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Abstract
In some classes of macroeconomic models with financial frictions, an adverse financial shock successfully
explains a decrease in real activity but simultaneously induces a stock price boom. The latter theoreti-
cal result is not consistent with data from actual financial crises. This study aims to provide a theoretical
explanation for both prolonged recessions and stock price declines. I develop a simple macroeconomic
model featuring a banking sector, financial frictions, and R&D-based endogenous growth. Both the ana-
lytical and numerical investigations show that endogenous R&D investment and a shock hindering banks’
financial intermediary function can be key to generating both a prolonged recession and a drop in firms’
stock prices.
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1. Introduction
Althoughmacroeconomicmodels with financial frictions weremajor workhorses in business cycle
studies even before the 2008–2009 global financial crisis, most of them focused on the role of
financial frictions only in propagating and amplifying shocks originating in firms’ productiv-
ity, households’ preferences, or economic policies. After the crisis, some studies shed light on
the shocks affecting agents’ ability to borrow as a key influence on business cycles. Shocks to
financial constraints are referred to as “financial shocks,” of which there are two main classes:
a credit crunch that affects agents’ borrowing capacity (Jermann and Quadrini (2012), Kahn
and Thomas (2013), Buera and Moll (2015)), and a liquidity shortage that affects agents’ abil-
ity to issue and resell equity (Shi (2015), Kiyotaki and Moore (2019)). These theoretical studies
show that adverse financial shocks induce a fall in GDP, aggregate consumption, investment, and
employment.

Despite their successful explanation of realistic co-movements among major macroeconomic
variables, some researchers have criticized these models. In particular, Shi (2015) points out that
an adverse financial shock in such models, be it a credit crunch or a liquidity shortage, induces
a rise in stock prices. Obviously, this theoretical prediction is not consistent with observations;
instead, the opposite is true. Fig. 1 plots the movements of the GDP per capita and stock prices
in the US before and after the 2008–2009 financial crisis.1 As this figure shows, their movements
are quite synchronized. As Shi (2015) notes, this problem is important and must be addressed,
because a fall in stock prices is thought to be the prime transmission channel of financial shocks
to the aggregate economy.
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Figure 1. GDP per capita and the stock prices in the US.

How can we resolve this problem? Several studies have addressed this issue. Among others,
using numerical analysis, Guerron-Quintana and Jinnai (2022) show that connecting a finan-
cial shock and endogenous growth can resolve the problem of the counterfactual stock price
movement. They build on Shi (2015) and Kiyotaki and Moore (2019). Household members are
classified into workers and entrepreneurs who accumulate physical capital through investment.
Entrepreneurs can sell their own capital to finance investments, but there is an upper limit to
the amount of capital that can be sold in one period. This creates a liquidity constraint for
entrepreneurs, which in turn generates an upper limit on the amount of investments.

In their model, a negative financial shock is formulated so that the liquidity constraint becomes
tighter and entrepreneurs become more cash-strapped. Because of such a shock, entrepreneurs’
capital investment decreases. This itself has the effect of raising the stock price of capital.2
However, if technological progress is determined by learning-by-doing externalities à la Romer
(1986), that is, labor productivity improves as the capital stock increases, then a decline in invest-
ment also has the additional effect of a subsequent deterioration in labor productivity. This
deterioration in future productivity is then reflected in stock prices at the time of the shock, and
thus, the financial shock causes a decline in stock prices. By using an endogenous growth model,
they also succeeded in providing a theoretical explanation for why temporary negative financial
shocks have lasting effects on the real economy.

However, the relationship between financial shocks and stock prices still needs to be analyzed
for the following two reasons. First, Guerron-Quintana and Jinnai (2022) do not explicitly intro-
duce a financial intermediary sector, such as banks, into their model. As seen with the bankruptcy
of Lehman Brothers, the event triggering the financial crisis is often a negative shock to the bank-
ing sector. Therefore, it is important to introduce banks explicitly into the model and then analyze
the stock price reaction to shocks affecting the banking sector. Second, they employ learning-by-
doing externalities as the mechanism for endogenous growth. Indeed, by doing so they succeed in
making the model concise. However, firms’ R&D activities are thought to be the main source of
economic growth, as first stressed by Romer (1990), Grossman andHelpman (1991a), Aghion and
Howitt (1992), and so on. Although Guerron-Quintana and Jinnai (2022) note that their results
would be robust to the use of R&D-based endogenous growth models, they did not conduct this
type of analysis. Therefore, the mechanism of how financial shocks affect R&D activities remains
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Figure 2. R&D spending in the US.

unclear. Fig. 2 illustrates how R&D spending in the US has evolved over time.3 Over the ten years
from 1998 to 2008, R&D spending grew at an annual rate of 3.6%. In this figure, the dashed line
represents the counterfactual amount of spending if this growth rate had continued after 2008. As
can be seen from this figure, R&D spending was below this counterfactual trend after 2008 until it
recovered in 2021. Thus, the financial crisis has had a negative impact on R&D investment, and it
is important to explicitly incorporate R&D activities into the model.

Against this background, this study examines the impacts of financial shocks to the bank-
ing sector on stock prices and the real economy by incorporating the banking sector into an
R&D-based endogenous growth model. I formulate the banking sector in the same way as Gertler
et al. (2020).4 I mainly consider the quality ladder developed by Grossman and Helpman (1991a,
1991b: Ch.4) as the mechanism for endogenous growth. In the model, households make deposits,
entrant firms issue equities to conduct R&D activities, and banks intermediate financial funds
between them. This study adopts the following two key features of banks in Gertler et al. (2020).
First, although the households can purchase equities directly, banks are more efficient in doing so.
Specifically, there is a utility cost for the households directly holding equities. Second, each bank
has an incentive to divert its assets for its own use. This potential moral hazard leads to a situation
in which the banks’ capacity to collect deposits is limited, and they face an upper bound of their
leverage ratio. Based on the presence of this upper bound, in equilibrium, both households and
banks purchase equities.

In the present model, a negative financial shock is formulated so that the moral hazard problem
becomes more serious and the banks’ leverage ratio decreases. Within this framework, I analyti-
cally examine the long-run effects of this financial shock when it is permanent and numerically
investigate the short-run and long-run effects when it is temporary.5 In both cases, it is shown that
such a shock causes both a prolonged downward shift in real activity and a sharp decline in stock
prices. The mechanism generating this result is simple and can be explained as follows. After the
shock, banks face more difficulty financing their equity investments with external funds due to a
reduction in their leverage ratio. Banks are, however, better at equity investment. In such a case,
the household is burdened by managing more firms and, therefore, demands a high premium to
hold additional equities. This is achieved through a decrease in stock acquisition costs, that is,
a reduction in stock price. The decline in stock prices then makes innovation less profitable for
entrants, which in turn reduces R&D activities in the economy as a whole. In the endogenous
growth model, R&D is the key determinant of the growth rate (i.e. future levels) of real variables.
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Thus, even if the financial shock is temporary and the resulting decline in R&D is also temporary,
it will have a lasting negative impact on the level of real variables. As I have explained, the mecha-
nism that generates this result is quite different from that in Guerron-Quintana and Jinnai (2022).
In this sense, this study complements their analysis.

