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The bi-stable dynamics of a one-degree-of-freedom disk pendulum swept by a flow and
allowed to rotate in the cross-flow direction is investigated experimentally. For increasing
flow velocity, a subcritical bifurcation is observed from a Pendulum state, characterised
by an increasing time-averaged pendulum angle with large amplitude fluctuations, to a
rotating state with a non-zero mean rotation velocity at a critical free stream velocity
UP2W . The rotating state, referred to as Windmill state, presents a strong hysteresis: once
initiated, it is sustained down to velocities UW 2P < UP2W before bifurcating towards the
Pendulum state. A thorough experimental characterisation of the dynamical features of
each state is reported, with a particular focus on the influence of the static yaw angle
of the disk β0 and the free stream velocity. In the Pendulum state, the system behaves
differently depending on whether β0 lies below or above the stall angle of the disk, with
more regular dynamics below. We demonstrate that the bifurcation between the Pendulum
state and the Windmill state is triggered by aerodynamic fluctuations, while the bifurcation
between the Windmill state and the Pendulum state is deterministic. A stochastic model
faithfully reproduces the dynamical features of both states, as well as the characteristics of
the bifurcations.

Key words: flow–structure interactions

1. Introduction
The pendulum is one of the most fundamental dynamical systems studied in physics and
engineering. Its simplicity and analogy with ubiquitous oscillatory systems in natural
and industrial environments make it a valuable model for understanding various physical
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phenomena. This is particularly the case in the field of fluid mechanics when a pendulum
is coupled with its surrounding fluid.

In quiescent fluids, the pendulum serves as a tool for introducing the added mass
concept (Stokes 1850; Neill, Livelybrooks & Donnelly 2007). Recently, the wake created
by underwater heavy pendulums (cylindrical in Mathai et al. (2019) and spherical in Gold
et al. (2024)) was found having a strong disturbing effect on the pendulum oscillation.

In fluid flows, additional complexity and intriguing dynamical behaviours are introduced
to the pendulum. A large volume of previous studies focused on the flow-induced
vibrations of underwater pendulums, extensively applied for underwater towing systems.
When the flow is in the direction of gravity, the dynamics of pendulums immersed in
two-dimensional (2-D) flowing soap films recently raised attention: an instability towards
a spontaneous oscillatory regime for flexible pendulums (Bandi et al. 2013), as well
as for rigid pendulums (Orchini, Kellay & Mazzino 2015), whose origin is attributed
to the galloping instability. When the flow is vertical to the direction of gravity, the
vortex-induced vibration (VIV) of a tethered 2-D cylinder with positive buoyancy was
investigated by Ryan et al. (2004, 2007) numerically and by Carberry & Sheridan (2007)
experimentally, highlighting a sudden transition from in-line to transverse oscillation with
increasing free stream velocity. This transition exhibits a strong coupling with a change in
the cylinder wake dynamics. The confinement ratio between the sizes of a 2-D tethered
cylinder and a water channel is found from Fani & Gallaire (2015) to have a strong
influence on the type of instability, with a transition from a confinement-induced instability
(Semin et al. 2012) to a confinement-induced divergence as this ratio decreases. With an
increase in geometrical complexity to three-dimensional (3-D) configurations, a tethered
sphere exhibits far more complex VIV, driven by multiple wake modes (Govardhan &
Williamson 1997; Rajamuni, Thompson & Hourigan 2019; Kovalev et al. 2020, 2022;
Kovalev, Eshbal & Van Hout 2022). Finally, the response of pendulums to oscillatory
flows and waves are important in the contexts of offshore structures and energy harvesting
systems (Bos & Wellens 2021).

In recent years, the interactions between pendulums and air flow have begun to receive
more attention. A thin-disk pendulum facing a flow and freely rotating in the flow direction
shows sudden transitions in pendulum angle with the incident flow velocity (Obligado, Puy
& Bourgoin 2013), caused by the sharp stall observed for 3-D geometries. These transitions
were later analysed in the framework of rare-event statistics (Gayout, Bourgoin & Plihon
2021). In the context of rotation in the cross-flow direction, a cube pendulum, mimicking
a cabin for cable transport with a bad aerodynamic design, is potentially subject to the
galloping instability (Myskiw et al. 2024).

