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1. Introduction and statement of the results

Let M be a closed simply connected 2n-dimensional manifold. The present paper is con-
cerned with the cohomology of classifying spaces of connected groups of homeomorphisms
of M .

1.1. Conventions

We make the following assumptions throughout the paper. The topology on a group
of homeomorphisms of a manifold is assumed to be compact-open. If G is a topolog-
ical group, then G0 denotes its connected component of the identity. We consider the
cohomology with real coefficients unless otherwise specified.

1.2. Generic co-adjoint orbits

Theorem 1.1. Let M = Gξ ⊂ g∨ be a generic co-adjoint orbit of a compact connected
semi-simple Lie group G. Suppose that the action G → Homeo(M) has a finite kernel.
The homomorphism

H∗(B Homeo0(M)) → H∗(BG)

induced by the action is then surjective. It is surjective in degree 4 for every (not neces-
sarily generic) co-adjoint orbit.
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The proof of this theorem is given in § 5. Genericity means that there exists a non-
empty Zariski open subset Z ⊂ g∨ of the dual of the Lie algebra of G such that the
theorem holds for an orbit Gξ, where ξ ∈ Z. We discuss the generic orbits in § 6. The
examples include complex projective spaces and flag manifolds. However, the subset Z

for a given group G is not understood.

Remark 1.2. Theorem 1.1 and most of the results in this paper can be directly
generalized to a connected topological monoid of homotopy equivalences (compare with
K ↪edra and McDuff [8]).

The following result is an immediate consequence of Theorem 1.1.

Corollary 1.3. Let M = Gξ be as in Theorem 1.1. Let H ⊂ Homeo(M) be a connected
group of homeomorphisms containing G as a subgroup. The induced homomorphism

H∗(BH) → H∗(BG)

is then surjective for a generic co-adjoint orbit M , and in degree 4 it is surjective for all
orbits.

The most important examples of groups H to which we apply the above result are
the group Ham(M, ω) of Hamiltonian diffeomorphisms, Diff0(M), the connected com-
ponent of the identity of the group of diffeomorphisms, and Homeo0(M), the connected
component of the identity of the group of homeomorphisms.

1.3. Circle actions

A circle action S
1 → H ⊆ Homeo(M) is called H-inessential if it defines a contractible

loop in H. For example, if a simply connected Lie group G acts on M , then a circle
subgroup of G yields an inessential circle action. The following result generalizes the
second part of Theorem 1.1.

Theorem 1.4. Let (Mi, ωi), i = 1, 2, . . . , m, be a closed simply connected symplectic
manifold admitting an inessential non-trivial Hamiltonian circle action. Let M = M1 ×
M2 ×· · ·×Mm be equipped with a product symplectic form ω. If H is a connected group
containing the product Ham(M1, ω1) × · · · × Ham(Mm, ωm), then dim H4(BH; R) � m

and rankπ3(H; R) � m.

1.4. The fibre integral subalgebra

Let G → Homeo0(M) be an action of a connected topological group. In § 2, we define
a certain graded subalgebra A

∗
G(M) ⊂ H∗(BG) associated with the action. It is called

the fibre integral subalgebra and it can be calculated in certain cases. It is our main
technical tool and its basic properties are presented in § 3. The following observation is
an application of Proposition 3.2 and Lemma 2.3.

Example 1.5. Let M = CP
n1 × · · · × CP

nl be equipped with a product symplectic
form ω invariant under the natural action of the product of special unitary groups. The
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induced homomorphism

H∗(B Diff(M)) → H∗(B(SU(n1 + 1) × · · · × SU(nl + 1)))

is then surjective and factors through H∗(B Ham(M, ω)). In particular,

dim H4(B Diff(M, ω)) � l.

We know from [8] that the relevant characteristic classes do not vanish on spheres,
and, hence, we also have that

rank(π2m+1(Ham(M, ω))) � l for 1 � m � min{n1, . . . , nl}

and that the rank of the image of the homomorphism induced by the inclusion either in
the diffeomorphisms or homeomorphisms is at least l.

We recall a result of Seidel from [14]. Let 0 � k < n � m and let

Ψk : π2k+1(Ham(CP
m × CP

n)) → π2k+1(Diff(CP
m × CP

n))

be the homomorphism induced by the inclusion. Seidel proved that

rank(coker(Ψk)) =

{
2n − k if m − k � n,

m + n − 2k if m − k < n.