This study is related to several previous studies in addition to the literature cited so far. Ajello
(2016) and Del Negro et al. (2017) incorporate both nominal price and wage rigidities into the
model of Kiyotaki and Moore (2019) and argue that such nominal frictions are important to
overcoming the problem of counterfactual stock price response. By contrast, this study does not
require such rigidities. I believe that the solution they propose and the one presented in this study
are complementary to each other. Because of its simplicity, the proposed mechanism in this study
could easily be incorporated into their model. This study is also related to the literature linking
business cycles to economic growth, such as Comin and Gertler (2006), Kobayashi and Shirai
(2018), Bianchi et al. (2019), Guerron-Quintana and Jinnai (2019), and Ikeda and Kurozumi
(2019), in the sense that they pursue business cycle implications in an R&D-based endogenous
growth model. They build on quantitative dynamic stochastic general equilibrium models and
explore the impacts of several economic shocks on the economy. By comparison, the goal of this
study is to develop a tractable macroeconomic model and examine the relationships among finan-
cial shocks, R&D investments, and firms’ stock prices. One strength of the model proposed here
is its tractability, which allows us to easily characterize the equilibrium and conduct comparative
statics. The tractability can provide insight into the inner workings of the model when considering
the effects of financial shocks.

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3 analytically
characterizes the equilibrium and provides the comparative statics. Section 4 presents the numer-
ical results of a transitory financial shock to banks. Section 5 provides further discussion. Section
6 concludes the paper.

2. Model
Time is discrete and extends from zero to infinity (t = 0, 1, 2, . . . ). The supply side is a discrete-
time version of a quality-ladder growth model developed by Grossman and Helpman (1991a,
1991b: Ch.4).6 The economy has a single final good used for consumption. There is one primary
factor, labor, which is used for production of intermediate goods and R&D activities. Households
save their income in the form of deposits at banks and direct claims on equities; however, they
are less efficient in the direct claims than are banks. The banks intermediate funds between the
households and the firms.

2.1. Firms
Final good sector. The final good is a composite of differentiated intermediate goods indexed by
ω ∈ [0, 1]. The production technology is given by

Yt = Zt exp
[∫ 1

0
ln
(
λKt(ω)xt(ω)

)
dω
]
,

where Yt is the output of the final good, xt(ω) is the demand for variety ω, Kt(ω)(= 1, 2, . . . )
represents the highest quality of variety ω in period t, and λ> 1 represents the size of the quality
improvement achieved by an innovation.Without loss of generality, I assume the initial condition
K0(ω)= 1 for all ω. Then, Kt(ω)− 1 is the number of occurrences of quality-upgrading innova-
tions for ω before period t. The term Zt is the exogenous technology level, growing at a constant
rate of gZ > 0. Even if this term were not present, the qualitative results would not change at all. I
introduce the term Zt to capture the fact that there are other contributing factors to productivity
growth in addition to R&D activities.7
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Following Grossman and Helpman (1991b, Ch.4), I take the final expenditure as the
numeraire : PtYt = 1, where Pt is the price of the final good. Thus, in this model, all prices are
evaluated in terms of the final expenditure. Let pt(ω) denote the price of variety ω. Profit maxi-
mization yields the demand function for variety ω: xt(ω)= 1/pt(ω) and the zero-profit condition:

Pt = 1
Zt

exp
[∫ 1

0
ln
(
pt(ω)
λKt(ω)

)
dω
]
. (1)

Intermediate good sector. Producing xt(ω) units requires the same units of labor as inputs,
implying that the wage rate Wt is the unit cost of production. As in Grossman and Helpman
(1991a, 1991b: Ch.4), each variety has several potential suppliers that can produce the good with
a quality of less than Kt(ω). The leader firm determines its price as pt(ω)= λWt to monopolize
the market, and it sells xt(ω)= 1/(λWt) units of the good. The resulting profit is πt(ω)= π ≡
1− 1/λ.

Let Qt denote the end-of-period stock price of the leader firm. Here, “end-of-period” has two
meanings. First, Qt is ex-dividend, that is, Qt is evaluated after the dividend in period t has been
paid. Second, Qt is evaluated after it turns out that the innovation did not occur in period t.8 Let
Ret+1 denote the one-period gross rate of return from holding the equity from the end of period t
to t + 1.

Ret+1 ≡ π + (1− It+1)Qt+1
Qt

, (2)

where It+1 ∈ [0, 1] denotes the probability that an innovation by potential entrants succeeds in
period t + 1 and the current leader loses its market power. It is determined endogenously from
the resource constraint in this economy. As in the literature on quality-ladder growth, It is inde-
pendent and identically distributed (i.i.d.) across varieties. Then, from the law of large numbers,
It is equal to the ex-post measure of varieties in which innovation occurs.

If each potential entrant hires κIt units of labor in period t, then it can succeed in innovation
with probability It , where κ > 1 is the labor requirement to obtain 100% success in innovation. If
the innovation succeeds, then the entrant becomes the new leader firm for one variety from period
t + 1. Consequently, the new leader faces the idiosyncratic risk of the next innovation and other
aggregate risks. Therefore, the expected benefit of innovation in period t is given by ItQt . Then,
the free entry condition of R&D activities for a variety is Qt ≤Wtκ , the equality of which holds if
It > 0, that is, R&D is conducted. Throughout this study, I focus on the equilibrium with It > 0.

Qt =Wtκ . (3)

2.2. Households
I formulate this sector in a similar way as Gertler et al. (2020). There is a continuum of households,
and each household in turn consists of a continuum of family members with measure 1+ f > 0,
where f ∈ (0, 1) is constant. Within a household, members are classified into workers and bankers.
The measure of workers is 1, while that of bankers is f . I normalize the measure of households to
1 so that the total population is constant at 1+ f .9 Each worker supplies labor to earn wages, and
each banker manages a bank. The detail of the bankers’ behavior is explained in Section 2.3.

As seen in Section 2.1, the measure of profit-earning intermediate good firms is unity. Let Sht
be the number of firms whose equities are held directly by the households and Sbt be the number
of firms whose equities are intermediated by the bankers. Then,

Sht + Sbt = 1.
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Within the household, the members consume the same amount of the final good. Let Ct denote
the amount of aggregate real consumption. Each member consumes Ct/(1+ f ). Each worker
is endowed with one unit of time. Since the population of workers is normalized to 1, Lt also
represents the total labor supply. The representative household’s utility is given by10

E0

{ ∞∑
t=0

βt
[
ln Ct + ζ ln(1− Lt)− �

(
Sht
)]}

,

where β ∈ (0, 1) is the discount factor, ζ > 0 is the weight of the utility from leisure, and
Et(·) is the expectation operator conditioned on the information available in period t. Function �
represents the disutility from the household’s direct equity holding. Following Gertler et al. (2020),
I introduce this disutility function to simply capture the household’s lower efficiency in handling
equity investments compared to banks.11 I assume that function � satisfies

�′(Sh)> 0, �′′(Sh)> 0 for Sh > 0, �′(0)= 0.

By the law of large numbers, the fraction It of the leader firms are leapfrogged at the end of
period t; the stock price of these firms then becomes zero. As in the existing studies employing the
quality-ladder growth model, I assume that the household can diversify equity investments. Thus,
the households are not exposed to any risk other than the aggregate financial shocks that we will
see in Section 2.3. Therefore, the budget constraint is given by12

Rdt Dt−1 + RetQt−1Sht−1 +WtLt +	bank
t − Tt = PtCt +Dt +QtSht ,

where Dt represents deposits, Rdt is the gross rate of return on the deposits, Tt represents lump-
sum taxes, and	bank

t shows the transfers from bankers; how	bank
t is determined is explained in

Section 2.3.
The household chooses Ct , Lt , Sht , and Dt to maximize the utility subject to the budget

constraint. The conditions for utility maximization are given by
ζ

1− Lt
= Wt

PtCt
,

1
PtCt

= βEt
(

1
Pt+1Ct+1

Rdt+1

)
,

�′(Sht )
Qt

+ 1
PtCt

= βEt
(

1
Pt+1Ct+1

Ret+1

)
.

