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SUMMARY

Shiga toxin-producing Escherichia coli (STEC), an important foodborne pathogen, can cause

mild to severe bloody diarrhoea (BD), sometimes followed by life-threatening complications such

as haemolytic uraemic syndrome (HUS). A total of 44 O157 strains isolated from different

patients from 2000 through 2009 in Switzerland were further characterized and linked to medical

history data. Non-bloody diarrhoea was experienced by 15.9%, BD by 61.4% of the patients,

and 29.5% developed HUS. All strains belonged to MLST type 11, were positive for stx2

variants (stx2 and/or stx2c), eae and ehxA, and only two strains showed antibiotic resistance. Of

the 44 strains, nine phage types (PTs) were detected the most frequent being PT32 (43.2%) and

PT8 (18.2%). By PFGE, 39 different patterns were found. This high genetic diversity within the

strains leads to the conclusion that STEC O157 infections in Switzerland most often occur as

sporadic cases.
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INTRODUCTION

Escherichia coli, a commensal of the intestinal tract of

humans, as well as many animals, is a Gram-negative,

facultative anaerobic rod. The virulent, disease-

causing E. coli can be divided into two major groups:

gastrointestinal and extragastrointesinal pathogens.

The gastrointestinal category includes enterotoxigenic

E. coli (ETEC), enteropathogenic E. coli (EPEC), en-

teroinvasive E. coli (EIEC), enteroaggregative E. coli

(EAEC) and Shiga toxin-producing E. coli (STEC),

which are significant causes of foodborne diseases.

STEC can lead to severe illness, like haemolytic

uraemic syndrome (HUS), which presents with hae-

molytic anaemia, thrombocytopenia and renal insuf-

ficiency, most often after an onset of diarrhoea (bloody

or non-bloody). In many different O:H serotypes,

there is a group of the so-called top five serogoups

(O26, O103, O111, O145, O157) which are mainly re-

lated to severe illness in humans. Although the im-

portance of non-O157 serovars is being increasingly

recognized, so far O157 has caused most outbreaks

and cases of severe disease throughout the world [1–3].

A stepwise evolutionary model postulates that

the O157 clonal group splits into one lineage, leading

to the common non-sorbitol-fermenting (nSF)

O157:H7 clonal complex, and a second branch of

sorbitol-fermenting (SF) O157:Hx (non-motile)

strains [4]. Recently, SF STEC O157:Hx strains have

been increasingly isolated from clinical cases [5, 6],
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emphasizing the importance of analysing patients’

stool samples for both SF and nSF stx-producing

E. coli O157.

E. coli O157:H7/Hx exist in humans and in the

environment as stx-positive and stx-negative variants

[6, 7]. Friedrich et al. [6] compared the prevalence of

stx-negative strains in SF and nSF E. coli O157 iso-

lated from stools of patients with sporadic cases of

diarrhoea or HUS. They found that the proportion of

stx-negative strains was significantly higher in SF

O157:Hx isolates (12.7%) than in nSF O157:H7/Hx

isolates (0.8%). These authors also identified stx-

negative SF E. coli O157 strains in patients’ stool

samples during three outbreaks of HUS and one

outbreak of diarrhoea and documented loss of stx

genes during outbreaks of human infection [6].

Since few specific data of clinical human O157

STEC strains are available in Switzerland, the aim

of this study was (i) to further characterize all O157

STEC strains sent to the National Centre for

Enteropathogenic Bacteria (NENT) from 2000 to

2009, and (ii) to compare the results with data from

other countries.

METHODS

Strains

A total of 144 STEC strains collected and stored

(x80 xC) by NENT were used for further character-

ization. The strains were isolated between 2000 and

2009 from human faecal samples, collected by hospi-

tals or family doctors. All strains were confirmed to be

STEC by detection of stx genes by polymerase chain

reaction (PCR) with primers VT1 and VT2, based on

sequence targeting of a conserved region between stx1

and stx2 genes and PCR conditions described pre-

viously [8].

Serotyping

O157 strains were distinguished from the collection of

the 144 STEC strains using PCR with primers based

on sequences of the rfbE (per) gene [9]. STEC

O157:H7 strain EDL 933 was included as a control.