Those previous studies enriched greatly our understanding on the fluid–structure
interactions of pendulum systems, showing typical pendulum dynamics with complex one-
or two-degree-of-freedom oscillations around a mean position. In the present work, we
focus on a thin-disk pendulum with one degree-of-freedom in the cross-flow direction,
presenting bi-stability with two stable states: the typical Pendulum state, reported in
previous studies and observed for low flow velocities, and a Windmill state observed at
high flow velocity presenting an unexpected autorotation behaviour (Lugt 1983). These
features, to the best knowledge of the authors, have never been investigated or revealed
before from an aerodynamic point-of-view. This study could raise potential interests for the
field of turbomachinery or wind-energy harvesting when the mass of the rotatory devices
is imbalanced due to manufacturing mistakes or structural damage (Ramlau & Niebsch
2009; Gong & Qiao 2012). In particular, we analyse in depth the influence of the yaw
angle of the disk on the features of both the Pendulum and the Windmill states.
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Figure 1. (a) Arrangement of the pendulum system in the test section. (b) Projection of the pendulum system
in the (y, z) plane illustrating the definition of the cylindrical coordinate system, where eφ and er represent the
unit vector along the azimuth (φ) and axial (r ) directions, respectively. (c,d) Zoomed view near the disk (c)
without and (d) with motion. The specific case at φ = 0◦ (for which eφ is parallel to y) is chosen in (c) and
(d) for better presentations of the static yaw angle (β0) and the dynamical yaw angle (δβ). The thickness of the
disk is magnified by a factor of 10 for clarity.

The paper is structured as follows. The experimental methodology is detailed in § 2.
Results in § 3 first present an overview of the dynamical states and their transitions in
§ 3.1, followed by a detailed investigation of the system dynamics in different states in
§ 3.2. These main results are further discussed in § 4, with the help of a simple stochastic
model, and are finally summarised in § 5.

2. Experimental set-up

2.1. Wind tunnel facility, pendulum system and measurement techniques
The experiments are conducted in a close-loop wind tunnel at ENS de Lyon. The
length of the test section having a 51 × 51 cm2 square cross-section is 4 m. At most
operating conditions, the turbulence intensity of the incoming flow is of the order of
2 %. In figure 1(a), an isometric view of the arrangement inside the test section is
shown. A Cartesian coordinate system is defined with x in the streamwise direction,
y in the horizontal direction and z in the vertical direction. An air-bushing system
(OAVTB16i04 from OAV Labs) is positioned at the centre of a plane 2 m downstream
of the inlet of the test section. It enables frictionless rotation of a shaft parallel to the flow
direction. A cylindrical carbon-fiber rod of diameter dc = 2 mm and length Lc = 33 cm
is attached perpendicularly to the shaft, in the transverse plane. At one end of the rod,
a thin aluminium disk is attached. It has a diameter of d = 4 cm and a thickness of
0.4 mm. The total mass of the pendulum is m = 2.73 g (1.21 g from the rod and 1.52 g
from the disk). The ensemble constitutes a simple one-degree-of-freedom pendulum
susceptible to rotation in a plane perpendicular to the mean free stream. As shown in
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figure 1(b), a cylindrical coordinate system (r , x , φ) is defined, with the origin O located
at the centre-of-rotation and φ being the angle between the pendulum and the vertical
axis z.

The blockage ratio of the whole pendulum system is calculated to be 1.2 %, making
further considerations on the blockage effect unnecessary. Furthermore, according to the
experiments by Ruiz et al. (2009) on a disk fixed to a wall, the disk wake was found to
be only slightly modified by the wall when the distance between the disk and the wall is
at the maximum value considered in their study: 1.75d (d is the diameter of the disk).
In addition, the experiments by Ramamurthy & Lee (1973) on 2-D cylinders (having
equilateral triangle or circular cross-section) suggest that the wall effect can be neglected
when the distance from the cylinder to the wall is larger than twice the characteristic
length of the cylinder. Therefore, the distance L from the centre of the disk to the pivot is
adjusted to 15 cm to have the distance between the disk and the wind-tunnel wall always
larger than 2d. Finally, calculated from the mass distribution around the centre-of-rotation,
the distance from the centre-of-mass to the pivot is l = 8.1 cm and the moment of inertia
is J = 4.51 × 10−5 kg m2. As will be presented in detail later, in the Pendulum state, the
pendulum oscillates around a non-zero equilibrium angle φ, which is due to the balance
between aerodynamic torque and the gravitational torque. By linearising the equation of
motion around a mean angle φ (will also be presented later in § 4.1), it can be found that

the natural frequency is f0 = 1
2π

√
mgl

J cos(φ), where φ is the mean pendulum angle and

g = 9.81 m s−2 is the gravitational acceleration. The frequency is at its maximum when
φ = 0 (without wind) and is calculated to be 1.1 Hz.

Based on the above-described experimental set-up, two control parameters are
considered in the present work.

The first parameter is the free stream velocity U∞, which is set by the rotation frequency
of the motor driving the fan of the wind tunnel and externally controlled using an analogue
output of a National Instrument multifunction I/O data acquisition (DAQ) module PXI-
6229. The aerodynamic conditions are monitored by a combination of measurements of
dynamic pressure, atmospheric pressure and temperature. They are measured at a location
30 cm upstream of the pendulum using a pitot tube and a thermocouple. In this work, we
consider a U∞ range from 1 m to 6.5 m s−1. This corresponds to a Reynolds number of
Re = U∞d/ν ∈ [0.3, 1.8] × 104 (ν the kinematic viscosity of air at working temperature)
based on the diameter of the disk d or Rec = U∞dc/ν ∈ [1.4, 9.2] × 102 based on the
diameter of the rod dc.