Since the market equilibrium of the final good implies PtCt = PtYt(= 1), these conditions can be
rewritten as

Lt = 1− ζ

Wt
, (4)

EtRdt+1 = 1
β
, (5)

Et
(
Ret+1 − Rdt+1

)
= �′(Sht )

βQt
. (6)

2.3. Banks
Each banker manages a bank. Hereafter, I use bankers and banks interchangeably. The aggre-
gate net revenue of bankers in period t is given by RetQt−1Sbt−1 − Rdt Dt−1. At the end of each
period, each banker faces an idiosyncratic risk of exit that occurs with probability 1− δ ∈ (0, 1).
Throughout this study, I assume the following inequality:
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Assumption 1. δ < β .

Each bank, if it is hit by the exit shock, gives its net revenue to the household. Since the exit
probability is i.i.d. across bankers, the 1− δ share of the aggregate net revenue is transferred to
the household:

	bank
t = (1− δ)

(
RetQt−1Sbt−1 − Rdt Dt−1

)
.

After exiting, a banker becomes a worker starting in the next period. To keep the populations
of both workers and bankers constant over time, the workers with mass (1− δ)f ∈ (0, 1) are
randomly chosen at the end of each period to act as bankers starting in the next period.

Consider a bank with its net revenue given by nt = RetQt−1sbt−1 − Rdt dt−1, where sbt−1 is the
measure of firms purchased by this bank and dt−1 is the issued deposits. If this bank is not
hit by the exit shock, it then finances equity purchases Qtsbt with this revenue and newly issued
deposits:

Qtsbt = nt + dt . (7)

Then, this bank’s net revenue in period t + 1 is given by nt+1 = Ret+1Qtsbt − Rdt+1dt . Note that (7)
represents the banker’s balance sheet and nt corresponds to the banker’s net worth. Henceforth,
I simply call nt net worth. In Appendix A.1, it is shown that the banker’s objective function is
given by

Ṽt ≡ Et

⎧⎨⎩
∞∑
j=1

β j(1− δ)δj−1nt+j

⎫⎬⎭.

The term (1− δ)δj−1 is the conditional probability of exit in period t + j given that the bank does
not exit in period t. Let Vt(nt)≡max Ṽt denote the value function. The banker’s optimization
problem is written as the Bellman equation:

Vt(nt)=max
sbt ,dt

Et
{
β
[
(1− δ)nt+1 + δVt+1(nt+1)

]}
.

The bank faces the balance sheet condition (7) and the following constraint:

Ṽt ≥ θtQtsbt , (8)
which comes from the potential moral hazard problem. After buying equities, the bank has the
following two options. One is to hold the assets, receive dividends, and then meet its deposit
obligations in period t + 1. The other is to secretly sell the assets to obtain the funds for its own
use. To remain undetected, the bank can sell only up to fraction θt of the assets. Inequality (8) is a
constraint in which the bank has no incentive to choose the latter option. In this model, a change
in θt generates a financial shock. θt changes according to

ln(θt+1/θ)= ρ ln(θt/θ)+ εt+1,
where θ is the baseline value of θt , εt is an i.i.d. shock, and ρ ∈ (0, 1) is the parameter specifying
the persistence of shocks.

To solve the problem, we can use the guess and verify method. GuessVt(nt) as a linear function
of nt : Vt(nt)=ψtnt . The Bellman equation is rewritten as

ψtnt = Et

{
β(1− δ+ δψt+1) max

sbt

[
Rdt+1nt +

(
Ret+1 − Rdt+1

)
Qtsbt

]}
,

subject to ψtnt ≥ θtQtsbt . Then, as long as Ret+1 − Rdt+1 > 0, the bank invests as much as it can:

Qtsbt = ψtnt
θt

. (9)
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Substituting this result into the Bellman equation yields the dynamic equation of ψt :

ψt =
βEt

[
(1− δ + δψt+1)Rdt+1

]
{
1− β

θt
Et
[
(1− δ + δψt+1)

(
Ret+1 − Rdt+1

)]} . (10)

The denominator is assumed to be positive:

Assumption 2. θt >βEt
[
(1− δ + δψt+1)

(
Ret+1 − Rdt+1

)]
.

Consider a banker that newly enters the market. Let et denote the new banker’s initial net
worth and assume that this is fully subsidized by the government. The new banker’s behavior is
then given by (7) and (9), with nt replaced by et . The same equation as (10) is then implied for
the new banker. Let N denote the aggregate net worth of banks. To obtain the equilibrium of the
model, I assume that the subsidies to each new banker are proportional to the average net worth
in the previous period. Since the measure of bankers is always f ,

et =μNt−1/f ,

where I assume that μ> 0 is not so large:

Assumption 3. μ< β−δ
β(1−δ) (< 1).

This assumption is required to obtain the uniqueness of the equilibrium. Nt is then given by
the sum of the incumbent banks’ net worth as well as that of the new entrants:

Nt = δ
(
RetQt−1Sbt−1 − Rdt Dt−1

)+ (1− δ)μNt−1.

Since each bank’s decision about equity holding Qtsbt is linear in its state variable nt or et , these
decisions are easily aggregated over all banks. Given Nt , QtSbt is given by

QtSbt = ψtNt
θt

.

Thus, ψt/θt represents the banks’ leverage.

2.4. Government
The government’s budget constraint is given by

Tt = (1− δ)μNt−1,

from which Tt is determined.

2.5. Market-clearing conditions
The timing of events during a given period is summarized as follows.

1. Aggregate financial shocks are realized. The workers determine their labor supply, the
final and intermediate good firms produce the goods, and the intermediate good firms
pay dividends to the equity owners.

2. The outcomes of R&D are realized. By the law of large numbers, the fraction It of the leader
firms is leapfrogged and the stock price of these firms becomes zero. Since the shareholders
have diversified equity investments, their total values of equity change from Qt−1Sh(b)t−1 to
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Qt(1− It)Sh(b)t−1 . Their gross interest income from holding equities is π +Qt(1− It)Sh(b)t−1 =
RetQt−1Sh(b)t−1 . In this stage, the households also obtain the gross interest income from their
deposits, Rdt Dt−1.

3. Each bank exits in this stage with an i.i.d. probability of 1− δ ∈ (0, 1). Upon exit, the profits
of such banks, 	bank

t , are transferred to the households. The workers with mass (1− δ)f
become new bankers and enter the financial market with their initial net worth subsidized
by the government. The households pay the lump-sum taxes Tt to the government.

4. The asset markets open. The households consume the final good and determine their
portfolios, QtSht and Dt , respectively. The bankers buy the equities QtSbt .

The market-clearing condition for the final good is Yt = Ct = 1/Pt . The labor market clears as

Lt = 1
λWt

+ κIt . (11)

The market-clearing condition of equities is Sht + Sbt = 1. Finally, the deposits Dt must satisfy

Dt +Nt =QtSbt . (12)
From these market-clearing conditions, together with the agents’ behavior, the household’s

budget constraint is automatically satisfied fromWalras’ law.