The H antigen of the O157 strains was determined by

PCR with primers FLICH7-F and FLICH7-R, and

PCR conditions as described previously [10]. More-

over, all O157 strains were serotyped with an

O157:H7 latex agglutination test (Wellcolex E. coli

O157:H7; Remel, USA).

Further strain characterization

Fermentation of sorbitol was detected on sorbitol

MacConkey agar (SMAC) (Oxoid Ltd, UK). Strains

were further tested by PCR for stx1 and stx2 [11], eae

and eae c1 encoding intimin [12], and ehxA encoding

EHEC haemolysin [13]. Further characterization of

the Shiga toxin type 2 variant B-subunit was done by

PCR–RFLP [14].

Phage-typing

Bacterial phage-typing was performed at the Lab-

oratory of Gastrointestinal Pathogens, GEZI (HPA

Centre for Infections, London, UK) by the methods

described by Khakhria et al. [15].

Multi-locus sequence typing (MLST)

Internal amplicons of seven housekeeping genes (adk,

fumC, gyrB, icdF, mdh, purA, recA) were sequenced

[16] and alleles as well as sequence types (ST) were

assigned in accordance with the E. coliMLST website

(http://mlst.ucc.ie/mlst/dbs/Ecoli).

Genotyping

Pulsed-field gel electrophoresis (PFGE) was per-

formed according to the CDC PulseNet protocol

(http://www.cdc.gov/pulsenet/protocols.htm) with

minor modifications. Briefly, strains were grown on

blood agar at 37 xC overnight. Colonies from blood

agar were resuspended in cell suspension buffer

(OD600=1). The bacterial cell suspension was mixed

with 400 ml of 1.4% Bio-Rad agarose (Bio-Rad,

Germany) and cells were lysed by proteinase K treat-

ment overnight. After lysis the plugs were washed

twice for 15 min in ultrapure water and four times for

an hour in Tris-EDTA (TE) buffer. After washing

with TE buffer, DNA agarose plugs were incubated

overnight in the presence of XbaI (Roche, Germany)

according to the manufacturer’s instructions. Re-

stricted DNA in plug slices was separated in 1%

SeaKem Gold (BioConcept, Switzerland) agarose gel

at 6 V/cm in 0.5r Tris-borate-EDTA buffer cooled to

14 xC in a CHEF-DR III system (Bio-Rad). The pulse

times were ramped from 5 s to 50 s for 20 h at an angle

of 120x. Gels were stained with ethidium bromide and

visualized under UV light transillumination with Gel

Doc (Bio-Rad) and analysed with BioNumerics soft-

ware (Applied Maths, Belgium).
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As a reference Salmonella Braenderup strain H9812

(ATCC BAA 664) was used.

Antimicrobial susceptibility testing

The strains were tested for antimicrobial resistance

by the disk diffusion method according to the pro-

tocols of the Clinical Laboratory Standards

Institute (CLSI, 2008). The panel of antibiotics (disks:

Becton, Dickinson, USA) consisted of ampicillin

(AM), amoxicillin/clavulanic acid (AMC), ceftazi-

dime (CAZ), cefalothine (CF), ciprofloxacin (CIP),

cefpodoxime (CPD), cefotaxime (CTX), cefuroxime

(CXM), cefepime (FEP), cefoxitin (FOX), gentamicin

(GM) and tetracycline (Te). E. coli ATCC 25922

was used as a quality control strain. The strains were

classified as resistant or susceptible to each antibiotic

agent. Strains giving ‘ intermediate’ values were con-

sidered susceptible.

RESULTS

Medical history data

Of the 144 STEC strains collected during 2000–2009,

44 strains from 44 different patients were identified as

O157. Medical history data for these patients are

summarized in Figure 1. Thirteen patients (29.5%)

developed HUS, of which six (46.2%) were male,

and seven (53.8%) female, with an average age of

3.5 years (range 1–15 years). Twenty-seven (61.4%)

patients presented with bloody diarrhoea, seven

(15.9%) with non-bloody diarrhoea, and four (9.1%)

were anaemic. For nine patients no medical history

data was available. Thirty-three (76.7%) patients

were aged f10 years, three (7%) were aged o60

years and seven (16.3%) patients were aged between

10 and 60 years. For one patient (female, presenting

with HUS, diarrhoea and anaemia) no data was

available.