Furthermore, as shown by the zoomed view near the disk (figure 1c), the static yaw
angle β0 for the disk is the second control parameter. Five main static yaw angles β0 =
{30, 40, 50, 60, 70}◦ are considered in the present study.

For each case in the (U∞, β0) parameter space, the instantaneous pendulum angle
φ(t) is measured by a contactless digital encoder (Netzer DS-25 with 17-bit resolution)
integrated into the air bushing system. All the measurements are conducted at a sampling
rate of 2000 Hz. For the cases requiring statistical investigations, the data are recorded
for 240 s when the free stream velocity is measured to be steady. This duration spans
approximately 240 natural oscillation cycles of the pendulum, which is found to be
satisfactory for statistical convergence.

For a time-dependent variable X , the notation is defined as follows: X represents the
time-averaged value, σX denotes the standard deviation, and Ẋ and Ẍ indicate the first
and second time derivatives, respectively.
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Figure 2. Mean lift C0
L and drag C0

D coefficients of a static disk measured by Flachsbart (1932).

2.2. Quasi-steady equation of motion of the system
In the framework of flow-induced vibration (FIV), the ratio between the advective
frequency of the flow U∞/d (d is the characteristic length of the body in the cross-flow
direction) and the natural frequency of the system f0 is a crucial parameter indicating the
types of FIV that potentially occur. This parameter Ur = U∞/( f0d) is called the reduced
velocity. When f0 matches the vortex shedding frequency of the body, modal couplings
such as vortex-induced vibration potentially occur. This typically happens for reduced
velocities Ur ranging between 5 and 8 for 2-D bluff bodies (Blevins 1990). Furthermore,
motion-induced vibration such as galloping happens in a wider range of Ur , with the
lowest threshold governed by the mass and damping parameters of the system (Parkinson
& Brooks 1961). The quasi-steady theory introduced by Den Hartog (1932) is often used
for analysing the galloping instability, which is applicable typically when Ur > 20 (Blevins
1990).

For the parameter space of the present study, the reduced velocity Ur is calculated and is
found to be larger than the threshold Ur = 20. Therefore, we present in this section a quasi-
steady equation of motion of the pendulum. In addition, other non-stationary phenomena,
in particular added mass effects (proportional to relative acceleration and relative density
between the surrounding fluid and the pendulum), are also expected to be negligible owing
to the large density ratio between the pendulum and the surrounding air. We therefore
neglect all non-stationary contributions to the aerodynamic forces acting on it and simply
consider a quasi-steady approximation for the aerodynamic forces (and the subsequent
torques) acting on the disk and the rod.

First of all, the aerodynamic force acting on the disk is considered. As illustrated in
figure 1(d), when the pendulum is moving at an angular velocity φ̇, the velocity at the
centre of the disk is V = Lφ̇. This additional relative motion between the disk and the

surrounding air results in an apparent velocity having a magnitude of U =
√

U 2∞ + (Lφ̇)2

and a dynamic yaw angle of β = β0 + δβ with δβ = arctan(
Lφ̇
U∞ ). The aerodynamic force

components are the drag force FD , acting in the direction of U , and the lift force FL , acting
perpendicular to the direction of U . They are defined as

FD = 0.5ρU 2SCD, FL = 0.5ρU 2SCL , (2.1)
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where ρ is the density of the air, S = πd2/4 is the area of the disk, CD and CL are the
drag and lift coefficients, respectively. We emphasise that the aerodynamic coefficients
CL and CD considered here do not display complex transient behaviour and follow quasi-
statically the temporal evolution of the dynamic yaw angle β(t), i.e. CL = C0

L(β(t)) and
CD = C0

D(β(t)) with C0
L and C0

D the values of the aerodynamic coefficients obtained
from the time-averaged force coefficients of a fixed disk at varying yaw angle as displayed
in figure 2 (Flachsbart 1932; Satheesh et al. 2022). Furthermore, the aerodynamic force
component along the direction of motion Fφ can be determined by

Fφ = FLcos(δβ) − FDsin(δβ) = 0.5ρU 2SCφ, (2.2)

where Cφ = CLcos(δβ) − CDsin(δβ) is the force coefficient along the direction of motion.
The aerodynamic torque from the disk Γφ then reads

Γφ = Fφ L . (2.3)

Moreover, the aerodynamic torque from the cylindrical rod is also expressed. Along the
rod, the local velocity at a position with a distance r from the pivot is r φ̇. The magnitude of
the apparent velocity Uc and the dynamical yaw angle βc at this position are expressed as

Uc =
√

U 2∞ + (r φ̇)2 and βc = δβc = arctan(
r φ̇
U∞ ), respectively. The local force coefficient

along the direction of motion Cφc is determined by a combination of the local lift CLc =
CLc(βc(t)) and drag CDc = CDc(βc(t)) coefficients:

Cφc = CLccos(δβc) − CDcsin(δβc). (2.4)

For Reynolds number of a few hundreds, a 2-D circular cylinder has a mean lift
coefficient C0

Lc ≈ 0 and a mean drag coefficient of C0
Dc ≈ 1 according to the measurements

by Wieselsberger (1922) and Tritton (1959). They are not dependent on the yaw angle.
Following the quasi-steady approximation, we will consider CLc = C0

Lc and CDc = C0
Dc

in this equation.
For an infinitesimal segment of the rod dr at a distance r from the pivot, the local

aerodynamic torque contribution dΓφc is

dΓφc = 0.5ρU 2
c dcCφcr dr. (2.5)

By integrating dΓφc along the exposed part of the rod to the free stream, the
aerodynamic torque on the rod is expressed as

Γφc =
∫ rmax

rmin

dΓφc. (2.6)

Taking into account the aerodynamic torques derived above and the gravitational torque,
the equation of motion of the system reads

J φ̈ = −mglsin(φ) + Γφ + Γφc. (2.7)

This equation of motion, with the expression of the torques given by relations (2.3)
and (2.6), will be used in § 3 to explain the dynamical properties measured for the
pendulum. The relative importance of the various torque terms will also be discussed for
the Pendulum and Windmill states. Finally, in § 4, this equation will be the main building
block of a simple model of the observed dynamical features.
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Figure 3. For configuration β0 = 40◦: (a, c) time evolution of the pendulum angle φ and the angular velocity
φ̇, the free stream velocity U∞ is first increased and then decreased in a stepwise manner (
U∞ = 0.7 m s−1,
step length Tstep = 120 s); (b, d) evolution of the mean pendulum angle φ and the mean angular velocity φ̇ with
increasing (�, coloured in red) and decreasing (�, coloured in blue) U∞, UP2W and UW 2P denote respectively
the transition U∞ from Pendulum to Windmill state and from Windmill to Pendulum state.

3. Experimental investigation of the dynamics
In this section, we present the main important features observed experimentally regarding
the pendulum behaviour at various yaw angles when the free stream velocity is cycled (first
increased then decreased). We first show a hysteretic behaviour with the existence of two
main states in § 3.1, namely the Pendulum and Windmill states, and then we investigate
the angular dynamics of the system in each of these states in § 3.2.

3.1. Overview of the evolution of the dynamics with the free stream velocity
We present in figure 3(a) the time evolution of the pendulum angle φ for the configuration
β0 = 40◦, when the free stream velocity U∞ is varied step by step (
U∞ = 0.7 m s−1).
Here, U∞ is first increased (coloured in red) and then decreased (coloured in blue) in a
stepwise manner (step length Tstep = 120 s). The mean pendulum angle φ increases with
U∞ for U∞ < 5 m s−1 (i.e. 0 < t < 960 s in figure 3a). This is shown also in figure 3(b)

by the evolution of the mean pendulum angle φ with U∞ with a smaller U∞ step size
(
U∞ = 0.1 m s−1). In this state, as shown in figure 3(a), the angular fluctuations around
the mean pendulum angle φ increase with U∞. As U∞ is further increased above a critical
value UP2W � 5 m s−1 (960 < t < 1200 s), the pendulum first moves to the uppermost
location (φ = 180◦) and then starts to rotate (see the inset in figure 3a). The rotation of
the pendulum persists with decreasing U∞ (1200 < t < 2040 s), and then stops when U∞
is further decreased below a critical value UW 2P � 2 m s−1 (t > 2040 s). The system then
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Figure 4. (a) Time evolution of φ̇ for configuration β0 = 40◦, U∞ is first increased and then decreased in
a continuous manner at a constant speed |dU∞/dt | = 0.015 m s−2. (b) For approximately 100 repetitions
(each β0 configuration) of the procedure in (a), variations of the mean 〈U 〉 and standard deviations σU of
the transition velocities (UP2W and UW 2P ) with β0.

recovers the features of the pendulum state observed for 0 < U∞ < UP2W . We refer to the
non-rotating state as the Pendulum state and to the rotating state as the Windmill state,
and hence the notation UP2W and UW 2P for the critical velocities for which transitions are
observed between these two states. Note the fact that UW 2P < UP2W reveals a hysteretic
behaviour, with a bi-stability when UW 2P < U∞ < UP2W , further explored in the rest of
this article.

Figure 3(c) shows the time evolution of angular velocity φ̇, computed as the time
derivative of the signal φ(t) displayed in figure 3(a). The evolution of the mean angular
velocity φ̇ with U∞, computed for each step of constant free stream velocity U∞, is plotted
in figure 3(d). As U∞ increases from 0 (red points and red arrows in figure 3d), we first
observe that the mean angular velocity remains equal to zero, i.e. the system does not rotate
and is in the Pendulum state. The abrupt transition to the rotating Windmill state, with a
finite average value of the angular velocity, is observed for the velocity UP2W � 5 m s−1.
Starting from the Windmill state, and as U∞ is decreased (blue points and blue arrows in
figure 3d), the Windmill state is sustained over the bi-stable zone with decreasing values
of φ̇, until a transition towards the Pendulum state as U∞ = UW 2P � 2 m s−1 < UP2W for
the configuration with β0 = 40◦.

