦ F′′ = F′.

Define eV2 := F′′(0) so that

πV2
W ◦ eV2 = μ

A(W)
N (πV1

W ◦ cV1 ).

Recall that, given a path G in a topological space, the path G̃ is defined by Equation
(3-3). Define H3 : [0, 1]→ C∗(S j, Û0(M2(V2))) as

H3 := μM2(A(V2))
N (H2) • ˜(ιV2 ◦ F′′).

Then H3(0) = μM2(A(V2))
NL (ηV2 ◦ u), H3(1) = ιV2 ◦ eV2 , and

ηV2
W ◦ H3 = η

V2
W ◦ (μM2(A(V2))

N (H2)) • ˜(ιW ◦ F′).

Also ηV1
W : C∗(S j, Û0(M2(A(V1))))→ ηV1

W (C∗(S j, Û0M2((A(V1))))) is a fibration, thus
ηV2

W ◦ (μM2(A(V2))
N (H2)) has a lift, denoted by T : [0, 1]→ C∗(S j, Û0(M2(A(V1)))) so that

T(0) = μM2(A(V1))
NL (ηV1 ◦ u).

Then letting G := μM2(A(V1))
N (H1) • T gives ηV1

W ◦ G = μM2(A(W))
N (F). Again by the above

fibration map, since ηV1
W ◦ G = μM2(A(W))

N (F) ∼h ιW ◦ F′, by the calculation done in
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Lemma 3.7, ˜ιW ◦ F′ has a lift in C∗(S j, Û0(M2(V1))), denoted by T ′. Then

ηV1
W ◦ (T • T ′) = ηV2

W ◦ ( μM2(A(V2))
N (H2)) • ˜(ιW ◦ F′).

As before, C∗(S j, A) is a pullback

C∗(S j, A)
πV1 ��

πV2

��

C∗(S j, A(V1))

π
V1
W

��
C∗(S j, A(V2))

π
V2
W �� C∗(S j, A(W))

so that ω := (μA(V1)
N (cV1 ), eV2 ) defines a quasiunitary in C∗(S j, A), and ι ◦ ω ∼ μM2(A)

NL (u)

in C∗(S j, Û0(M2(A))), where the path is given by the pair (H3, T • T ′). Hence, for q :=
1/(mNL), we have

ι∗ ⊗ id([ω] ⊗ q) = [u] ⊗ 1
m

as required. �

We conclude this section with a discussion on the extent to which the converse of
Theorem A holds. �

PROPOSITION 3.12. Let X be a locally compact, Hausdorff space, and A be a
C∗-algebra. If A is rationally K-stable, then so is C0(X) ⊗ A. The converse is true if
X is a finite CW complex.

PROOF. If A is rationally K-stable, we wish to show that C0(X) ⊗ A is rationally
K-stable. By appealing to the five lemma (as in [23, Lemma 2.1]), we may assume
that X is compact. Now, X is an inverse limit of compact metric spaces (Xi) by [15], so
that C(X) ⊗ A � lim C(Xi) ⊗ A. Since the functors Fj are continuous (Proposition 2.2),
we may assume that X itself is a compact metric space. Any metric space can, in turn,
be written as an inverse limit of finite CW complexes [7]. Therefore, we may further
assume that X is a finite CW complex. In that case, by [19, Theorem 4.20], one has

Fj(C(X, A)) �
⊕

n≥j

Hn−j(X; Fj(A)) (3-4)

where the isomorphism is natural. Since the map ι∗ : Fj(Mn−1(A))→ Fj(Mn(A)) is an
isomorphism, it follows that ι∗ : Fj(C(X, Mn−1(A)))→ Fj(C(X, Mn(A))) is an isomor-
phism as well. Hence, C(X) ⊗ A is rationally K-stable.

Now suppose X is a finite CW complex and C(X) ⊗ A is K-stable. Then

Fj(C(X, Mn−1(A))) � Fj(C(X, Mn(A)))

and the isomorphism of Equation (3-4) is componentwise. This implies that

Hn−j(X; Fj(Mn−1(A))) � Hn−j(X; Fj(Mn(A)))
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for all n ≥ j. For any connected H-space Y, as in Example 3.1, there is a fibration
sequence C∗(X, Y)→ C(X, Y)→ Y , which induces a short exact sequence of rational
homotopy groups

0→ Fj(C∗(X, Y))→ Fj(C(X, Y))→ Fj(Y)→ 0. (3-5)

Now, we take Y = Û0(Mk(A)) and apply [19, Theorem 4.20] to get

Fj(C∗(X, Mk(A))) �
⊕

n≥j

H̃n−j(X; Fj(Mk(A)))

and the isomorphism is natural. Hence, we conclude that

Fj(C∗(X, Mn−1(A))) � Fj(C∗(X, Mn(A)))

as well. By Equation (3-5) and the five lemma, we conclude that A is rationally
K-stable. �

In [22, Theorem B], we proved that, for an AF algebra, rational K-stability
is equivalent to K-stability. Combining this fact with Proposition 3.12, and [23,
Theorem A], we have the following result.