3. Equilibrium in the deterministic economy
This section analytically characterizes the equilibrium in the case of no aggregate risks by
assuming εt = 0 (i.e. θt = θ) for all t. In this case, (5) and (6) are respectively reduced to

Rdt+1 = 1/β , (13)

Ret+1 = 1
β

(
1+ �′(Sht )

Qt

)
. (14)

3.1. Equilibrium conditions
This subsection derives key equations in characterizing the equilibrium. Substituting (13) and (14)
into (10) without the expectation operator yields

ψt = (1− δ + δψt+1)

(
1+ ψt

θ

�′(Sht )
Qt

)
. (15)

Substituting (12)–(14) and QtSbt =ψtNt/θ into the banks’ aggregate net worth in period t + 1, we
can obtain the dynamic equation of Nt as follows:

Nt+1 =
[
δ

β

(
1+ ψt

θ

�′(Sht )
Qt

)
+ (1− δ)μ

]
Nt . (16)

Substituting (3) and (4) into the labor market equilibrium (11) and evaluating the resulting
equation in period t + 1,

It+1 = 1
κ

− 1+ λζ

λ

1
Qt+1

. (17)

Substituting (14) and (17) into (2), we can obtain the dynamic equation of Qt as follows:

Qt = β(1− 1/κ)Qt+1 + β(1+ ζ )− �′(Sht ). (18)
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Equations (15), (16), and (18) include Sht . Since Sht + Sb = 1, Sht is given by the functions of ψt , Nt ,
and Qt :

Sht = 1− ψtNt
θQt

. (19)

Thus, the autonomous dynamical system in the deterministic economy is given by (15), (16), and
(18) together with (19). Note that Nt is a state variable, whereas ψt and Qt are forward-looking
variables whose initial values are determined endogenously.

3.2. Balanced growth path
In this section, I examine the equilibrium where Qt ,ψt ,Nt , Sht , and It become stationary. I call
such an equilibrium the balanced growth path (BGP) equilibrium, since in that case consumption
grows at a constant rate as shown below.

Equation (16) with Nt =Nt+1 implies

1+ ψ

θ

�′(Sh)
Q

= B∗, (20)

where

B∗ ≡ β[1− (1− δ)μ]
δ

> 1.

Note that B∗ depends only on the exogenous parameters and Assumption 3 ensures B∗ > 1.
Hereafter, a superscript asterisk over a variable represents its stationary value. For example, ψ∗
denotes the stationary value of ψ . Equation (15) with ψt =ψt+1 provides ψ∗:

ψ∗ = (1− δ)B∗

1− δB∗ > 0.

Substituting the obtained ψ∗ back into equation (20) yields the following relationship between
the stock price Q and the households’ equity purchases Sh:

Q= δψ∗

[β − δ − β(1− δ)μ] θ
�′(Sh), (21)

where the sign of the denominator is positive from Assumption 3. Since �′′(Sh)> 0 for Sh > 0,
this equation shows a positive relationship between q and Sh. The intuition is explained as follows.
When Sh becomes larger, households become more reluctant to hold equities directly unless their
rate of return becomes sufficiently higher. Indeed, Re − Rd = �′(Sh)/(βQ) experiences upward
pressure. This upward pressure in turn has a positive impact on the banks’ aggregate net worth
N, and hence, they want to purchase more of these equities. In the stationary equilibrium in
which N is constant, such an increase in their equity demand puts upward pressure on the stock
price Q. As equation (20) shows, the upward pressure on Sh is offset by a rise in Q such that
Re − Rd remains constant.

There is the other relationship between q and Sh. From (18) with Qt =Qt+1, we can obtain

Q= β(1+ ζ )− �′(Sh)
1− β(1− 1/κ)

, (22)

where the sign of the denominator is positive. Since �′′(Sh)> 0 for Sh > 0, this equation shows a
negative relationship between q and Sh. The intuition is straightforward. The increase in Sh makes
households less willing to hold equities unless their rate of return becomes sufficiently higher.
Therefore, this unwillingness depresses the unit cost of the equity purchase, which is Q.

https://doi.org/10.1017/S1365100523000354 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100523000354


Macroeconomic Dynamics 1009

Figure 3. Determination of Sh∗ and Q∗.

In Fig. 3, the upward- and downward-sloping curves represent equations (21) and (22),
respectively. These two curves have only one intersection. Q∗ is explicitly obtained as

Q∗ = β(1+ ζ )δψ∗

[1− β(1− 1/κ)]δψ∗ + [β − δ− β(1− δ)μ]θ
.

By its definition, Sh∗ must be in (0, 1). Since I assume �′(0)= 0, the value of Q in (21) is nec-
essarily smaller than Q in (22) for Sh = 0. Thus, Sh∗ > 0 is guaranteed. Throughout this study, I
also assume that Sh∗ < 1 is satisfied, and hence, equity holdings are diversified between banks and
households. For example, given Q∗, Sh∗ < 1 is satisfied if

�′(1)> Q∗

δψ∗ [β − δ− β(1− δ)μ]θ . (23)

Substituting Qt+1 =Q∗ into (17) yields I∗:

I∗ = 1
κ

− 1+ λζ

λQ∗ . (24)

By its definition, I∗ must be in (0, 1). Note that I∗ < 1 is guaranteed because of κ > 1. From (24),
I∗ > 0 if and only if

Q∗ > κ(1+ λζ )
λ

. (25)

The results obtained so far can be summarized as the following Proposition:

Proposition 1. There exists a unique BGP equilibrium with a positive growth rate and diversifica-
tion of equity holdings if (23) and (25) are satisfied.

Then, I derive the growth rate of consumption, which always grows at the same rate as the inverse
of the final good price. Since pt(ω)= λWt for all ω, equation (1) implies

Pt = Wt

(1+ gZ)tλ
∫ 1
0 (Kt(ω)−1)dω

.

On the BGP, the wage rate is constant at Q∗/κ . Recall that Kt(ω) is the index of highest quality for
variety ω and increases by one for each successful innovation. Thus,

∫ 1
0 (Kt+1(ω)−Kt(ω))dω is
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(a) (b)

Figure 4. Comparative statics of the BGP equilibrium.

equal to the measure of varieties in which successful innovation occurs in period t. By the law of
large numbers, this is equal to I∗. Therefore, we can obtain

ln P∗
t+1 − ln P∗

t = − ln(1+ gZ)− I∗ ln λ,

which implies that the final good price declines over time. Then, the growth rate of consumption
is given by

g∗ = gZ + I∗ ln λ,

where g∗ 
 ln (1+ g∗) and gZ 
 ln (1+ gZ) are used. Since the wage rate, stock price, and banks’
net worth become stationary, their real values also grow at the rate of g∗. Therefore, I simply call
g∗ the balanced growth rate.

Finally, we have to check that Assumption 2 is satisfied on the BGP. In this non-stochastic
economy, this assumption is rewritten as

θ > (1− δ+ δψt+1)
�′(Sht )
Qt

.

Since �′(Sh∗)/Q∗ = θ(B∗ − 1)/ψ∗ holds from (20) and 1− δ + δψ∗ =ψ∗/B∗ holds from (15), we
can rewrite the inequality above as θ > θ(B∗ − 1)/B∗, which is necessarily satisfied.

3.3. Comparative statics
Since the model is tractable, we can easily conduct a comparative statics analysis of the BGP and
can gain insight on the inner workings of the model. Suppose that θ increases and, hence, the
banks’ leverage ratio decreases. This decreases the equities held by banks Sb∗. Thus, as illus-
trated in panel (a) of Fig. 4, an increase in θ shifts the curve representing equation (21) to
the right and increases Sh. However, because of their utility costs, the households are less effi-
cient at purchasing equities than are banks. Therefore, the households demand a high premium
Re∗ − Rd∗ = �′(Sh∗)/(βQ∗) to hold additional equities. Consequently, the stock priceQ∗ becomes
low in an economy with a large θ .

The decline in Q∗ in turn makes R&D activities less profitable for potential entrants. In fact,
(24) clearly shows that I∗ decreases. Since g∗ = gZ + I∗ ln λ, an increase in θ results in a decrease
in the BGP growth rate. From the above results, we can obtain the following proposition.