Further strain characterization

Latex agglutination of all 44 strains was positive for

O157, whereas 11 (25%) strains were negative for

H7 agglutination (O157:NM). Results are listed in

Table 1. Nevertheless, these strains were positive for

the fliC gene by PCR.

Four (9.1%) strains fermented sorbitol (SF) on

SMAC, 40 (90.9%) were nSF. All four SF strains

were O157:Hx, 33 (82.5%) of the nSF strains were

O157:H7, and seven (17.5%) strains were O157:Hx.

All 44 E. coli O157 strains tested positive for eae and

ehxA genes. Among the strains, 52.3%, 63.6%,

15.9%, and 20.5% harboured stx1, stx2, stx2c, and

the combination of stx2 and stx2c, respectively

(Table 1).

Phage-typing

Nine different phage types were found (PT2, 4, 8, 14,

23, 32, 49, 50, 71), and six (13.6%) strains could not

be further characterized by phage-typing (RDNC,

Reacts but Does Not Conform to a published typing

pattern). PT2, 4, 14, 50 and 71 appeared only once.

PT8 was found eight times (18.2%), PT23 twice

(4.5%), PT32 nineteen times (43.2%) and PT49 re-

sulted in four (9.1%) of the strains (Table 1).

MLST

All 44 strains belonged to ML ST 11, similar to the

vast majority of eae-positive human STEC O157 iso-

lates.

PFGE typing

PFGE patterns were very heterogeneous except for

eight strains (18.2%). The remaining 36 patterns

showed similarity coefficients between 59% and 94%

(Dice similarity index and UPGMA method). The

dendrogram is displayed in Figure 2.
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Fig. 1. Medical history data of 44 STEC O157 strains isolated from human patients from 2000 to 2009 in Switzerland. HUS,
Haemolytic uraemic syndrome; BD, bloody diarrhoea ; D, non-bloody diarrhoea ; A, anaemia.
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Antimicrobial susceptibility testing

All O157 STEC strains were susceptible to 11 or more

antibiotic agents (AM, AMC, CAZ, CF, CIP, CPD,

CTX, CXM, FEP, FOX, GM). Of the 44 strains, two

(4.5%) were resistant to Te.

DISCUSSION

The 44 strains investigated in this study are highly

representative for Switzerland. This is the total num-

ber of STEC O157 pathogens isolated by NENT from

all human material submitted over the 10-year period

Table 1. Serotypes and virulence factors of STEC O157 strains isolated from human patients from 2000 to 2009 in

Switzerland

Strain no. Serotype Sorbitol stx1 stx2 variants eae c ehxA PT ST Resistance Disease

154-00 O157:H7 x x stx2, stx2c + + 2 11 ND

851-00 O157:H7 x + stx2 + + 14 11 BD
1527-00 O157:H7 x x stx2 + + 4 11 HUS
2965-00 O157:H7 x x stx2, stx2c + + RDNC 11 BD

1688-01 O157:H7 x x stx2, stx2c + + 50 11 BD
2110-01 O157:H7 x x stx2c + + 8 11 BD
1787-02 O157:H7 x + stx2 + + 32 11 HUS

1117-03 O157:H7 x + stx2 + + 32 11 BD, HUS
1357-03 O157:H7 x x stx2, stx2c + + 32 11 HUS
1899-03 O157:H7 x + stx2 + + RDNC 11 Te BD

002-04 O157:[H7] + x stx2 + + 23 11 BD
256-04 O157:H7 x x stx2, stx2c + + 49 11 BD
477-04 O157:H7 x + stx2 + + 32 11 ND
774-04 O157:[H7] + x stx2 + + 23 11 D, HUS

947-04 O157:H7 x x stx2, stx2c + + 49 11 BD
995-04 O157:[H7] x x stx2 + + 8 11 BD
1024-04 O157:[H7] x x stx2 + + 8 11 BD, HUS

1381-04 O157:[H7] x + stx2c + + 8 11 BD
1097-05 O157:H7 x + stx2 + + 32 11 BD
1127-05 O157:H7 x + stx2 + + 32 11 BD

1144-05 O157:H7 x + stx2 + + 32 11 ND
1193-05 O157:H7 x x stx2 + + 32 11 ND
1431-05 O157:H7 x + stx2 + + RDNC 11 ND
1973-05 O157:[H7] + x stx2 + + RDNC 11 BD