Applying the observation from the previous example for l = 2 and Seidel’s theorem, we
obtain the following result.

Theorem 1.6. Let CP
m × CP

n be equipped with a product symplectic form ω such
that the symplectic areas of the lines in factors are equal. Suppose that 1 � k < n � m.
Then,

rank(π2k+1(Diff(CP
m × CP

n))) �
{

2n − k + 2 if m − k � n,

m + n − 2k + 2 if m − k < n.

1.5. Relation to the previous work

The obvious strategy to understand the topology of the classifying space BH of a
homeomorphism group H is to consider a map f : B → BH defined on a space with
understood topology and, for example, examine the induced map on the cohomology. In
the present paper we mostly investigate the homomorphism H∗(BH) → H∗(BG) for the
natural action of a compact Lie group G on a homogeneous space G/H. Conjecturally,
the homomorphism

H∗(B Homeo0(G/H)) → H∗(BG)

should be surjective for the real cohomology provided that the action of G is effective.
Apart from the classical results about diffeomorphisms of low-dimensional spheres and

surfaces, the first such surjectivity result was obtained by Reznikov [13]. He proved that
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the natural Hamiltonian action of SU(n) on the complex projective plane CP
n−1 induces

the surjection H∗(B Ham(CP
n−1)) → H∗(B SU(n)). He proved it by using a Hamiltonian

version of Chern–Weil theory. He also conjectured that a similar statement should be true
for other co-adjoint orbits.

The result of Reznikov was improved and generalized to flag manifolds by K ↪edra and
McDuff [8]. We proved that the characteristic classes defined by Reznikov are in fact
topological in the sense that they can be defined in the cohomology ring of the topological
monoid of homotopy equivalences of a symplectic manifold.

The algebraic independence of the Reznikov classes was proved by Gal et al . [3] for a
generic co-adjoint orbit of a semi-simple Lie group. It was shown by examples that such
classes cannot be algebraically independent in general (see Example 6.3).

The results in [3,7,8] are applications of the fibre integration. That is, certain charac-
teristic classes are defined as fibre integrals. This is the main tool here as well. The new
ingredient is that we consider distinct symplectic forms on a given manifold at the same
time. More precisely, the Reznikov characteristic classes are equal to the fibre integrals
of powers of a certain universal cohomology class called the coupling class. This class is
induced by a fixed symplectic form. In this paper we consider fibre integrals of products
of many coupling classes induced by distinct symplectic forms.

2. Strategy and a few technical results

2.1. Fibre integration

Let M → E
π−→ B be an oriented bundle with closed n-dimensional fibre. There exists a

homomorphism of H∗(B)-modules

π! : Hn+k(E) → Hk(B).

It is defined to be the composition

Hn+k(E) → Ek,n
∞ → Ek,n

2 = Hk(B; Hn(M)) = Hk(B),

where the Ep,q
m is an mth term of the associated Leray–Serre spectral sequence. The

property that the fibre integration is a morphism of H∗(B)-modules means that

π!(α · π∗(β)) = π!(α) · β,

where α ∈ H∗(E) and β ∈ H∗(B).
Moreover, fibre integration is multiplicative with respect to the cross product. More

precisely, let p1 : E1 → B1 and p2 : E2 → B2 be oriented bundles with closed fibres. Then

(p1 × p2)!(α × β) = (p1)!(α) × (p2)!(β),

where α ∈ H∗(E1) and β ∈ H∗(E2). This multiplicativity easily follows from the defini-
tion and good properties of the spectral sequence.
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2.2. A very general view

Let G be a topological group acting on a closed oriented n-manifold M . Consider the
associated universal fibration

M
i−→ MG

π−→ BG

induced by the action. Given a subalgebra A ⊂ H∗(MG), we consider a subalgebra

〈π!(A)〉 ⊂ H∗(BG)

generated by the fibre integrals of elements from A. The strategy is to choose an appro-
priate subalgebra A for which one can make computations.