Proposition 2. On the BGP, a larger θ results in a lower growth rate, a lower stock price, and a
larger share of households’ equity holdings.
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Appendix A.2 provides the results of comparative statics for other variables. It should be noted
here that the result stated in Proposition 2 never occurs when R&D costs alone increase. To under-
stand why, suppose that κ increases. In an economy in which κ is large, it becomes more costly for
a potential entrant to conduct R&D activities. Then, through the entrants’ free entry condition,
the benefit of R&D must be high. As panel (b) of Fig. 4 shows, this induces upward shifts in the
curve representing equation (22). Thus, as shown in the Appendix A.2, in this case, the stock price
rises even though the innovation rate falls.

This section concludes with an analysis of the long-run impact on the banks’ net worth. From
(19), N∗ is given by

N∗ = θQ∗Sb∗

ψ∗ .

Suppose that θ increases. From Proposition 2, both Q∗ and Sb∗ = 1− Sh∗ decrease while ψ∗ is
constant. Simultaneously, an increase in θ has the direct effect of increasing N∗. The reason for
this direct effect is simple: When banks are no longer able to leverage sufficiently, they must have
a higher net worth to purchase equities. Appendix A.2 shows

dN∗

N∗ = 1
1+ a

(
1− �′

(1− Sh∗)�′′

)
dθ
θ
,

where a≡ �′
β(1+ζ )−�′ > 0. Briefly speaking, the first and second terms within the parentheses

correspond to the direct and indirect effects, respectively. The magnitude of the indirect effect
depends on the extent to which Sh∗ and Q∗ decrease, which further depends on the shape of the
cost function of households’ equity holdings. For example, if function �(Sh) is specified as

�(Sh)= γ (Sh)1+η

1+ η
,

with η > 0, the elasticity of marginal cost is given by η. dN∗/N∗ is rewritten as

dN∗

N∗ = 1
1+ a

(
1− Sh∗

(1− Sh∗)
1
η

)
dθ
θ
.

If η is small (large), Sh decreases more (less) sharply. Then, given the value of Sh∗ before the change
in θ , the banks’ net worth decreases (increases) when η is small (large). It is worth emphasizing,
however, that whichever way N∗ changes, the share of banks’ equity holdings invariably declines
and the stock price of intermediate goods firms drops.

4. Numerical analysis of transitory financial shocks
This section now examines how a transitory shock to θt influences the economy in both the short
and the long runs. Hereafter, I specify the disutility function � as that in Section 3.3. There are 10
parameters in the model. Table 1 reports the parameter values chosen in the calibration exercise.
A period in the model corresponds to one quarter of a year. I set the discount factor to β = 0.99,
which is standard in the literature, and set the banks’ survival probability to δ = 0.93, as in Gertler
et al. (2020). I set the degree of quality improvement to λ= 1.15. From the analytical result in
Section 3.3, we can expect different values of η to have different impacts on the banks’ net worth.
Therefore, I consider three cases: a low value (η= 0.8), an intermediate value (η= 1), and a large
value (η= 1.2). In Appendix A.3, it is shown that this variation in η induces only a variation in γ .

I set the other parameters such that some variables achieve their target values. Appendix A.3
provides the calibration details. I set the growth rate along the BGP to g∗ = 1.021/4 − 1
 0.005. I
set aggregate hours of work to L∗ = 0.3 and the employment share of R&D activities to 7%. Thus,
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Table 1. Parameters

Parameter Value Source/Target

β 0.99 Exogenously chosen
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 0.93 Exogenously chosen
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ 1.15 Exogenously chosen
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η (i)0.8, (ii)1, (iii)1.2 Exogenously chosen
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ (i)0.037, (ii)0.042, (iii)0.049 Sh∗ = 0.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ 2.18 L∗ = 0.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ 1.38 κ I∗/L∗ = 0.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gZ 0.0028 g∗ = 1.021/4 − 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ 0.206 Re∗ − Rd∗ = 1.021/4 − 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ 0.302 Q∗Sb∗/N∗ = 10

Table 2. Balanced growth rate

Variable Value Description

I∗ 0.015 Innovation rate
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I∗ ln λ 0.0021 (
 0.85% per year) Growth rate by R&D
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gZ 0.0028 (
 1.15% per year) Growth rate by other factors

κI∗ = 0.021. I set the target value of Sh∗ at 0.5 and the spread at Re∗ − Rd∗ = 1.021/4 − 1. Finally,
I set the banks’ leverage toQ∗Sb∗/N∗ = 10, as Gertler and Kiyotaki (2015) and Gertler et al. (2020)
also use this value. Table 2 reports the decomposition of the balanced growth rate.

Suppose that the economy is on the BGP in period 0. The objective here is to see if the mech-
anisms described in Section 3 work on the entire equilibrium path, not just BGP, rather than to
quantitatively replicate the impact of the financial crisis on the actual economy. Therefore, I sim-
ply formulate the transitory adverse financial shock so that θ1 unanticipatedly increases by 10%
relative to its baseline θ . The economy experiences no other shocks and θt gradually recovers to
θ according to ln (θt/θ)= ρ ln (θt−1/θ). The reason for considering such transitory shocks is to
show that even such shocks can have a lasting impact on real activity. Following the existing stud-
ies, I set the persistence of financial shocks at ρ = 0.9. By replacing θ with θt in the dynamical
system (15), (16), (18), and (19) and log-linearizing this system around (ψ∗,N∗,Q∗, Sh∗), we can
compute the impulse response functions of these and other key variables. Appendix A.4 provides
the log-linear approximation of the dynamical system.

Fig. 5 illustrates the results. The horizontal and vertical axes, respectively, represent the period
and percentage deviation in levels of the variables from those without the shock. The first panel
shows the financial shock. The second and third panels, respectively, display the impulse response
functions of Sht and Qt . As can be seen from these two panels, the directions of the transitory
changes for these two variables are the same as the effect of permanent change on the long-run
equilibrium values analyzed in Section 3.3. The second panel shows that the shock produces a
similar degree of change in the share of households’ equity holdings. As discussed in Section 3.3, a
rise in θt reduces the banks’ leverage and hence increase the share of households’ equity holdings.
Owing to their utility costs in doing so, they demand a higher spread between deposit and equity
holdings, which results in the decline in the stock price. The free entry condition of entrants’ R&D
shows Wt =Qt/κ . Therefore, the third panel also represents the response of the wage rate. This
result is intuitive given that a lower stock price harms the benefits of doing R&D, and therefore
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Figure 5. Impulse response functions.

entrants will not do R&D unless its cost drops by the same amount. A natural consequence of this
is a decline in employment, as represented in the fourth panel.

The fifth panel depicts the rate of change in labor employment in R&D. Here it is worth noting
that this rate of the labor employed in R&D decreases more significantly than does the overall
employment. This occurs because the decline in the wage rate not only decreases overall employ-
ment but also causes an intersectoral shift in employment. In this model, the leader firm of each
variety sets the price of λWt to eliminate follower firms and produces 1/(λWt) units of output.
The decline in the wage rate thus increases production in the intermediate goods firms, which in
turn increases employment in this sector. This intersectoral movement of labor results in a more
severe decline in employment in the R&D sector than in overall employment. The sixth panel
represents the responses of the banks’ net worth. The directions of the transitory changes are the
same as the long-run changes obtained from the comparative statics. In particular, as expected,
the value of η is critical to determine the response in the banks’ net worth.13

The last three panels in the third row show responses of the variables exhibiting increasing or
decreasing trends. Without shocks, the final good price would be

P∗
t = W∗

(1+ gZ)tλI∗t
,

which continues to decline at the rate of g∗. Due to the financial shock, Pt actuallymoves according
to the following equation:

Pt = Wt

(1+ gZ)tλ
∑s−1

t=0 Is
.