Before presenting a detailed description of dynamics in each state in § 3.2, we first focus
here on the dependencies of the critical velocities UP2W and UW 2P , and of the bi-stability
range on the static yaw angle β0. The two critical transition velocities are statistically
quantified for given values of the static yaw angle β0 (between 30◦ and 70◦) by using a
different experimental protocol. Instead of adjusting U∞ in a stepwise manner, we first
increase and then decrease it continuously at a constant rate of |dU∞/dt | = 0.015 m s−2.
As shown in figure 4(a), the critical velocities UP2W and UW 2P are then determined
from the abrupt transitions detected on the signal of angular velocity φ̇. For each β0
configuration, approximately 100 individual samples of UP2W or UW 2P are then acquired
by repeating the protocol. In figure 4(b), the ensemble-averaged values 〈UP2W 〉 and
〈UW 2P〉 of the samples are summarised for different β0 configurations. We note that
〈UP2W 〉 is always larger than 〈UW 2P〉. This means that the bi-stable region exists for all
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the β0 configurations considered in this study. Furthermore, we observe that the velocity
range of the bi-stable region gradually decreases with increasing β0. We also observe that
while the Windmill-to-Pendulum critical velocity UW 2P is a monotonically increasing
function of the yaw angle β0, the Pendulum-to-Windmill critical velocity UP2W is non-
monotonic and has a minimum for β0 � 50◦, which is close to the stall angle of an
inclined disk (Flachsbart 1932). The existence of this minimum point suggests that the
Pendulum-to-Windmill transition appears to be facilitated near stall.

The standard deviation of the transition velocities σU (estimated from the variability
of UP2W and UW 2P over the 100 transitions detected for each configuration) is also
presented in figure 4(b), which gives information on the nature of the transitions. Here,
σU is magnified by 10 times (10σU ) in the figure to compare different β0 configurations.
For all the β0 configurations, the standard deviation of UP2W is larger than that
of UW 2P . Furthermore, we notice that the standard deviation of UP2W is maximum
when 〈UP2W 〉 is minimum (for β0 � 50◦). However, the standard deviation of UW 2P
increases monotonically with increasing β0. Altogether, these observations suggest that
the Pendulum-to-Windmill transition is eased when the static yaw angle β0 is close to
the stall angle of the disk and its triggering may be promoted by enhanced aerodynamic
fluctuations in such a configuration. However, no particular connection is observed
between stall/fluctuations and the Windmill-to-Pendulum transition, suggesting that the
transition from the Windmill state to the Pendulum state may be more deterministic.

The different transition behaviours will be further discussed and explained in § 4 with
the help of a stochastic model describing the system dynamics. This protocol described
above is used as a compromise between a reasonable duration of the experimental
campaign and enough samples to quantify the transition velocities. However, it is
important to note here that such a protocol may induce non-stationary effects, which have
been shown to influence the apparent threshold of saddle-node bifurcation (Kogan 2007;
Kim, Harne & Wang 2017; Kim & Wang 2018). Therefore, for the rest of the paper, we
focus on the protocol using a stepwise evolution of U∞ rather than a sweeping variation
of U∞. We make sure that the duration of the step is sufficient to reach a permanent state.

3.2. Detailed dynamical features of the Pendulum and Windmill states
The dynamics of the system in the Pendulum and Windmill states, regarding the mean
value and the temporal fluctuation of the angular position and angular velocity, are now
described separately.

3.2.1. Dynamics of the Pendulum state
Mean pendulum angle. The evolution of the mean angle φ with the free stream velocity
U∞ is shown in figure 5(a) (restricted to the Pendulum state, i.e. for U∞ < UP2W (β0)).
For all β0 configurations, φ gradually increases as U∞ increases. However, the increase
rate is strongly dependent on the value of β0. This is better depicted in figure 5(b),
showing the variations of φ with β0 at four different free stream velocities U∞ =
{1.09, 2.15, 2.94, 3.82} m s−1 marked by the vertical dashed lines in figure 5(a).