2.3. The fibre integral subalgebra

We assume that M is simply connected and G is connected and let A
∗ = 〈H2(MG)〉 ⊂

H∗(MG) be the subalgebra generated by the classes of degree 2. Define the fibre integral
subalgebra

A
∗
G(M) := 〈π!(A∗)〉

associated with the action of G on M to be the graded subalgebra of H∗(BG) generated
by the fibre integrals of the products of cohomology classes of degree 2. In particular, an
element of A

2k
G (M) is a linear combination of classes of the form π!(a1 · · · an+k), where

ai ∈ H2(MG) and dimM = 2n. We say that the fibre integral subalgebra is full if it is
equal to the whole of H∗(BG).

2.4. The surjectivity lemma

Let H ⊂ Homeo(M) be a connected group of homeomorphisms of a simply connected
manifold M . Let

M
i−→ MH

π−→ BH

be the universal bundle associated with the action of H on M .

Lemma 2.1. The homomorphism i∗ : H2(MH) → H2(M) induced by the inclusion of
the fibre is surjective.

Proof. Consider the associated Leray–Serre spectral sequence Ep,q
m . Since M and BH

are simply connected, both the first row and the first column of the sequence are trivial.
That is,

Ep,q
2 = Hp(BH) ⊗ Hq(M) = 0

if p = 1 or q = 1.
Let a ∈ H2(M) = E0,2

2 be a non-zero cohomology class. Since E2,1
2 = 0, we have

d2(a) = 0. Thus, to finish the proof we need to show that d3(a) = 0.
Since M is finite dimensional, there exists a number k ∈ N such that ak �= 0 and

ak+1 = 0. Observe that

E3,2k
3 ⊂ E3,2k

2 = H3(BH) ⊗ H2k(M)
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because the differential d2 : E1,2k+1
2 → E3,2k

2 is trivially 0 for E1,2k+1
2 = 0. Thus, the

computation
0 = d3(ak+1) = (k + 1)d3(a) ⊗ ak

implies that d3(a) = 0 is required. �

Remark 2.2. In fact, the above argument proves the following. Suppose that
F → E → B is a fibration over a simply connected base. Let a ∈ H2(F ) be a cohomology
class of finite cup length. If d2(a) = 0, then d3(a) = 0 (see [8, proof of Proposition 3.1]).

2.5. A dimension inequality

Lemma 2.3. Let M be a simply connected closed manifold and let H ⊆ Homeo(M)
be a connected group of homeomorphisms. Let G ⊂ H be a connected subgroup with
finite π1(G). Then,

dim A
2k
G (M) � dim A

2k
H (M) � dim H2k(BH).

In particular, if A
∗
G is full, then the homomorphism H∗(BH) → H∗(BG) induced by the

action is surjective.

Proof. Consider the following commutative diagram of fibrations:

M

j

��

= �� M

i

��
MG

p

��

F �� MH

π

��
BG

f �� BH

Since π1(G) is finite, H2(BG) = 0 and the inclusion of the fibre j : M → MG induces an
isomorphism j∗ : H2(MG) → H2(M). It follows from Lemma 2.1 that the homomorphism
F ∗ : H2(MH) → H2(MG) is surjective and, hence, we have that

p!(a1 · · · an+k) = p!(F ∗(ã1 · · · ãn+k)) = f∗(π!(ã1 · · · ãn+k)),

which completes the proof. �

2.6. Cohomologically symplectic manifolds and coupling classes

A closed 2n-manifold M is called cohomologically symplectic, or c-symplectic for short,
if there exists a class α ∈ H2(M) such that αn �= 0. Such a class α is called a symplectic
class.

Assume that M is simply connected. Let a topological group G act on M preserving
a symplectic class α. Let

M
i−→ E

π−→ B
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be a fibration with the structure group G. There exists a unique cohomology class
ΩE ∈ H2(E) such that i∗ΩE = α and π!(Ωn+1

E ) = 0. The class ΩE is called the cou-
pling class. It is natural in the sense that the coupling class of a pullback bundle is the
pullback of the coupling class. The symplectic class α ∈ H2(M) is said to satisfy the
hard Lefschetz condition if the multiplication by its kth power defines an isomorphism
Hn−k(M) → Hn+k(M) for k = 0, 1, . . . , n.

Example 2.4. All Kähler manifolds (e.g. co-adjoint orbits) satisfy the hard Lefschetz
condition [4].