The seventh panel displays the movement of 100× ( ln Pt − ln P∗
t ). As already stated, in this

model, the wage rate falls in tandem with the stock price, and this further leads to a fall in the
price of intermediate goods. Immediately after the shock, this effect is strong, and the economy
experiences a decline in the final good price. At the same time, however, R&D investment declines,
which slows the improvement in the quality of intermediate goods. Eventually, this effect becomes
dominant, and the final good price becomes higher than the level that would have been reached
in the absence of the shock. Here note that the right-hand side of the equation giving Pt includes
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the amount of R&D investment prior to period t. Thus, even if the decrease in R&D investment is
temporary and returns to its original value, this price increase will be permanent.

Once the movement of Pt is obtained, the response of real activity to the shock can also
be obtained. The eighth panel shows the response of the value added of real activity, which is
given by

Value added of real activity= 1+QtIt
Pt

.

In this model, all sales of the final good are used as payment for the intermediate goods. Therefore,
the value added from real activity is generated from intermediate goods production and R&D
activities.14 The first and second terms in the numerator, respectively, correspond to the former
and the latter. I then evaluate them in real terms by dividing them by the final goods price. The
eighth panel shows the percentage deviation of this variable from what would have been seen
in the absence of the shock. Since even the transitory shock has a permanent impact on Pt , real
activity experiences a permanent slowdown relative to the absence of shocks. This result comes
from incorporating the mechanism of endogenous growth into the model and is consistent with
the previous studies such as Guerron-Quintana and Jinnai (2022). The last panel shows the reac-
tion of the real stock price, Qt/Pt . Since the movements of Qt and Pt are comparable to each
other immediately after the shock, initially there is not much of a reaction. However, a permanent
decline is then seen for the real stock price, due to a permanent increase in Pt from the initial
trend.

Thus, the model constructed in this study, although simplified, has some success in pro-
ducing theoretical results consistent with the phenomena we experienced during the financial
crisis.

5. Discussion
5.1. Equity purchasing costs in terms of the final good
Thus far, the costs of households’ direct equity purchasing are modeled as disutility. This subsec-
tion examines whether the results obtained in the baseline model are robust against a change in
specification of such costs. To show this, suppose that the households must pay �

(
Sht , t

)
units of

the final good to obtain Sht units of intermediate good firms. I consider a deterministic economy.
The household’s utility maximization problem is given by

max
{Ct ,Lt ,Dt ,Sht }∞t=0

∞∑
t=0

βt [ln Ct + ζ ln (1− Lt)] ,

subject to

Rdt Dt−1 + Ret
(
Qt−1Sht−1

)+WtLt +	bank
t − Tt = PtCt + Pt�

(
Sht , t

)+Dt +QtSht .
The conditions for utility maximization are given by (4) and

Pt+1Ct+1
PtCt

= βRdt+1, (26)

Ret+1 = Rdt+1

(
1+ Pt

Qt

�
(
Sht , t

)
∂Sht

)
. (27)

The market-clearing condition for the final good is now given by

Yt = Ct +�
(
Sht , t

)
. (28)

The other conditions of equilibrium are the same as those of the baseline model.
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Equation (28) shows that consumption and transaction costs must grow at the same rate as the
output on the BGP. Since Sht is bounded, however, we have to assume that �

(
Sht , t

)
continues to

grow even with Sht being constant. Therefore, I assume

�
(
Sht , t

)= �
(
Sht
)
Yt ,

where the properties of � are the same as those of the baseline model. Then, from (28), Ct grows
at the same rate as Yt , which in turn means PtCt is constant. From (26) and (27),

Ret+1 = 1
β

(
1+ �′(Sht )

Qt

)
,

which is exactly the same as (14). Thus, we can obtain the same BGP equilibrium as the baseline
model with the assumption of the cost function�.

5.2. A Model of variety expansion
In the baseline model, I employ the quality improvement of the intermediate goods as the engine
of endogenous growth. This subsection examines whether the results obtained in the baseline
model are robust under the specification of variety expansion.

5.2.1. Setup
Let Mt−1 denote the total mass of varieties available in period t. The production function of the
final good is given by

Yt = Zt
(∫ Mt−1

0
xt(ω)

σ−1
σ dω

) σ
σ−1

,

where σ > 1 is the elasticity of substitution between any two varieties. Because of PtYt = 1, the
first-order conditions of profit maximization under perfect competition are given by

xt(ω)= (PtZt)σ−1pt(ω)−σ ,

Pt = 1
Zt

(∫ Mt−1

0
pt(ω)1−σdω

) 1
1−σ

.

To produce xt(ω) units of the output requires the same units of labor. The profit-maximizing price
is given by pt(ω)= pt ≡ σ

σ−1Wt∀ω. From this result, the output and the profit are respectively
given by

xt(ω)= xt ≡ 1
Mt−1

σ − 1
σWt

,

πt(ω)= πt ≡ 1
σMt−1

.

Let vt denote the stock price of an intermediate good firm. The rate of return from holding the
equity Ret+1 is now defined as

Ret+1 ≡ πt+1 + vt+1
vt

.

In period t, to invent one unit of idea of the intermediate goods requires κ/Mt units of labor, where
Mt captures the knowledge spillovers. The free entry condition with positive R&D investment is
given by

vt =Wt
κ

Mt
.
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The utility maximization problem is formulated as

max
{Ct ,Lt ,Dt ,Mh

t }∞t=0

∞∑
t=0

βt
[
ln Ct + ζ ln(1− Lt)− �̃(Mh

t ,Mt)
]
,

subject to

Rdt Dt−1 + Ret
(
vt−1Mh

t−1
)+WtLt +	bank

t − Tt = PtCt +Dt + vtMh
t ,

where Mh
t is the mass of intermediate good firms held by the households. Function �̃ represents

the disutility from such a direct holding. I assume

�̃1(Mh,M)> 0, �̃11(Mh,M)≥ 0, �̃2(Mh,M)< 0,
where �1(2) is the partial derivative of � with respect to the first (second) argument. Since PtCt =
PtYt = 1, the conditions for maximization are given by equation (4), βRdt+1 = 1, and

Ret+1 = 1
β

(
1+ 1

vt
�̃1(Mh

t ,Mt)
)
. (29)

Each bank’s behavior is exactly the same as the baseline model. Equation (10) is implied for the
bank. The total mass of varieties now continues to grow. The aggregation of the banks’ behavior
gives

Nt+1 = δ
(
Ret+1vtM

b
t − Rdt+1Dt

)
+ (1− δ)μNt , (30)

vtMb
t = ψt

θ
Nt , (31)

whereMb
t ≡Mt −Mh

t is the mass of intermediate good firms held by the banks.

5.2.2. Equilibrium conditions
The labor market clears as

Lt =Mt−1xt + κ

Mt
(Mt −Mt−1). (32)

I redefine Qt and Sht as Qt ≡ vtMt and Sht ≡Mh
t /Mt , respectively. To obtain the BGP equilibrium,

we have to make the following additional assumption.15

Assumption 4. Function �̃ is homogeneous of degree zero regarding Mh
t and Mt.

