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The principle of superposition of states requires that the
states of a dynamical system form a linear vector space. This
hypothesis of linearity has usually been regarded as a funda-
mental postulate in quantum mechanics, of a kind that cannot
be explained by classical concepts. Indeed, Dirac [2, p.14]
comments that ''the superposition that occurs in quantum
mechanics is of an essentially different nature from any
occurring in the classical theory, as is shown by the fact that
the quantum superposition principle demands indeterminacy
in the results of observations in order to be capable of a
sensible physical interpretation."

It is therefore of interest to examine to what extent and
in what form, if any, the principle of superposition might be
latent in classical mechanics. This note presents a demon-
stration of the superposition principle as a consequence of four
properties enjoyed by the Hamilton-Jacobi equation of classical

mechanics. These properties are:

(a) invariance under transformations of generalized
coordinates,

(b) direct additivity of the degrees of freedom,
(c) linearity in the metric,

(d) it is of first order with respect to the time.
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The method applies to systems with quadratic Hamiltonians,
which include most of the leading elementary examples upon
which the Schrédinger quantum theory was founded [5]. Our
results here will be concerned only with the non-relativistic
theory. -

Let q, (i=1,...,n) denote generalized coordinates,
i
and q the associated velocities. The quadratic form of
i

kinetic energy is taken to be

) oL, ik
2%k %9 >

and this positive definite form defines a Riemannian metric
by the conventional formula

2 ik
ds” = d .
(2) s a, dadq

We define momenta

and construct the Hamiltonian

1 ik ‘
(3) H = (T+V) = -—a1 pp, +V,
2 ik

i ik
where V =V(q) is the potential energy and a the associate
contravariant tensor.

For the gradient operator VS we have the squared length
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which is an invariant differential expression. Here we use
D,  to denote covariant differentiation. The Laplacian
i .
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wherein a denotes the determinant ]a,k], is the other basic
i

invariant differential operator related to the metric (2).

The expressions (4) and (5) are the only differential
invariants which satisfy (c), i.e., which contain only one
contraction over covariant indices. They are also additive
in the degrees of freedom of the system in the following
"direct' sense. When two systems are considered in con-
junction, the Hamiltonians will be added,

k r
(6) H - Hi(q ,Pk)+ Hz(q ’PI‘) ’

and the respective metric tensors will be formed into the
direct sum

(7) (a, ) =

Likewise the combined phase function
k r
(8) S5 = 5,(a)+5,(q)

is additive, the separate parts being functions of their
respective coordinates. It is then found that the differential
invariants (4) and (5) are additive. The Hamilton-Jacobi
equation itself also combines additively, in the sense that
by adding the component equations we obtain the equation for
the combined system.

We now consider how to modify the Hamilton-Jacobi
equation
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in view of the evidence pertaining to quanta. In searching for

a correction term to be added to (9) we insist that the properties
(a), (b), (c) and (d) shall be maintained for the modified equation
just as for (9). According to (d), we consider only derivatives
with respect to the space variables. From (a) and (b), these
must appear as combinations of (4) and (5); since the first of
these is already present, we are restricted to the Laplacian

AS as a correction term. By (c), this term must appear
linearly. Finally, in order that the additivity property (b)

hold, the coefficient in the correction term must be an absolute
constant, presumably related to Planck's constant. We there-
fore take as the extended form of (9)

98S

1 2
(10) 5t T2 (VS) + V(q) =— AS,

where h is Planck's constant divided by 2m.

THEOREM 1. (Uniqueness of the singular perturbation.)

Any extension of the Hamilton-Jacobi equation having
properties (a), (b), (c) and (d) necessarily takes the form (10),
where the coefficient h is a universal constant.

The imaginary factor ensures that the leading derivatives
with respect to space and time define a self-adjoint linear
differential operator. Though the self-adjoint operator

A

N et

.0
1at+

is not hyperbolic in the sense of Garding [3], it is regular
according to the definition of Gelfand and Shilov [4, p.269].

The Hamilton-Jacobi equation (9) is a non-linear partial
differential equation of the first order. By constructing a
complete integral of (9), we can in turn trace the character-
istic curves corresponding to the particle paths in the phase
space of coordinates and momenta. These paths are just the
integral curves of the Hamiltonian equations of motion.
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The extended Hamilton-Jacobi equation (410) is linear in
the highest derivatives of g, t present. However the appear-
ance of the squared gradient term implies its classification as
semi-linear. Also this semi-linear regular diffusion equation
is a singular perturbation (with parameter h) of the classical
equation (9), because the highest derivatives disappear in the
classical limit. Thus we may expect that solutions of (10)
initially concentrated near trajectories of (9) will in some
sense diffuse or disperse from them only slowly with the
passage of time. Moreover this rate of dispersion will tend
to zero with h [1].

THEOREM 2. (Principle of Superposition.) The substitu-

tion

(11) L oiS/E

transforms the extended Hamilton-Jacobi equation (10) to a
linear homogeneous equation (12).

The proof follows by actual substitution. We have

S = -ih log ¥
or
VS = -ihw/y ,
so that
2 2 2 2
(vs) = -h (Vy) /¢
while
b ww
AS = -inh &4V
P 2
Y
and
st = -ih ¢t/¢.
Thus we find
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so that  satisfies the Schrddinger equation [5, p. 104]

2

L8y _ -h
(12) Ry = —— Ab+ VY.

Because this equation is linear and homogeneous, its
solutions can be superposed - indeed they form a linear vector
space. This concludes our demonstration of the superposition
principle in consequence of properties (a), (b), (c), (d).

To any solution of (12) there corresponds an S by (11)
and, in the limit h = 0, an action function for the classical
system. However, as any wave function or vector Y can be
represented in many ways as a superposition of other vectors
(for instance, basis vectors or eigenvectors), we now have
reason to consider any given state as being a combination of
other states, possibly in many different ways. As Dirac
[2, p.12] comments, the superposition principle '""requires us
to assume that between these states there exist peculiar
relationships such that whenever the system is definitely in
one state we can consider it as being partly in each of two or
more other states. The original state must be regarded as
the result of a kind of superposition of two or more other states,
in a way that cannot be conceived on classical ideas. Any state
may be considered as the result of a superposition of two or more
other states, and indeed in an infinite number of ways. Con-
versely, any two or more states may be superposed to give a
new state.'

”

As remarked above, this is a description of a linear
vector space of states. Dirac then goes on to show that in
non-relativistic quantum mechanics, ''the intermediate
character of the state formed by superposition thus expresses
itself through the probability of a particular result ... being
intermediate.' However the probabilistic interpretation of
wave functions comes as an observational consequence of the
linearity.
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What we have shown in this note, for systems with
quadratic Hamiltonians, is that the quantum principle of super-
position, though essentially different from any classical super-
position, is nonetheless implied by four postulates which are
present in classical mechanics.

Because the transition to quantum mechanics is achieved
by a singular perturbation, the superposition principle disap-
pears in the classical limit, as is well known. The difficulty
of predicting it from classical considerations would therefore
be very great, as Dirac quite properly implies. This is, how-
ever, a true measure of the insight of Schrédinger [5] and
Heisenberg. When faced with the difficulties of the singular
perturbation, they made the correct hypothesis of linearity,
in spite of its absence from classical mechanics.
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