2.7. Consequences of the hard Lefschetz condition

The following lemma was first proved for complex algebraic manifolds by Blanchard [1].
The proof of the following topological version of the lemma can be found in [10].

Lemma 2.5 (Blanchard [1]). Let M be a closed simply connected c-symplectic
2n-manifold satisfying the hard Lefschetz condition. If M → E → B is a bundle with
a connected structure group H ⊂ Homeo(M), then the homomorphism i∗ : H∗(E) →
H∗(M) induced by the inclusion of the fibre is surjective.

Note that the surjectivity of the homomorphism i∗ in the above lemma implies,
due to the Leray–Hirsch theorem [6, Theorem 4D.1], that H∗(E) is isomorphic as an
H∗(B)-module to the tensor product H∗(B)⊗H∗(M). In particular, the homomorphism
p∗ : H∗(B) → H∗(E) induced by the projection is injective.

The next proposition is motivated by the fact that if a cohomology class of a space X

evaluates non-trivially on a sphere, then it is indecomposable. That is, it cannot be
expressed as the sum of products of classes of positive degree. Hence, one can think of
such a class as a generator of the cohomology ring of X.

Proposition 2.6. Let M be a closed simply connected c-symplectic 2n-manifold sat-
isfying the hard Lefschetz conditions. Let

M
j−→ E

p−→ S2k

be a bundle over a sphere of positive dimension and with a connected structure group
H ⊂ Homeo(M). Let σ ∈ H2k(S2k) denote a generator. If p∗(σ) =

∑
a · b, where all

a, b ∈ H∗(E) are of positive degree, then the homomorphism

f∗ : H2k(BH) → H2k(S2k)

induced by the classifying map is surjective.

Proof. Since M satisfies the hard Lefschetz condition, p∗(σ) �= 0. Next, observe that
the base sphere has to be of dimension higher than 2. Indeed, if k = 1, then p∗(σ) =

∑
a·b

for a, b ∈ H1(E). Since E is simply connected, it implies that p∗(σ) = 0, which cannot
happen. Consequently, we have k > 1. Note that the homomorphism j∗ : Hm(E) →
Hm(M) induced by the inclusion of the fibre is an isomorphism for m < 2k.
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Let M
i−→ MH

π−→ BH be the universal fibration and let Ω ∈ H2(MH) be the coupling
class associated with the symplectic class α. Let â, b̂ ∈ H∗(MH) be such that i∗â = j∗a

and i∗b̂ = j∗b.
In the following calculation, ΩE = F ∗(Ω) denotes the coupling class. Also, since j∗ is

an isomorphism in degrees smaller than 2k, we have that F ∗(â) = a and F ∗(b̂) = b. This
implies the second equality:

f∗π!

(
Ωn

∑
âb̂

)
= p!

(
F ∗

(
Ωn

∑
âb̂

))
= p!

(
Ωn

E

∑
ab

)
= p!(Ωn

Ep∗σ) = σ volume(M).

�

3. Basic properties of the fibre integral subalgebra

Throughout this section, M and N are assumed to be closed connected and simply
connected manifolds.

Proposition 3.1. Let H → G → Homeo0(M) be a sequence of actions of connected
topological groups on a manifold M . Let f : BH → BG denote the induced map. If
f∗ : H2(BG) → H2(BH) is surjective, then

A
∗
H(M) ⊂ f∗(A∗

G(M)).

Proof. Consider the diagram of universal fibrations:

M

j

��

= �� M

i

��
MH

p

��

F �� MG

π

��
BH

f �� BG

Let p!(Ω1 · · ·Ωk) ∈ A
∗
H(M), where j∗(Ωi) = ai. According to Lemma 2.1, there exist

classes Ω̂i ∈ H2(MG) such that i∗(Ω̂i) = ai. Since H and G are connected, their classi-
fying spaces are simply connected and we have that

Ωi − F ∗(Ω̂i) = p∗(αi)

for some αi ∈ H2(BH). It follows from the hypothesis that αi = f∗(βi), and we get that

Ωi = F ∗(Ω̂i − π∗(βi)).