2188-05 O157:[H7] x + stx2c + + 8 11 BD
680-06 O157:H7 x x stx2 + + 8 11 A, D, HUS
746-06 O157:[H7] x + stx2c + + 8 11 BD

881-06 O157:H7 x + stx2 + + 32 11 BD, HUS
1206-06 O157:H7 x + stx2 + + 32 11 BD
1346-06 O157:H7 x x stx2, stx2c + + 71 11 Te BD

445-07 O157:H7 x + stx2 + + 32 11 ND
645-07 O157:H7 x + stx2 + + 32 11 BD
1478-07 O157:H7 x x stx2c + + 32 11 BD

1479-07 O157:H7 x + stx2 + + 32 11 A, BD, HUS
1971-07 O157:H7 x x stx2 + + 32 11 A, D, HUS
2298-07 O157:H7 x x stx2, stx2c + + 49 11 BD
787-08 O157:H7 x + stx2 + + RDNC 11 BD, HUS

977-08 O157:[H7] x + stx2c + + 32 11 BD
1620-08 O157:H7 x + stx2 + + 32 11 A, D, HUS
2248-08 O157:[H7] x + stx2c + + 8 11 BD

2437-08 O157:H7 x + stx2 + + 32 11 ND
049-09 O157:H7 x + stx2 + + 32 11 ND
051-09 O157:[H7] + x stx2 + + RDNC 11 ND

1402-09 O157:H7 x x stx2, stx2c + + 49 11 D, HUS

[H7], Negative by latex agglutination serotyping, positive by PCR for fliC ; PT, phage type; RDNC, Reacts but Does Not
Confirm to a published typing pattern; ST, sequence type ; Te, tetracycline ; A, anaemia; BD, bloody diarrhoea ; D, non-
bloody diarrhoea; HUS, haemolytic uraemic syndrome.
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(2000–2009). Switzerland is a small country in the

centre of Europe that is multi-cultural and thus

suffers epidemiological influences from several neigh-

bouring ethnic backgrounds. Moreover, the Swiss are

known to be the most travelled people in the world.

With a population of only 7.1 million, Swiss people

execute about 2.2 million trips abroad per year. These

aspects also warrant international relevance for our

data.

HUS, as a consequence of STEC O157 infection,

was recorded in 13 (29.5%) of the 44 investigated

patients. Of patients with HUS 84.6% were aged f5

years. Of the HUS patients, six (46.2%) were male,

seven (53.8%) were female. A similar age and gender

distribution was reported in a study spanning a 4-year

period in Germany [17].

In contrast, in a study performed over a 7-year

period (2000-2006) involving 3464 STEC O157 iso-

lates in Northern America, the authors observed

fewer HUS cases (6.3%) and fewer HUS patients

aged <5 years (15.3%) [18]. Similar data to these

were obtained in Minnesota, Wales and England [1,

19, 20].

Of the 44 STEC O157 strains, 47.7% harboured

stx2 variants only and 52.3% possessed a combi-

nation of stx1 and stx2 variant genes. No strain was

positive for stx1 only. A similar distribution of stx

genes was found for clinical STEC O157 isolates in

different countries [1, 3, 19–22]. In our study, in all

HUS cases strains harbouring the stx2 gene type were

involved. Nevertheless, there was no evidence that the

stx2 variants or the combination of stx1, stx2 and
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K 1973-05 stx2 eae RDNC
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stx2 eae PT32
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stx2 eae RDNC
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Fig. 2. PFGE dendrogram (Dice similarity index and UPGMA method) of 44 STEC O157 strains isolated from human
patients from 2000 to 2009 in Switzerland. PT, Phage type ; RDNC, Reacts but Does Not Confirm to a published typing

pattern ; stx2, stx2 variants (stx2 and/or stx2c).
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stx2c genes are directly associated with the clinical

outcome.

All 44 STEC O157 strains were positive for ehxA

and eae irrespective of the clinical symptoms. Orth &

Wurzner [21] gained comparable results with all iso-

lates investigated in their study being positive for stx2,

eae and ehxA. Similar to other studies [3, 23], intimin

gamma was the eae subtype in our O157:H7 strains.