Figure 5(b) shows that as U∞ increases, a sudden change in slope at β0 � 50◦
progressively emerges. In addition, a peak at 55◦ < β0 < 60◦ becomes more obvious.
This trend can qualitatively be interpreted in the frames of the quasi-static approximation
for the aerodynamic forces acting on the disk and of the stall transition of the lift
coefficient of a thin disk. Indeed, in the quasi-static approximation presented in § 2.2,
the average equilibrium position of the system in the Pendulum state can be expressed by
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Figure 5. Pendulum state: (a) variations of φ with U∞ for different β0 configurations; (b) variations of φ

with β0 at different U∞ = {1.09, 2.15, 2.94, 3.82} m s−1 marked by dashed lines in (a), mean pendulum angle
calculated from (3.3) using reference cross-flow force coefficient for an inclined static disk from Flachsbart
(1932) are shown by lines for comparison.

the time-averaged torque balance derived from (2.7):

Γφc + Γφ = mglsin(φ). (3.1)

The mean torque of the rod holding the disk Γφc is neglected first, as for symmetry
reasons, it is not expected to have any net average contribution. Furthermore, the mean
aerodynamic torque from the disk Γφ = 0.5ρU 2Cφ(β)SL can be approximated by the
main lift contribution associated with the mean free stream 0.5ρU 2∞CL(β)SL , owing to
the fact that we experimentally noticed that the maximum velocity of the pendulum is
one order of magnitude smaller than the free stream velocity (max(Lφ̇)� 0.1U∞), hence
cos(δβ) � 1 and sin(δβ) � 0. The equilibrium condition can then be considered as the
balance between the torque of weight and the aerodynamic lift torque from the mean free
stream as a reasonable dominant aerodynamic contribution (given that the pendulum is
constrained here to oscillate in a plane perpendicular to the free stream):

0.5ρU 2∞CL(β)SL = mglsin(φ). (3.2)

Here, we have also used the approximation sin(φ) ≈ sin(φ) (which is expected since
we consider small excursions from the equilibrium position and has been experimentally
verified to be accurately satisfied). It should also be noted here that CL(β) can be
linearised around the static yaw angle β0 as CL(β0) + δβ dCL

dβ
|β0 , where the second term is

negligible except possibly near stall conditions where the lift coefficient may experience
abrupt dependencies on the yaw angle (i.e. |dCL

dβ
| may be arbitrarily large as shown in

figure 1e). Overall, it is therefore expected that for a given experimental configuration in
the parameter space (β0, U∞), the average equilibrium condition in the Pendulum state
shall be reasonably given by the balance between the torque of the weight and the torque
of the lift from the main free stream U∞ at the static yaw angle β0,

0.5ρU 2∞CL(β0)SL = mglsin(φ), (3.3)
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Figure 6. Pendulum state: (a, b) evolution of the standard deviation of the pendulum angle σφ with
U∞ for β0 ≤ 50◦ (top) and for β0 ≥ 50◦ (bottom); (b) variations of σφ with β0 at different U∞ =
{1.09, 2.15, 2.94, 3.82} m s−1 marked by dashed lines in (a); (c) time evolution of the pendulum angle
fluctuation φ′ = φ − φ and (d) the corresponding power spectral density (PSD) for several values of β0 at
U∞ = 3.82 m s−1.

except possibly when the static yaw angle lies in the vicinity of stall conditions. This
balance is tested in figure 5(b), where we extract the value of φ using (3.3) with the U∞
values and the reference measurements of the lift coefficient of a fixed disk (Flachsbart
1932). The agreement with experimental measurements is overall quantitatively very good,
except in the vicinity of stall where only a qualitative trend is recovered. However, this
qualitative agreement confirms the fact that the sudden increase of the mean angular
position φ observed in the vicinity of stall is a signature of the strong increase of the
static lift coefficient for β0 between 50◦ and 60◦.

Fluctuations of the pendulum angle. The increase of the fluctuations of the pendulum
angle around the time-averaged value with U∞ was briefly introduced in figure 3(a).
Figure 6 displays a detailed characterisation of these angular fluctuations. The evolution of
the standard deviation of the pendulum angle σφ with the free stream velocity U∞ is first
shown in figure 6(a). For all the configurations, an increase of σφ with U∞ is observed.
However, the amplitude of the fluctuations strongly depends upon the value of the yaw
angle β0. The configuration β0 = 50◦ (in the vicinity of stall) presents large amplitude
fluctuations, with σφ reaching ∼ 15◦. For all other configurations, the standard deviation
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Figure 7. Pendulum state: (a) variations of the PSD of the pendulum angle with U∞, (b) the same spectra as
(a) but plotted against f/ f0 ( f0 is the natural frequency of the pendulum).

σφ is below 10◦. Refined evolution of σφ with the static yaw angle β0 is presented in
figure 6(b) for four different free stream velocities U∞ = {1.09, 2.15, 2.94, 3.82} m s−1

as marked by vertical dashed lines in figure 6(a). The fluctuation level sharply rises in
the vicinity of stall for β0 ≈ 50◦, in particular for the highest values of the free stream
velocity. As will be discussed later in § 4.3, this non-monotonic dependency of pendulum
angle fluctuation on β0 is important in triggering the transition from the Pendulum to the
Windmill state and, therefore, is crucial in setting the Pendulum-to-Windmill transition
velocity shown before in figure 4(b).