We finally have that

p!(Ω1 · · ·Ωk) = f∗π!((Ω̂1 − π∗β1) · · · (Ω̂k − π∗βk)),

which completes the proof. �
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Proposition 3.2. Let G and H be connected groups acting on manifolds M and N ,
respectively. Then, G × H acts on M × N and

A
∗
G×H(M × N) ∼= A

∗
G(M) ⊗ A

∗
H(N).

In particular, if both A
∗
G(M) and A

∗
H(N) are full, then A

∗
G×H(M × N) is also full.

Proof. The statement is true due to the multiplicativity property of the fibre inte-
gration with respect to the cross product and the isomorphism H∗(BH × BG) =
H∗(BH) ⊗ H∗(BG). �

Proposition 3.3. Let a connected group G act on M and N . The cup product in
H∗(BG) induces a map

A
∗
G(M) ⊗ A

∗
G(N) → H∗(BG)

with the image equal to A
∗
G(M×N). In particular, if G acts on N trivially, then A

∗
G(M) =

A
∗
G(M × N).

Proof. The map in the statement is the composition

A
∗
G(M) ⊗ A

∗
G(N)

∼=−→ A
∗
G×G(M × N) ∆∗

−−→ H∗(BG),

where the first isomorphism is due to Proposition 3.2 and the second map is induced by
the diagonal ∆: BG → BG × BG.

It follows from Proposition 3.1 that A
∗
G(M ×N) is contained in the image of the above

map. Thus, we need to show that the converse inclusion holds:

∆∗(A∗
G×G(M × N)) ⊂ A

∗
G(M × N).

According to simple connectivity we have that

H2(MG × NG) = H2(MG) ⊕ H2(NG)

and, hence, an element in the subalgebra of H∗(MG×NG) generated by degree 2 classes is
a sum of products of the form (α1 · · ·αk)×(β1 · · ·βl) for αi ∈ H2(MG) and βi ∈ H2(NG).
Since this is itself a product of degree 2 classes, we get that its pullback via the map
∆̂: (M × N)G → MG × NG is a product of degree 2 classes. This, according to the
functoriality of the fibre integration, completes the proof. �

Lemma 3.4. Suppose that G is a connected group with finite π1(G) acting on a closed
simply connected 2n-manifold M . The fibre integral subalgebra A

∗
G(M) is then generated

by the fibre integrals of powers, i.e. by the classes of the form π!(am).

Proof. Let A ∈ H2k(BG) be a homology class. A certain non-zero multiple of A is
represented by a map f : B → BG defined on a closed oriented connected 2k-manifold B.
Suppose that

f∗(π!(a1 · · · an+k)) �= 0,
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where ai ∈ H2(MG). The map f induces a bundle M → E → B, and the above inequality
is equivalent to

0 �= F ∗(a1 · · · an+k) ∈ H2(n+k)(E) = R,

where F : E → MG is the induced map of total spaces. It follows that the product map

F ∗(H2(MG)) ⊗ · · · ⊗ F ∗(H2(MG)) → H2(n+k)(E) = R

is non-trivial. Since it is a polynomial map, due to the polarization formula, the power
map F ∗(a) �→ F ∗(a)n+k is also non-trivial.

This shows that f∗(π!(an+k)) �= 0 for some class a ∈ H2(MG).
We have shown that, for every homology class in A ∈ H2k(BG) that evaluates non-

trivially on the fibre integral subalgebra, there exists a class a ∈ H2(MG) such that the
fibre integral of its (n + k)th power evaluates non-trivially on A. This proves that such
fibre integrals generate A

∗
G(M). �

Remark 3.5. Since the power map F ∗(H2(MG)) → H2(n+k)(E) in the above
proof is polynomial and non-trivial, there exists a non-empty open and dense subset
U ⊂ F ∗(H2(MG)) such that an+k �= 0 for a ∈ U .

4. Calculations for co-adjoint orbits

4.1. Symplectic preliminaries

Let G be a compact connected semi-simple Lie group and let ξ ∈ g∨ be a covector. The
co-adjoint orbit G · ξ admits a G-invariant symplectic form. The Killing form provides
an equivariant isomorphism between the Lie algebra g and its dual g∨, and, hence, also
a bijective correspondence between adjoint and co-adjoint orbits.