I redefine function � as �
(
Sht
)≡ �̃(Sht , 1). Then, (29) is rewritten as

Ret+1 ≡ 1
β

(
1+ 1

Qt
�′(Sht )) ,

which is exactly the same as (14). The aggregate balance sheet of the banks is Dt +Nt = vtMb
t =

Qt
(
1− Sht

)
. Then, we can easily find that (10), (30), and (31) are reduced to

ψt = (1− δ + δψt+1)

(
1+ ψt

θ

�′(Sht )
Qt

)
,

Nt+1 =
[
δ

β

(
1+ ψt

θ

�′(Sht )
Qt

)
+ (1− δ)μ

]
Nt ,

Sht = 1− ψtNt
θQt

,

which are exactly the same as (15), (16), and (19).
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Substituting πt+1 = 1/(σMt) into Ret+1 ≡ (πt+1 + vt+1)/vt and using Qt ≡ vtMt , we obtain

Ret+1Qt = 1
σ

+Qt+1
Mt
Mt+1

. (33)

Substituting (4), the definition of x, and (3) into (32) yields

Mt−1
Mt

= 1− 1
κ

+ 1
Qt

(
ζ + 1− 1

σ

)
. (34)

Substituting (14) and (34) (in period t + 1) into (33), we obtain the dynamic equation of Qt as

Qt + �′(Sht )= β [1+ ζ + (1− 1/κ)Qt+1] ,

which is exactly the same as (18). Thus, we can obtain the same equilibrium as the main body.

6. Conclusion
In some macroeconomic models with financial frictions, an adverse financial shock successfully
explains a drop in real activity, but it is often associated with a stock price boom. This prediction
is at odds with empirical observations in actual recessions. This study developed a simple theory
to explain both prolonged recessions and stock price declines. Mymacroeconomic model features
banks, financial frictions, and firms’ R&D activities to tackle this problem. Both the analytical and
numerical investigations show that endogenous R&D investment and a shock hindering banks’
financial intermediary function can be key to generating both a prolonged recession and a drop in
firms’ stock prices.

To obtain qualitative results, this study developed a highly stylized model. Owing to its sim-
plicity, the mechanism proposed in this study can be easily incorporated into a more complex
model for quantitative analysis. Therefore, it is a promising extension to quantitatively evaluate
the effects of the financial shock considered in this study. Nevertheless, the results obtained using
this model provide a useful benchmark.

Acknowledgements. I am grateful to two anonymous referees for helpful comments and suggestions. I also acknowledge
financial support from JSPS KAKENHI (19K01646), Kwansei Gakuin University, and the Joint Usage/Research Center at
KIER, Kyoto University. The usual disclaimer applies.

Notes
1 The quarterly data on the GDP per capita (2015 constant dollars, 2004Q1–2019Q4) are provided in the OECD. Stat
(https://stats.oecd.org/). Historical data on the S&P 500 is available from several sources, for example, Yahoo Finance
(https://finance.yahoo.com/quote/%5EGSPC/history/). The stock prices are converted frommonthly to quarterly data by tak-
ing the three-month average. For both the GDP per capita and stock prices, the value in the first quarter of 2008 is normalized
to 100.
2 In fact, they show that if firms’ labor productivity is determined by exogenous technological progress, then a negative
financial shock would lead to an increase in stock prices, as in the previous studies.
3 The annual data of the gross domestic spending on R&D (2015 constant dollars, 1998–2021) are provided in the OECD.
Stat (https://stats.oecd.org/). The value in 2008 is normalized to 100.
4 Gertler and Karadi (2015) and Gertler and Kiyotaki (2015) also introduce the banking sector to their models in the same
way.
5 Here, the long-run effects refer to the effects on variables on the balanced growth path, while the short-run effects refer to
the effects on those during the transition process to the balanced growth path.
6 In Section 5, I formulate a variety expansion model and verify that the main results obtained in the quality-ladder model
are robust.
7 There is debate regarding the degree to which R&D investment contributes to productivity growth. Comin (2004), for
example, argues that the contribution of R&D investment to technological progress is not large. Nevertheless, I employ the
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R&D-based endogenous growth model as the framework of analysis because of the fact that R&D investment significantly fell
after the financial crisis, as shown in Fig. 2.
8 The results obtained in this study do not change if the stock price is defined at the beginning of a period. Let Q̃t denote the
stock price evaluated at the beginning of period t. Then, Q̃t and Re

t+1 must satisfy

Q̃t = π + (1− It)
Q̃t+1
Re
t+1

.

Because of Q̃t+1/Re
t+1 =Qt , it follows that Re

tQt−1 = π + (1− It)Qt , which is essentially the same as equation (2).
9 Gertler et al. (2020) assume that within the family there are 1− f workers and f bankers. Although I can also apply such
an assumption in this study, I normalize the measure of workers to 1 because it simplifies the calculations. In these studies as
well as the present research, f does not have an important influence on the main results.
10 It would be natural for households to obtain utility from per capita consumption Ct/(1+ f ). However, thanks to the
assumption of a logarithmic utility function, this is essentially the same as the assumption that utility is obtained from total
consumption Ct .
11 In Section 5, I examine a case in which the households’ direct equity purchasing requires the final good as the transaction
costs. The main results are qualitatively robust even in this case, with a few additional assumptions.
12 The budget constraint is given by Rd

t Dt−1 + πSht +WtLt +	bank
t − Tt = PtCt +Dt +Qt[Sht − (1− It)Sht−1], where πS

h
t

on the left-hand side shows the dividends from the intermediate goods firms and Sht − (1− It)Sht−1 on the right-hand side
shows the additional purchase of their shares. Using the definition of Re

t , we can obtain the budget constraint stated above.
13 In this numerical example, Sh∗/(1− Sh∗)= 1.
14 Since there is a spread between Re

t and Rd
t , there is also value added by financial intermediation. In order to focus on real

activity, however, I focus on value added through intermediate goods production and R&D for quality improvement.
15 To understand why, suppose that function �̃ is homogeneous of degree k, which implies �̃1 is homogeneous of degree
k− 1. Then, equation (29) is rewritten as

Re
t+1 = 1

β

(
1+ Mk

t
Qt
�̃1(Sht , 1)

)
.

In the BGP equilibrium, Re
t+1, S

h
t , andQt are stationary. In such an equilibrium,Mt grows at a constant rate. Then, k= 0 must

be true.
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Appendix
A.1. Banks’ objective function
As in Gertler et al. (2020), each bank seeks to maximize its real net worth at the time of exit. Thus,
a bank’s original objective function at the end of period t is given by

Ṽt ≡ Et

⎡⎣ ∞∑
j=1

�t,t+j(1− δ)δj−1 nt+j

Pt+j

⎤⎦ ,

where�t,t+j ≡ β j Ct
Ct+j

is the j-th period stochastic discount factor applied to each banker. We can
arrange the right-hand side as follows:

Ṽt = 1
Pt
Et

⎡⎣ ∞∑
j=1

β j
PtCt

Pt+jCt+j
(1− δ)δj−1nt+j

⎤⎦
= 1

Pt
Et

⎡⎣ ∞∑
j=1

β j(1− δ)δj−1nt+j

⎤⎦ .

I now define Ṽt as Ṽt = Pt × Ṽt . Since the original objective function is evaluated in terms of the
final good, Ṽt is evaluated in terms of the final expenditure. Then,

Ṽt = Et

⎡⎣ ∞∑
j=1

β j(1− δ)δj−1nt+j

⎤⎦ .

Since each banker takes Pt as given, maximizing the original objective function is equivalent to
maximizing Ṽt .

A.2. Comparative statics of the BGP
This section shows the comparative statics for the BGP equilibrium. The variablesQ∗, Sh∗, I∗, and
N∗ are determined from the following system of equations:

Q∗ = δψ∗

β − δ − β(1− δ)μ
�′(Sh∗)
θ

,

Q∗ = β(1+ ζ )− �′(Sh∗)
1− β + β/κ

,

I∗ = 1
κ

− 1+ λζ

λQ∗ ,

N∗ = θQ∗(1− Sh∗)
ψ∗ .
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Note that ψ∗ does not depend on θ or κ . From these equations,

dQ∗

Q∗ = Sh∗�′′

�′
dSh∗

Sh∗
− dθ
θ
, (A1)

dQ∗

Q∗ = −a
Sh∗�′′

�′
dSh∗

Sh∗
+ b

dκ
κ
, (A2)

dI∗

I∗
= 1+ λζ

λQ∗I∗
dQ∗

Q∗ − 1
κI∗

dκ
κ
, (A3)

dN∗

N∗ = dQ∗

Q∗ − Sh∗

1− Sh∗
dSh∗

Sh∗
+ dθ
θ
, (A4)

where

a≡ �′

β(1+ ζ )− �′ > 0,

b≡ β/κ

1− β + β/κ
∈ (0, 1).