The time series of the pendulum angle fluctuation φ′ = φ − φ for different values of
β0 at U∞ = 3.82 m s−1 are reported in figure 6(c). For configurations with β0 ≤ 50◦, a
clear signature of the natural frequency of the pendulum is observed, with phases of quiet
periods alternating with more intense fluctuations. This translates in the presence of a
strong peak at ∼ 1 Hz on the corresponding power spectral density (PSD) in figure 6(d).
However, the signature of the natural frequency oscillations is significantly damped for
the configurations with β0 > 50◦ and the time evolution appears more random. This is
also evident in the PSD where the peak at ∼ 1 Hz observed for β0 ≤ 50◦ configurations is
progressively reduced. For configuration β0 = 70◦, the peak is not distinguishable with a
flat PSD below f = 1 Hz, characteristic of large-scale random dynamics with no dominant
frequency.

The evolution of the PSD with U∞ is shown in figure 7(a) for three values of β0.
For all the configurations above the peak at f ≈ 1 Hz, the PSD decreases rapidly as
f −5 and then as f −2. This suggests that the system efficiently dissipates high-frequency
fluctuating energy. Furthermore, the oscillation peak at f ≈ 1 Hz is observed for all
the cases with β0 ≤ 50◦, while it begins to emerge with reducing U∞ for configuration
β0 = 70◦. Finally, a collapse of the peaks is observed in figure 7(b) when the frequency is
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Figure 8. Windmill state: (a) evolution of φ̇ with U∞ for different β0 configurations, see text for details;
(b) comparison of the experimental results with the prediction neglecting the drag of the rod tan(β0) =
U∞/(Lφ̇). Time evolution of (c) the rotation speed φ̇ and (d) the angular acceleration φ̈ for the cases
highlighted by arrows in (a). Inset of (c) shows the evolution of φ̇ against φ for five rotation cycles.

rescaled by the natural frequency of the pendulum f0 = 1
2π

√
mgl

J cos(φ) (which depends

on the equilibrium angles φ), showing that the fluctuations of the pendulum angle are
mainly driven by its natural frequency.

3.2.2. Dynamics of the Windmill state
Average rotation rate. For all the cases in the Windmill state, the evolution of the
mean rotation velocity φ̇ with the free stream velocity U∞ is shown for different β0
configurations in figure 8(a). We observe that at high free stream velocities, the mean
rotation velocity φ̇ grows linearly with U∞, with a slope that increases when the static yaw
angle β0 decreases. This linear behaviour is lost as the free stream velocity is decreased and
the mean rotation velocity reduces below approximately 10 rad s−1, when the Windmill
state becomes unsustainable and the system returns to the Pendulum state.

We will now explain the origin of the linear dependency of φ̇ on U∞. This can be
interpreted by writing the time-averaged torque balance derived from (2.7):

Γφ + Γφc = mglsin(φ) = 0. (3.4)
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The mean gravitational torque mglsin(φ) is zero owing to its periodicity in the Windmill
state. This mean torque balance simply translates the equilibrium between aerodynamic lift
acting on the disk (included in Γφ) and the aerodynamic drag, part of which acts on the
disk (and is included in Γφ) and on the cylindrical rod holding it (represented by Γφc).
Based on this force balance, the linear dependency of φ̇ on U∞ can be simply inferred
for this balance by noting that, if fluctuations of φ̇ (and hence of the dynamical yaw angle
β = β0 + δβ) are neglected, then the total average aerodynamic torque Γφ + Γφc can be
written as a sole function of β0 and Lφ̇/U∞ (and of the fixed geometrical parameters of
the system: L , Lc, d and dc). The balance in (3.4) therefore reduces to solving

fgeom(Lφ̇/U∞, β0) = 0, (3.5)

where fgeom is a function that depends on the system geometry. For a given value of the
static yaw angle β0, it trivially follows that φ̇ is linearly proportional to U∞. The function
fgeom cannot be derived analytically, but (3.5) can be solved numerically for all values of
β0 explored experimentally. These solutions are shown as dashed lines in figure 8(a).
We note that at relatively high angular velocities (φ̇ > 10 rad s−1), the experimental
results follow nicely the linear relationship, suggesting that the rotation velocity φ̇ can
be considered as a constant for these cases. This argument will be further justified later by
looking at the time evolution of φ̇ over the different experimental configurations.