Let T ⊂ G be a maximal torus and denote by t its Lie algebra. Every adjoint orbit has
a representative in t. The Lie algebra t is decomposed into the Weyl chambers. Let C ⊂ t

denote the closure of a Weyl chamber. It is a polyhedral cone. If two elements ξ, η ∈ t

belong to the interior of a face of C, then the corresponding adjoint orbits G · ξ and G · η
are diffeomorphic. In this case the isotropy groups Gξ and Gη are conjugate in G. The
conjugation by an element of G provides a G-equivariant diffeomorphism between the
orbits G · ξ and G · η.

Thus, we can fix one orbit M and consider it as a smooth manifold equipped with vari-
ous G-invariant symplectic forms. Since the conjugation induces a map of BG homotopic
to the identity, the universal fibration M → MG → BG is Hamiltonian with respect
to these symplectic forms. In such a case we have the coupling class Ωξ ∈ H2(MG)
corresponding to the symplectic form on the orbit G · ξ ∼= M .

4.2. Flag manifolds

Let dim G/T = 2n and consider the universal bundle G/T → BT
π−→ BG associated

with the action.
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Lemma 4.1. Let G be a connected group with finite π1(G). The fibre integral sub-
algebra A

∗
G(G/T ) is full. Moreover, it is generated by the fibre integrals of powers of

coupling classes.

Proof. Let dim G/T = 2n and let G/T → BT
π−→ BG be the universal bundle

associated with the action. Consider the composition

H2(BT ) ⊗ · · · ⊗ H2(BT ) → H2(n+k)(BT ) π!−→ H2k(BG),

where the first map is the product and the second is the fibre integration. Observe
that the first map is polynomial and surjective, since H∗(BT ) is the polynomial algebra
generated by H2(BT ). The second map is surjective, which follows from the injectivity of
π∗ : H∗(BG) → H∗(BT ). Indeed, if b ∈ H2k(BG), then π!(π∗(b) · Ωn) = b for a coupling
class Ω ∈ H2(BT ). This proves that the fibre integral subalgebra is full.

The second statement follows from Lemma 3.4 and Remark 3.5. Indeed, there exists
an open and dense subset of H2(BT ) consisting of coupling classes. In other words, a
generic cohomology class in H2(BT ) pulls back to a class represented by an invariant
symplectic form on the flag manifold G/T . �

4.3. Fibre integral of a power of the coupling class as an invariant
polynomial

The cohomology of the classifying space of a compact Lie group is isomorphic to the
algebra of invariant polynomials on the Lie algebra

H2k(BG) ∼= Sk(g∨)G.

The right-hand side is isomorphic to Sk(t)WG , the polynomials on the Lie algebra of the
maximal torus invariant under the Weyl group of G. The next lemma follows from [8,
Lemmas 3.6 and 3.9].

Lemma 4.2. Let M = G · ξ be a 2n-dimensional co-adjoint orbit of a semi-simple Lie
group G. The fibre integral of the (n + k)th power of the coupling class Ωξ ∈ H2(MG)
corresponds to the following invariant polynomial:

Pk(ξ, X) := (−1)k

(
n + k

k

)
·
∫

G

〈X, Ad∨
g (ξ)〉k volG .

Since the polynomials Pk(ξ, X) depend continuously (with respect to the Zariski topol-
ogy) on ξ, and since the algebraic independence is an open condition, we obtain the
following result.

Proposition 4.3. Let ξ ∈ g∨. There exists a Zariski open neighbourhood Z ⊂ g∨ of ξ

such that
A

∗
G(Gξ) ⊂ A

∗
G(Gη)

for every η ∈ Z.
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Corollary 4.4. If M = G·ξ ⊂ g∨ is a generic co-adjoint orbit of a compact semi-simple
Lie group G, then the fibre integral subalgebra A

∗
G(M) is full.

Proof. It follows from Proposition 4.3 that if there is an orbit with the full fibre
integral subalgebra, then a generic co-adjoint orbit has full fibre integral subalgebra. The
statement follows from Lemma 4.1. �

5. Proofs of Theorems 1.1 and 1.4

Proof of Theorem 1.1. According to Corollary 4.4 we have that the fibre integral
subalgebra A

∗
G(M) is full for a generic co-adjoint orbit M . Since G is semi-simple and

its fundamental group is finite, the first statement then follows from Lemma 2.3.
To prove the second statement, first observe that a compact semi-simple group G is

finitely covered by a product G1 × · · · × Gm of simple groups. Thus, there is a splitting
of the Lie algebra g = g1 ⊕ · · · ⊕ gm.