COROLLARY 3.13. Let X be a finite CW complex, and A be an AF-algebra. Then
C(X) ⊗ A is K-stable if and only if A is K-stable.

The next example shows that the converse of Theorem A need not hold for arbitrary
continuous C(X)-algebras.

EXAMPLE 3.14. Let D1 := M2∞ denote the UHF algebra of type 2∞, and let D2 :=
D1 ⊕M2(C). Consider the C[0, 1]-algebra

A := {( f , g) ∈ C[0, 1/2] ⊗ D1 ⊕ C[1/2, 1] ⊗ D2 : Φ( f ) = g(1/2)}

where Φ : C[0, 1/2] ⊗ D1 → D2 is given by Φ( f ) = ( f (1/2), 0). Since Φ is injective,
it follows that A is a continuous C[0, 1]-algebra. Note that A may be described as a
pullback

A ��

��

C[ 1
2 , 1] ⊗ D2

ev

��
C[0, 1

2 ] ⊗ D1
Φ

�� D2

where ev is evaluation at 1/2. The Mayer–Vietoris theorem [21, Theorem 4.5] for the
functor Fm gives a long exact sequence

· · · → Fm(A)→ Fm(D2) ⊕ Fm(D1)
ev∗−Φ∗−−−−−→ Fm(D2)→ · · ·
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where ev∗ : Fm(D2)→ Fm(D2) is the identity map andΦ∗ : Fm(D1)→ Fm(D2) is given
as Φ∗(r) = (r, 0), thus (ev∗ − Φ∗) : Fm(D2) ⊕ Fm(D1)→ Fm(D2) is given by

(ev∗ − Φ∗)((a, b), c) = (a − c, b).

Consider the case where m is odd. By [22, Lemma 3.2], Fm−1(Di) = Fm+1(Di) = 0 for
i = 1, 2. Hence, the above long exact sequence boils down to

0→ Fm(A)→ Fm(D2) ⊕ Fm(D1)
ev∗−Φ∗−−−−−→ Fm(D2)→ · · · .

Thus, there is a natural isomorphism

Fm(A) = ker(ev∗ − Φ∗) � Fm(D1).

Similarly, Fm(M2(A)) � Fm(M2(D1)) and the following diagram commutes:

Fm(A) � ��

ιA

��

Fm(D1)

ιD1

��
Fm(M2(A)) � �� Fm(M2(D1))

Since D1 is rationally K-stable by [22, Theorem B], it follows that ιA is an isomor-
phism. Doing the same for the inclusion map Mn(A) ↪→ Mn+1(A), we conclude that the
map Fm(Mn(A))→ Fm(Mn+1(A)) is an isomorphism if m is odd.

Now suppose m is even, The above long exact sequence reduces to

Fm−1(A)→ Fm−1(D2) ⊕ Fm−1(D1)
ev∗−Φ∗−−−−−→ Fm−1(D2)→ Fm(A)→ 0

so that Fm(A) � coker(ev∗ − Φ∗). Now, by [22, Theorem A], it follows that Fm−1(D1) �
Q for all even m, and

Fm−1(D2) �

⎧⎪⎪⎨⎪⎪⎩Q ⊕ Q if m = 2, 4
Q m > 4 and even.

Thus, elementary linear algebra proves that ev∗ − Φ∗ is surjective, so that Fm(A) = 0.
Similarly, Fm(Mn(A)) = 0 for all n ≥ 2 as well (if m is even).

Thus, we conclude that A is rationally K-stable. However, one of its fibres
(namely D2) is not rationally K-stable because it has a nonzero finite-dimensional
representation [22, Theorem B].

4. An application to crossed product C*-algebras

As an application of our earlier results, we wish to show that the class of (rationally)
K-stable C*-algebras is closed under the formation of certain crossed products. To
begin with, we fix some conventions. In what follows, G will denote a compact, second
countable group, and A will denote a separable C*-algebra. By an action of G on A, we
mean a continuous group homomorphism α : G→ Aut(A), where Aut(A) is equipped
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with the point-norm topology. We write σ : G→ Aut(C(G)) for the left action of G on
C(G), given by σs( f )(t) := f (s−1t).

The notion of Rokhlin dimension was invented by Hirshberg et al. [12] for actions of
finite groups (and the integers). The definition for compact, second countable groups is
due to Gardella [8]. The ‘local’ definition we give below is different from the original,
but is equivalent due to [8, Lemma 3.7] (see also [27, Lemma 1.5]).

