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The principle of superposition of states requi res that the 
states of a dynamical system form a linear vector space. This 
hypothesis of linearity has usually been regarded as a funda­
mental postulate in quantum mechanics , of a kind that cannot 
be explained by classical concepts. Indeed, Dirac [2, p. 14] 
comments that "the superposition that occurs in quantum 
mechanics is of an essentially different nature from any 
occurring in the c lass ical theory, as is shown by the fact that 
the quantum superposition principle demands indeterminacy 
in the resul t s of observations in order to be capable of a 
sensible physical interpretation. " 

It is therefore of interest to examine to what extent and 
in what form, if any, the principle of superposition might be 
latent in c lassical mechanics. This note presents a demon­
stration of the superposition principle as a consequence of four 
proper t ies enjoyed by the Hamilton-Jacobi equation of classical 
mechanics . These propert ies a re : 

(a) invariance under transformations of generalized 
coordinates, 

(b) direct additivity of the degrees of freedom, 

(c) linearity in the me t r i c , 

(d) it is of f irst order with respect to the t ime. 

Canad. Math. Bull, vo l .7 , n o . l , January 1964 

77 

https://doi.org/10.4153/CMB-1964-010-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-010-5


The method applies to systems with quadratic Hamiltonians, 
which include most of the leading elementary examples upon 
which the Schrôdinger quantum theory was founded [5]. Our 
resu l t s here will be concerned only with the non-re la t iv is t ic 
theory . -

Let q. (i = l , . . . , n ) denote generalized coordinates , 

and q. the associated veloci t ies . The quadratic form of 

kinetic energy is taken to be 

1 . i. k 
(1) T = - a i k q q , 

and this positive definite form defines a Riemannian met r i c 
by the conventional formula 

-, 2 , i , k 
(2) ds = a., dq dq . 

ik 

We define momenta 

3T .k 
l 9 q. ik 

and construct the Hamiltonian 

(3) H = (T+V) = \ a l k p .p + V , 
2 l k 

i ik 
where V =V(q ) is the potential energy and a the associate 
contravariant tensor . 

For the gradient operator VS we have the squared length 

( 4 ) (VS)2 = a i k - ^ ^ - = a i k D . S D S , 
8 q 1 8 q k * k 

which is an invariant differential expression. Here we use 
D. to denote covariant differentiation. The Laplacian 

l 
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(5) VS = V . V S lALaa
ik!il 

^ Sq1 I 8 q k / 

= a i kD.D S 
i k 

wherein a denotes the determinant la I, is the other basic 
i k ' 

invariant differential operator related to the met r ic (2). 

The expressions (4) and (5) are the only differential 
invariants which satisfy (c), i . e . , which contain only one 
contraction over covariant indices. They are also additive 
in the degrees of freedom of the system in the following 
"direct" sense. When two systems are considered in con­
junction, the Hamiltonians will be added, 

(6) H = H ( q k , p , ) + H ( q r , p ) , 
1 k 2 r 

and the respective met r ic tensors will be formed into the 
direct sum 

/ a i k i ° \ 
(7) (a.k) = 

1 0 a0 ' 
2rs 

Likewise the combined phase function 

(8) S = S ^ ) + S2(q r) 

is additive, the separate parts being functions of their 
respective coordinates. It is then found that the differential 
invariants (4) and (5) a re additive. The Hamilton-Jacobi 
equation itself also combines additively, in the sense that 
by adding the component equations we obtain the equation for 
the combined system. 

We now consider how to modify the Hamilton-Jacobi 
equation 
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(9) | | + H = H + I (VS)2 + V(q) = 0 

in v iew of the e v i d e n c e p e r t a i n i n g to quan ta . In s e a r c h i n g for 
a c o r r e c t i o n t e r m to be added to (9) we i n s i s t tha t the p r o p e r t i e s 
(a) , (b), (c) and (d) sha l l be m a i n t a i n e d for the modi f i ed equa t ion 
-just a s for (9). A c c o r d i n g to (d), we c o n s i d e r only d e r i v a t i v e s 
wi th r e s p e c t to the s p a c e v a r i a b l e s . F r o m (a) and (b), t h e s e 
m u s t a p p e a r a s c o m b i n a t i o n s of (4) and (5) ; s ince the f i r s t of 
t h e s e is a l r e a d y p r e s e n t , we a r e r e s t r i c t e d to the L a p l a c i a n 
AS a s a c o r r e c t i o n t e r m . By (c) , th i s t e r m m u s t a p p e a r 
l i n e a r l y . F i n a l l y , in o r d e r tha t the add i t iv i ty p r o p e r t y (b) 
hold, the coeff ic ient in the c o r r e c t i o n t e r m m u s t be an a b s o l u t e 
cons t an t , p r e s u m a b l y r e l a t e d to P lanck 1 s cons t an t . We t h e r e ­
fore take a s the ex tended f o r m of (9) 

(10) ^ | + | ( V S ) 2 + V(q) = - j à S , 

w h e r e h i s P lanck 1 s c o n s t a n t d iv ided by 2TT. 