The value of a is positive as long as Q∗ > 0. From (A1) and (A2),
dQ∗

Q∗ = 1
1+ a

(
−a

dθ
θ

+ b
dκ
κ

)
, (A5)

dSh∗

Sh∗
= 1

1+ a
�′

Sh∗�′′

(
dθ
θ

+ b
dκ
κ

)
. (A6)

Then,
dQ∗/Q∗

dθ/θ
< 0,

dQ∗/Q∗

dκ/κ
> 0,

dSh∗/Sh∗

dθ/θ
> 0,

dSh∗/Sh∗

dκ/κ
> 0.

Substituting (A5) into (A3) and using the fact that 1+λζ
λQ∗I∗ = 1

κI∗ − 1> 0,

dI∗

I∗
= 1

1+ a

(
1
κI∗

− 1
)(

−a
dθ
θ

+ b
dκ
κ

)
− 1
κI∗

dκ
κ

= −a
1+ a

(
1
κI∗

− 1
)
dθ
θ

− 1
1+ a

(
1+ a− b
κI∗

+ b
)
dκ
κ
,

which implies
dI∗/I∗

dθ/θ
< 0,

dI∗/I∗

dκ/κ
< 0.

Finally, substituting (A5) and (A6) into (A4) yields
dN∗

N∗ = 1
1+ a

(
1− �′

(1− Sh∗)�′′

)(
dθ
θ

+ b
dκ
κ

)
.

A.3. Calibration details
The following parameters were chosen exogenously: β = 0.99, δ = 0.93, and λ= 1.15. Since the
value of η affects the comparative statics, I consider three cases: a low value (η= 0.8), an inter-
mediate value (η= 1), and a large value (η= 1.2). I set the aggregate hours of work in the BGP
equilibrium to L∗ = 0.3 and the employment share of R&D activities to 7%. Then,

L∗
R&D ≡ κI∗ = 0.07L∗ = 0.021.
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The wage rateW∗ is given byW∗ = 1/[λ(L∗ − L∗
R&D)]. The value of ζ is given by

ζ =W∗(1− L∗).
I set the target value of Sh∗ to 0.5. I also assume that the spread is 2% per year: Re∗ − Rd∗ =
1.021/4 − 1. Then, κ , γ , Q∗, and I∗ are determined from

Re∗ − Rd∗ = γ (Sh)η

βQ∗ , (A7)

Q∗ + γ (Sh)η = βπ + β(1− I∗)Q∗, (A8)
Q∗ =W∗κ , (A9)
L∗
R&D = κI∗. (A10)

Here, note that the variation of η induces only the variation of γ . From (A9) and (A10), we obtain
Q∗I∗ =W∗L∗

R&D, where the value of the right-hand side has been already determined. Substituting
this into (A8) yields

(1− β)Q∗ + γ (Sh)η = β
(
π −W∗L∗

R&D
)
. (A11)

Then, Q∗ and γ are determined from (A7) and (A11):

Q∗ = β
(
π −w∗L∗

R&D
)

β(Re∗ − Rd∗)+ 1− β
,

γ = β2(Re∗ − Rd∗)
(
π −w∗L∗

R&D
)

(Sh)η[β(Re∗ − Rd∗)+ 1− β]
.

Thus, η does not affect Q∗. Accordingly, I∗ and κ are also independent of η.
I choose the balanced growth rate g∗ such that the growth rate is 2% per year: 1+ g∗ = 1.021/4.

The rate of exogenous technological progress gZ is determined from gZ = g∗ − I∗ ln λ. Following
Gertler and Kiyotaki (2015) and Gertler et al. (2020), I set the banks’ leverage Q∗Sb∗/N∗ to 10.
Since Q∗Sb∗ is already known, this determines the value of N∗. Furthermore, ψ∗/θ is determined
as 10. On the BGP, the following equations hold:

1+ ψ∗

θ

�′(Sh∗)
Q∗︸ ︷︷ ︸

already found

= B∗ = β[1− (1− δ)μ]
δ

,

where the first equality comes from (20) and the second one comes from the definition of B∗. Then,
μ is determined. Finally, ψ∗ and θ are respectively determined as ψ∗ = (1−δ)B∗

1−δB∗ and θ =ψ∗/10.

A.4. Log-linear approximation
A hat over a variable indicates the log deviation of the variable from its stationary value. For
example, Q̂t = ln(Qt/Q∗)
 (Qt −Q∗)/Q∗. The log-linear approximation of the system (15), (16),
(18), and (19) around (ψ∗,N∗,Q∗, Sh∗) is

ψ̂t = δψ∗

1− δ + δψ∗ ψ̂t+1 + B∗ − 1
B∗

(
ψ̂t + η̂Sht − Q̂t − θ̂t

)
,

N̂t+1 = δ

β
(B∗ − 1)

(
ψ̂t + η̂Sht − Q̂t − θ̂t

)+ N̂t ,

Q∗Q̂t = β(1− 1/κ)Q∗Q̂t+1 − ηγ (Sh∗)η̂Sht ,

Ŝht = 1− Sh∗

Sh∗
(
Q̂t − ψ̂t − N̂t + θ̂t

)
.
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Table A.3. Eigenvalues of matrix J

(i) 3.6542 0.9570 1.0214 0.9000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

(ii) 3.6578 0.9538 1.0249 0.9000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

(iii) 3.6614 0.9510 1.0281 0.9000

These equations provide the following autonomous dynamical system:

⎛⎜⎜⎜⎜⎜⎝
Q̂t+1

ψ̂t+1

N̂t+1

θ̂t+1

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q∗ + X∗

βQ∗(1− 1/κ)
− X∗

βQ∗(1− 1/κ)
− X∗

βQ∗(1− 1/κ)
X∗

βQ∗(1− 1/κ)
H∗(1− ηα∗)

�∗
1−H∗(1− ηα∗)

�∗
H∗ηα∗

�∗
H∗(1− ηα∗)

�∗
−F∗(1− ηα∗) F∗(1− ηα∗) 1− F∗ηα∗ −F∗(1− ηα∗)

0 0 0 ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

≡J

⎛⎜⎜⎜⎜⎜⎝
Q̂t

ψ̂t

N̂t

θ̂t

⎞⎟⎟⎟⎟⎟⎠ ,

where
α∗ ≡ (1− Sh∗)/Sh∗,
X∗ ≡ γ η(Sh∗)ηα∗,

H∗ ≡ B∗ − 1
B∗ ,

F∗ ≡ δ(B∗ − 1)
β

,

�∗ = 1− δ + δψ∗

δψ∗ .

Table A.3 reports the eigenvalues of matrix J, where “(i), (ii). . .” correspond to the calibration
scenario. This table shows that, in all three scenarios, the dynamical system has two eigenvalues
with absolute values less than 1. Thus, the impulse response function of each variable is uniquely
determined in all three cases, because the system has two state variables (Nt and θt) and two jump
variables (Qt and ψt).

Cite this article: Ohdoi R (2024). “Financial shocks to banks, R&D investment, and recessions.” Macroeconomic Dynamics
28, 999–1022. https://doi.org/10.1017/S1365100523000354
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