DEFINITION 4.1. Let G be a compact, second countable group, and let A be a separable
C*-algebra. We say that an action α : G→ Aut(A) has Rokhlin dimension d (with
commuting towers) if d is the least integer such that, for any pair of finite sets F ⊂
A, K ⊂ C(G), and any ε > 0, there exist (d + 1) contractive, completely positive maps

ψ0,ψ1, . . . ,ψd : C(G)→ A

satisfying the following conditions.

(1) For f1, f2 ∈ K such that f1 ⊥ f2, ‖ψj( f1)ψj( f2)‖ < ε for all 0 ≤ j ≤ d.
(2) For any a ∈ F and f ∈ K, ‖[ψj( f ), a]‖ < ε for all 0 ≤ j ≤ d.
(3) For any f ∈ K and s ∈ G, ‖αs(ψj( f )) − ψj(σs( f ))‖ < ε for all 0 ≤ j ≤ d.
(4) For any a ∈ F, ‖∑d

j=0 ψj(1C(G))a − a‖ < ε.
(5) For any f1, f2 ∈ K, ‖[ψj( f1),ψk( f2)]‖ < ε for all 0 ≤ j, k ≤ d.

We denote the Rokhlin dimension (with commuting towers) of α by dimc
Rok(α). If

no such integer exists, we say that α has infinite Rokhlin dimension (with commuting
towers), and write dimc

Rok(α) = +∞.

We now describe the local approximation theorem due to Gardella et al. [11] that
will help prove the permanence result we are interested in.

PROPOSITION 4.2. [11, Corollary 4.9] Let G be a compact, second countable group,
X be a compact Hausdorff space, and A be a separable C*-algebra. Let G� X be
a continuous, free action of G on X, and α : G→ Aut(A) be an action of G on A.
Equip the C*-algebra C(X, A) with the diagonal action of G, denoted by γ. Then the
crossed product C*-algebra C(X, A) �γ G is a continuous C(X/G)-algebra, each of
whose fibres are isomorphic to A ⊗ K(L2(G)).

In the context of Proposition 4.2, the natural inclusion map ρ : A→ C(X, A) is a
G-equivariant ∗-homomorphism. Hence, it induces a map ρ : A �α G→ C(X, A) �γ G.
To describe the nature of this map, we need the next definition, which is due to Barlak
and Szabó [1]. Once again, we choose to work with the local definition as it is more
convenient for our purpose.

DEFINITION 4.3. Let A and B be separable C*-algebras. A ∗-homomorphism ϕ : A→
B is said to be sequentially split if, for every compact set F ⊂ A, and for every ε > 0,
there exists a ∗-homomorphism ψ = ψF,ε : B→ A such that

‖ψ ◦ φ(a) − a‖ < ε

for all a ∈ F.
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The next theorem, due to Gardella et al. [11, Proposition 4.11] is an important
structure theorem that allows one to prove permanence results concerning crossed
products with finite Rokhlin dimension (with commuting towers).

THEOREM 4.4. Let α : G→ Aut(A) be an action of a compact, second countable
group on a separable C*-algebra such that dimc

Rok(α) < ∞. Then there exist a compact
metric space X and a free action G� X such that the canonical embedding

ρ : A �α G→ C(X, A) �γ G

is sequentially split. Furthermore, if G finite-dimensional, then X may be chosen to be
finite-dimensional as well.

In light of Theorem 4.4, we now show that the properties of being rationally
K-stable (K-stable) passes from the target algebra B to the domain algebra A, in the
presence of a sequentially split ∗-homomorphism. To this end, we fix the following
notation. Given ∗-homomorphism ϕ : A→ B, ϕn : Mn(A)→ Mn(B) represents the
inflation of ϕ, given by ϕn((ai,j)) = (ϕ(ai,j)). Furthermore, ιB : B→ M2(B) represents
the canonical inclusion.

PROPOSITION 4.5. Let A and B be separable C*-algebras, and ϕ : A→ B be a
sequentially split ∗-homomorphism. If B is rationally K-stable (K-stable), then so is A.

PROOF. Since the proofs of both cases are entirely similar, we only prove that rational
K-stability passes from B to A. As before, we need to show that the map

(ιA)∗ ⊗ id : πj(Û0(Mn(A))) ⊗ Q→ πj(Û0(Mn+1(A))) ⊗ Q

is an isomorphism for all j ≥ 1, and n ≥ 1. If ϕ : A→ B is sequentially split, then so is
ϕn : Mn(A)→ Mn(B), so we may assume without loss of generality that n = 1.