T H E O R E M 1. (Un iquenes s of the s i ngu l a r p e r t u r b a t i o n . ) 

Any e x t e n s i o n of the H a m i l t o n - J a c o b i equa t ion hav ing 
p r o p e r t i e s (a ) , (b), (c) and (d) n e c e s s a r i l y t a k e s the f o r m (10), 
w h e r e the coeff ic ient h i s a u n i v e r s a l cons t an t . 

The i m a g i n a r y f ac to r e n s u r e s tha t the l ead ing d e r i v a t i v e s 
wi th r e s p e c t to space and t i m e define a se l f -ad jo in t l i n e a r 
d i f fe ren t i a l o p e r a t o r . Though the se l f - ad jo in t o p e r a t o r 

d ft 
i ¥ î + 2 A 

i s not h y p e r b o l i c in the s e n s e of C a r d i n g [3] , it i s r e g u l a r 
a c c o r d i n g to the def ini t ion of Gelfand and Shilov [4, p . 269] . 

The H a m i l t o n - J a c o b i equa t ion (9) i s a n o n - l i n e a r p a r t i a l 
d i f fe ren t i a l equa t ion of the f i r s t o r d e r . By c o n s t r u c t i n g a 
c o m p l e t e i n t e g r a l of (9) , we can in t u r n t r a c e the c h a r a c t e r ­
i s t i c c u r v e s c o r r e s p o n d i n g to the p a r t i c l e p a t h s in the p h a s e 
space of c o o r d i n a t e s and m o m e n t a . T h e s e pa ths a r e j u s t the 
i n t e g r a l c u r v e s of the H a m i l t o n i a n e q u a t i o n s of m o t i o n . 
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The extended Hamilton-Jacobi equation (10) is l inear in 
the highest derivatives of q, t present . However the appear­
ance of the squared gradient t e rm implies its classification as 
semi- l inear . Also this semi- l inear regular diffusion equation 
is a singular perturbation (with parameter h) of the classical 
equation (9), because the highest derivatives disappear in the 
c lass ica l limit. Thus we may expect that solutions of (10) 
initially concentrated near t ra jector ies of (9) will in some 
sense diffuse or d isperse from them only slowly with the 
passage of t ime . Moreover this ra te of dispersion will tend 
to zero with h [1]. 

THEOREM 2. (Principle of Superposition. ) The substitu-
tion 

(11) + = e i S / h 

t rans forms the extended Hamilton-Jacobi equation (10) to a 
l inear homogeneous equation (12). 

The proof follows by actual substitution. We have 

S = - ih log ty 

or 

VS = - i h V ^ , 

so that 

2 2 2 2 
(VS) = -h (ViW / + 

while 

and 

t ^t 

Thus we find 
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s t + | (v s ) 2 + V - ^ | A S 

- ,, *t ftV^)2 ^ 2 A^ h 2 ( v » 2 

so that 41 satisfies the Schrodinger equation [5, p. 104] 

d\b -ft2 

(12) i h - ^ - = — A+ + VI|J . 

Because this equation is l inear and homogeneous, its 
solutions can be superposed - indeed they form a l inear vector 
space. This concludes our demonstrat ion of the superposition 
principle in consequence of proper t ies (a), (b), (c), (d). 

To any solution of (12) there corresponds an S by (11) 
and, in the limit h -> 0, an action function for the c lass ica l 
system. However, as any wave function or vector \\i can be 
represented in many ways as a superposition of other vec tors 
(for instance, bas i s vec tors or e igenvectors) , we now have 
reason to consider any given state as being a combination of 
other s ta tes , possibly in many different ways. As Dirac 
[2, p. 12] comments , the superposition principle " requ i res us 
to assume that between these s tates there exist peculiar 
relat ionships such that whenever the system is definitely in 
one state we can consider it as being partly in each of two or 
more other s ta tes . The original state must be regarded as 
the resul t of a kind of superposition of two or more other s ta tes , 
in a way that cannot be conceived on c lass ica l ideas . Any state 
may be considered as the resul t of a superposition of two or more 
other s ta tes , and indeed in an infinite number of ways. Con­
verse ly , any two or more states may be superposed to give a 
new state. M 

As remarked above, this is a descript ion of a l inear 
vector space of s ta tes . Dirac then goes on to show that in 
non-rela t ivis t ic quantum mechanics , "the intermediate 
charac te r of the state formed by superposition thus exp res ses 
itself through the probability of a par t icular resul t . . . being 
intermediate , l f However the probabilist ic interpretat ion of 
wave functions comes as an observational consequence of the 
l ineari ty. 

82 

https://doi.org/10.4153/CMB-1964-010-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-010-5


What we have shown in this note, for systems with 
quadratic Hamiltonians, is that the quantum principle of super­
position, though essentially different from any c lass ical super­
position, is nonetheless implied by four postulates which a re 
present in c lass ica l mechanics . 

Because the transi t ion to quantum mechanics is achieved 
by a singular perturbation, the superposition principle disap­
pears in the c lass ical limit, as is well known. The difficulty 
of pre dieting it from class ica l considerations would therefore 
be very great , as Dirac quite properly implies. This i s , how­
ever , a t rue measure of the insight of Schrodinger [5] and 
Heisenberg. When faced with the difficulties of the singular 
perturbation, they made the cor rec t hypothesis of l inearity, 
in spite of its absence from class ical mechanics . 
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