For years STEC O157 has been classically men-

tioned as being nSF and motile. In 1990 an outbreak

of HUS in Germany, for the first time yielded SF

O157:Hx [24]. This loss of motility in SF STEC O157

is caused by a 12-bp in-frame deletion in fliC that is

required for transcriptional activation of genes in-

volved in flagellum biosynthesis [25]. Although a low

prevalence of SF O157 strains were found in our

strain collection, their occurrence warrants the use of

additional methods other than SMAC.

In Germany SF STEC O157:Hx are the second

most common cause of sporadic HUS [26] and have,

up to 2005, caused two large outbreaks involving 57

HUS cases of which seven children died [26].

Among our isolates four (9.1%) SF strains and

seven (15.9%) nSF strains were non-motile. HUS de-

veloped from 11 classical nSF O157:H7, one atypical

SF O157:Hx and one nSF O157:Hx. Of the other

three patients with SF STEC O157 isolates, two de-

veloped bloody diarrhoea, and from one, no data

was available. Patients with SF STEC O157 were aged

1, 2, 5 and 7 years. In Germany, SF STEC O157 was

present in 13.3–40.5%ofHUS patients, in 7.4–25%of

patients with diarrhoea and only in children aged <3

years [27]. All SF STEC O157:Hx strains harboured

the fliC gene-encoding H7 antigen, as in our study.

To further characterize our strains we performed

phage-typing and PFGE. Among our STEC O157

isolates nine different phage types were found, with

PT8, PT32 and PT49 the most prevalent. In a study

on 415 STEC O157 patients in Wales, the most com-

mon among 19 detected phage types were PT2 and

PT49 showing frequencies of 42.3% and 12.7%, re-

spectively [19]. Similar results were found in an

English study [28], where PT2 (46%) was the most

common phage type, followed by PT49 (17%) and

PT8 (8%). In a recent study from Spain, PT2 was also

the most frequently found phage type in human

STEC O157, followed by PT8 [22]. Therefore, it ap-

pears that Switzerland has a different situation.

PFGE patterns were very heterogeneous except for

eight strains (18.2%). Of these eight strains there were

two sets each consisting of two strains with similar

patterns (set 1: strain K 02-04, male, aged 1 year, and

strain K 774-04, male aged 5 years, both strains iso-

lated in 2004, both stx2, eae positive and PT23; set 2:

strain K 1787-02, male aged 2 years, sample isolated

in 2002, and strain K 1206-06, female aged 45 years,

sample isolated in 2006, both stx1, stx2, eae positive

and PT32) and one set consisting of four equal pat-

terns, all four PT32 and stx1, stx2 and eae positive

(K 447-04, female aged 10 years, sample isolated in

2004 and K 1097-05, male aged 2 years, K 1127-05,

male aged 7 years andK 1144-05, female aged 40 years,

all three samples isolated in 2005). The high genetic

diversity within the strains leads to the conclusion

that STEC O157 infections in Switzerland most often

occur as single cases. Similar to the situation in

Switzerland, only a few STEC O157:H7-associated

outbreaks have been reported in the neighbouring

countries within this time period [29–31].

In our study a very low prevalence of antibiotic

resistance was found for STEC O157 isolates. Only

two strains (4.5%) were resistant to tetracycline. In

England and Wales 20% of human STEC O157

strains collected between 1995 and 1998 were resistant

to one or more antimicrobial agents [20]. Only 1%

of human STEC showed resistance in Germany [32].

Recently, Srinivasan et al. [33] investigated 153 STEC

O157:H7/Hx strains isolated from human faeces,

cows and food in the USA of which >90% showed

resistance to ampicillin and cephalothin. Moreover,

resistance to tetracycline, gentamicin, cefotaxime

and ciprofloxacin was found. High prevalence of re-

sistance was also found in O157:H7 strains from

Spanish people [22], where 38% and 24% of the iso-

lates showed resistance to tetracycline and ampicillin,

respectively.

To summarize, only 30.6% of the STEC strains

isolated from clinical cases from 2000 to 2009 in

Switzerland were STEC O157. SF and nSF strains

were found. All strains were positive for stx2 variants

(stx2 and/or stx2c), eae and ehxA and showed a very

favourable antibiotic resistance situation. The high

genetic diversity within the strains leads to the con-

clusion that STEC O157 infections in Switzerland

most often occur as sporadic cases.
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