The composition G1 × · · · × Gm → G → Aut(g∨) of the covering projection and the
co-adjoint action is the co-adjoint action of the product, and, hence, it is the product of co-
adjoint actions Ad∨ : Gi → Aut(g∨

i ). Thus, M is diffeomorphic to a product M1×· · ·×Mm

of the corresponding co-adjoint orbits of simple groups.
We next show that each of the above orbits Mi is of positive dimension. This follows

from the assumption on the kernel of the action. Indeed, since the kernel of the action
Ad∨ : G → Aut(g∨) is finite, so is the kernel of the co-adjoint action of the product. But
the latter is isomorphic to the product of the kernels of Ad∨ : Gi → Aut(g∨) and, hence,
each Mi is a non-trivial orbit.

The statement now follows from Theorem 1.4, proof of which we present next. �

Proof of Theorem 1.4. Let dim M = 2n, dim Mi = 2ni and let ωa =
∑

aiωi, where
a := (a1, . . . , am) is an m-tuple of positive real numbers. Let Ωa ∈ H2(MH) be the
coupling class associated with the symplectic form ωa:

M1 × · · · × Mm

��

= �� M

��
(M1)Ham × · · · × (Mm)Ham

p

��

F �� MH

π

��
BHam(M1, ω1) × · · · × BHam(Mm, ωm)

f �� BH

The pullback of the coupling class F ∗(Ωa) is equal to the sum of coupling classes∑
aiΩi. In the following computation Ck is a positive constant depending on a tuple

k = (k1, . . . , km) of non-negative integers, and the fourth equality follows from the mul-
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tiplicativity of the fibre integration with respect to the cross product:

f∗(π!(Ωa)n+2) = p!(F ∗(Ωa)n+2)

= p!

(( ∑
aiΩi

)n+2)

=
∑

Ckp!((a1Ω1)k1 × · · · × (amΩm)km)

=
∑

Ck(p1)!((a1Ω1)k1) × · · · × (pm)!((amΩm)km).

Note that the fibre integral (pi)!(Ωk
i ) = 0 if k < ni. Thus, the above sum is, up to a

positive constant, equal to the sum of terms of the form

(p1)!(a1Ω1)n1 × · · · × (pi)!(aiΩi)ni+2 × · · · × (pm)!(amΩm)nm .

It follows from [8, Theorem 1.1] that an inessential non-trivial circle action induces an
element of σi ∈ π4(B Ham(Mi)) on which the class (pi)!(Ωn+2

i ) evaluates non-trivially.
By varying the m-tuple a = (a1, . . . , am) we obtain that the image of the homomorphism

f∗ : H4(BH) → H4(B Ham(M1, ω1) × · · · × B Ham(Mm, ωm))

is at least m dimensional.
Choosing the parameters a appropriately, the classes π!(Ωn+2

a ) define m linearly inde-
pendent functionals on π4(BH)⊗R. Evaluating them on the images of the classes σi, we
obtain that the rank π4(BH) is at least m. This rank is equal to the rank of π3(H). �

6. Examples

Let G be a compact connected semi-simple Lie group with a maximal torus T . Let g

and t denote the corresponding Lie algebras. The closed positive Weyl chamber C ⊂ t is
a simplicial cone. Let F be a face of C. If ξ and η belong to the interior of F , then they
are diffeomorphic. Moreover, if ξ ∈ interior(F ), then

dim H2(G · ξ) = dimF.

Conversely, a co-adjoint orbit G · ξ has a representative that belongs to the interior of a
face of dimension equal to dimH2(G · ξ).

Remark 6.1. The above observations can be deduced from Bott’s results in [2] (see
also [11, § 2] and [5, § 2.3]).

Proposition 4.3 states that A
∗
G(G · ξ) ⊂ A

∗
G(G · η) for any η in an open and dense

neighbourhood U ⊂ C of ξ. Thus, most interesting are the orbits corresponding to the
edges (i.e. one-dimensional faces) of C. This is because near an edge there are points
corresponding to many topologically distinct orbits. The orbits corresponding to edges
are characterized by their second Betti number being equal to 1. They are called minimal
in the terminology of Guillemin et al . [5].