We first show that (ιA)∗ ⊗ id is injective. So suppose [ f ] ⊗ q ∈ πj(Û0(A)) ⊗ Q is such
that [ιA ◦ f ] ⊗ q = 0 in πj(Û0(M2(A))). Then [ιA ◦ f ] has finite order in πj(Û0(M2(A))),
which implies [ϕ2 ◦ ιA ◦ f ] = [ιB ◦ ϕ ◦ f ] has finite order in πj(Û0(M2(B))). Since B is
rationally K-stable, [ϕ ◦ f ] also has finite order in πj(Û0(B)). Let F := { f (x) : x ∈ S j},
which is a compact set in A, so there exists a ∗-homomorphism ψ = ψF,1 : B→ A such
that ‖ψ ◦ ϕ(a) − a‖ < 1 for all a ∈ F. Hence,

‖ψ ◦ ϕ ◦ f − f ‖ < 1

in Û(C∗(S j, A)). Thus, by Lemma 3.3, we conclude that

[ψ ◦ ϕ ◦ f ] = [ f ]

in πj(Û0(A)). However, since [ϕ ◦ f ] has finite order in πj(Û0(B)), [ψ ◦ ϕ ◦ f ] = [ f ]
has finite order in πj(Û0(A)). Hence, [ f ] ⊗ q = 0, proving that (ιA)∗ ⊗ id is injective.
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For surjectivity, fix an element [u] ∈ πj(Û0(M2(A))) and m ∈ Z. We wish to
construct elements [ω] ∈ πj(Û0(A)) and q ∈ Q such that

((ιA)∗ ⊗ id)([ω] ⊗ q) = [u] ⊗ 1
m

.

Now, [ϕ2 ◦ u] ⊗ (1/m) ∈ πj(Û0(M2(B))) ⊗ Q. Since B is rationally K-stable, there exist
[g] ∈ πj(Û0(B)) and n ∈ Z such that

((ιB)∗ ⊗ id)
(
[g] ⊗ 1

n

)
= [ϕ2 ◦ u] ⊗ 1

m
.

Again, as in previous calculations, there exist N1, N2 ∈ N such that

N1[ιB ◦ g] = N2[ϕ2 ◦ u] (4-1)

in πj(Û0(M2(B))). Now, fix F := {u(x) : x ∈ S j}, so we get a ∗-homomorphism ψF :
M2(B)→ M2(A) such that ‖ψF ◦ ϕ2 ◦ u(x) − u(x)‖ < 1

2 for all x ∈ S j. Hence,

[ψF ◦ φ2 ◦ u] = [u] (4-2)

in πj(Û0(M2(A))). Now, we write u = (ui,j)1≤i,j≤2, and take

K = {ui,j(x) : 1 ≤ i, j ≤ 2, x ∈ S j} ⊂ A.

Then K is compact, so we get a ∗-homomorphism ψK : B→ A such that

‖ψK ◦ ϕ ◦ ui,j(x) − ui,j(x)‖ < 1
8

for all x ∈ S j and 1 ≤ i, j ≤ 2. Thus, ‖(ψK)2 ◦ ϕ2 ◦ u(x) − u(x)‖ < 1
2 for all x ∈ S j.

Therefore, ‖ψF ◦ ϕ2 ◦ u(x) − (ψK)2 ◦ φ2 ◦ u(x)‖ < 1 for all x ∈ S j, so that we have
[ψF ◦ ϕ2 ◦ u] = [(ψK)2 ◦ ϕ2 ◦ u] in πj(Û0(M2(A))). Now, from Equations (4-1) and
(4-2),

N1[(ψK)2 ◦ ιB ◦ g] = N2[(ψK)2 ◦ φ2 ◦ u] = N2[ψF ◦ φ2 ◦ u] = N2[u].

Since (ψK)2 ◦ ιB ◦ g = ιA ◦ ψK ◦ g, we have

N1[ιA ◦ ψK ◦ g] = N2[u].

Therefore, if ω := ψK ◦ g and q := N1/N2m, then

(ιA)∗ ⊗ id([ω] ⊗ q) = [u] ⊗ 1
m

proving that (ιA)∗ ⊗ id is surjective. �

We are now in a position to complete the proof of Theorem B, restated as follows.

COROLLARY 4.6. Let α : G→ Aut(A) be an action of a compact Lie group on
a separable C*-algebra A such that dimc

Rok(α) < ∞. If A is rationally K-stable
(K-stable), then so is A �α G.
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PROOF. We first discuss the case of K-stability. Let X be the (finite-dimensional)
metric space obtained from Theorem 4.4. By Proposition 4.2, C(X, A) �γ G is a
continuous C(X/G)-algebra, each of whose fibres is isomorphic to A ⊗ K(L2(G)), and
is hence K-stable. Since X is compact and metrizable, so is X/G. Furthermore, since
G is a compact Lie group, it follows that

dim(X/G) ≤ dim(X) < ∞

by [17, Corollary 1.7.32]. By [23, Theorem A], we conclude that C(X, A) �γ G is
K-stable, and hence A �α G is K-stable by Proposition 4.5.

The argument for rational K-stability is entirely similar, except that we apply
Theorem A instead of [23, Theorem A]. �
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