Example 6.2. The minimal co-adjoint orbits of SU(n) are the complex Grassman-
nians G(k, n).
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6.1. Special unitary group SU(n)

It is known that the fibre integral subalgebra associated with the natural projective
action of SU(n) on the complex projective space CP

n−1 is full [8, Proposition 1.7]. Thus,
it follows from Proposition 4.3 that every co-adjoint orbit M of SU(n) close to the
projective space has a full fibre integral subalgebra A

∗
SU(n)(M). Such orbits are of the

form

SU(n)/S(U(n1) ⊕ · · · ⊕ U(nk) ⊕ U(1)),

where n1 + · · · + nk + 1 = n.

Example 6.3 (Gal et al . [3, Proposition 3.6]). The fibre integral subalgebra of
the complex Grassmannian G(n, 2n) with respect to the natural action of SU(2n) is not
full. More precisely, H6(B SU(2n)) is not contained in the fibre integral subalgebra. This
is due to the fact that the relevant invariant polynomial has odd degree and its zero
represents the Grassmannian (see [3, § 3] for more examples and details).

Remark 6.4. It is shown in [8, Proposition 4.8] that the natural action of SU(n) on a
generalized flag manifold M induces a surjective homomorphism H∗(B Homeo0(M)) →
H∗(B SU(n)). The proof is also an application of fibre integrals. It is, however, specialized
to this particular case.

6.2. Special orthogonal group SO(2m), m > 2

The cohomology ring of the classifying space of the special orthogonal group is gen-
erated by the Pontryagin classes p1, . . . , pm and the Euler class e. They have degrees
deg(pk) = 4k and deg(e) = 2m, respectively.

Consider a minimal co-adjoint orbit of the form M := SO(2m)/U(m). The classes
p1, e, pm+1, . . . , p2m belong to the fibre integral subalgebra A

∗
SO(2m)(M). For the first

Pontryagin class this follows from the second part of Theorem 1.1.
To see that the higher Pontryagin classes pk for k > m belong to the fibre integral

subalgebra, consider the map π : B U(m) → B SO(2m) induced by the inclusion. The
pullback of a Pontryagin class is expressed in terms of Chern classes by the well-known
formula

π∗(pk) = c2
k − 2ck−1ck+1 + · · · ± 2c2k.

Thus, if k > m, then π∗(pk) is a sum of products of classes of positive degrees, and
Proposition 2.6 applies.

Finally, a result of Reznikov [9,13] implies that the Euler class belongs to the fibre
integral subalgebra.

Since H2(M) = R, there are, in general, orbits close to M that are topologically
different from M . Their fibre integral subalgebras contain A

∗
SO(2m)(M).

Remark 6.5. We excluded the case of SO(4) because in that case the action of the
group SO(4) on the orbit SO(4)/U(2) = CP

1 is not effective.
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7. A remark on stability

If G acts on a manifold M , then it also acts on the product M × N (acting trivially on
the second factor). We think of the composition of actions

f : G → Homeo(M) → Homeo(M × N)

as a kind of stabilization. If G is connected, then the second part of Proposition 3.3 states
that A

∗
G(M) = A

∗
G(M × N) and, hence,

A
∗
G(M) ⊂ f∗(B Homeo0(M × N)).

This means that the part of the topology of the classifying space of the group of homeo-
morphisms of M captured by the fibre integral subalgebra persists when we stabilize M .

Example 7.1. Let M be a co-adjoint orbit of a semi-simple compact Lie group G.
Let N be a closed simply connected symplectic manifold. The fibre integral subalgebra
A

∗
G(M) is then contained in the image of the homomorphism

H∗(B Ham(M × N)) → H∗(BG)

induced by the action of G on the product. In particular, if the fibre integral subalgebra
is full, then the above homomorphism is surjective.

Remark 7.2. The fundamental group of the group of Hamiltonian diffeomorphisms
of a product symplectic manifold has been recently investigated by Pedroza in [12].
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cussions. The author thanks Dusa McDuff and Oldřich Spáčil for useful comments on a
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