Before exploring the variability of the rotation rate in the next paragraph, we briefly
discuss here the role of the drag on the cylindrical rod in the average rotation rate. The
aerodynamic torque from the rod Γφc may indeed seem negligible at first sight, due to its
small diameter (5 % of the diameter of the disk). However, this is not the case. Indeed,
by neglecting the aerodynamic torque from the rod in (3.4) and then in (3.5), the simpler
condition Γφ = 0 connects the rotation velocity φ̇ and the free stream velocity U∞ via
the so-called velocity triangle condition, a terminology used very often in the field of
turbomachinery (Venkanna 2009; Turton 2012), which here simply results in

φ̇ = U∞
tan(β0)L

. (3.6)

In other words, this condition expresses the idea that a steady rotation state corresponds
to a vanishing of the dynamic yaw angle β for the disk considering its relative motion
to surrounding air flow. The experimental results are compared in figure 8(b) with this
simplified scenario. We observe that the linear behaviour predicted for the angular rotation
relative to the free stream velocity when the drag on the cylindrical rod is neglected
overestimates the actual average rotation speed φ̇, which is measured to be always smaller
than the situation matching the velocity triangle condition. This difference increases with
increasing U∞ when β0 is fixed, showing a gradually enhanced influence from the rod on
the mean rotation speed.

Variability of the rotation rate. For three cases highlighted by arrows in figure 8(a), the
time series of the instantaneous angular velocity φ̇(t) are shown in figure 8(c). This clearly
shows that the rotation speed is not steady, but subject to a strong regular modulation. The
amplitude of this modulation is found to increase when reducing U∞. In addition, the inset
of figure 8(a) shows that this modulation occurs every revolution of the pendulum and is
due to the effect of gravity on the unbalanced pendulum: the torque of the weight tends
to accelerate the pendulum when it moves downwards and to decelerate it when it moves
upwards.
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Figure 9. Evolution of the standard deviation of the angular velocity σφ̇ in the Windmill state (a) as a function

of U∞,and (b) as a function of φ̇.

To further quantify the effect of gravity, the instantaneous angular acceleration φ̈(t) is
shown in figure 8(d) for the three cases presented in figure 8(c) and is compared with the
instantaneous contribution of gravity mgl sin φ(t)/J . The quasi-perfect superposition of
both quantities shows the leading role of gravity on the rotation modulation.

For all the cases in the Windmill state, the modulation effect of gravity is further
investigated by showing the standard deviation of the angular velocity σφ̇ in figure 9(a). It
is noticed that σφ̇ presents a hyperbolic relationship with U∞. It is then found in figure 9(b)

that the mean rotation velocity φ̇ is the correct scaling parameter for σφ̇ , which collapses

all the β0 configurations. Such a hyperbolic relationship σφ̇ ∼ 1/φ̇ may be interpreted by
neglecting the effect of aerodynamics on the pulsation of rotation velocity. Under such
a situation, the maximum (minimum) rotation velocity φ̇max (φ̇min) happens at φ = 0

◦

(180
◦
). The relationship between these two rotation velocities is linked by the kinetic

energy balance

0.5J φ̇2
max − 0.5J φ̇2

min = mg2l, (3.7)

translating the transfer between kinetic and potential energy over each pendulum
revolution. We approximate the time evolution of φ̇ as a sine wave, which is a rough
approximation when the mean rotation velocity is smaller than 10 rad s−1 (see figure 8c
for the smallest velocity). The balance between the kinetic and the potential energy is then
rewritten as

2mgl = 0.5J (φ̇max − φ̇min)(φ̇max + φ̇min) = 0.5J (2φ̇)(2
√

2σφ̇). (3.8)

This hyperbolic relationship σφ̇ = mgl/(
√

2J φ̇) follows, in good agreement with the
experimental results as shown in figure 9(b). Interestingly, the transfer between potential
and kinetic energy implies a simple relation between the average and the standard deviation
of the rotation velocity: φ̇σφ̇ = Kgeom , where Kgeom is a constant that depends on the
geometry of the system. A slight difference between the relationship and the experimental
results is noticed when φ̇ < 10 rad s−1. This is probably because φ̇ does not evolve in a
sine wave as expected when making the approximation.
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We have shown that in the Windmill state, the average rotation rate is primarily driven
by aerodynamic forces (through (3.4)), while the pulsation of the rotation velocity is
mainly driven by the modulation effect of gravity, which is gradually weakened as the
mean rotation velocity is increased. At small rotation velocity φ̇ < 10 rad s−1, the strong
modulation effect leads to a large variation in φ̇. The variation in φ̇ has a strong effect on
the mean rotation velocity φ̇ and cannot be simply neglected. However, at large rotation
velocity φ̇ > 10 rad s−1, the modulation effect is limited and the rotation velocity can
be reasonably considered as steady, which justifies the analysis made in the previous
paragraphs to infer the linearity between φ̇ and U∞.

4. Stochastic modelling of the dynamics
This section is dedicated to a discussion of the main results presented, in particular
regarding the stochastic and deterministic behaviours of the system, its bifurcations and
bi-stability. In particular, the results presented in previous sections show that while
the dynamics of the system in the Pendulum state may exhibit erratic fluctuations, the
Windmill state shows much more regular dynamics. The possible influence of such
random fluctuations on the dynamics in each state and the transitions between states
therefore need to be addressed. With this perspective, we propose a simple model for
simulating the role of random noise on the system dynamics. Based on this model, we
then give further insights into the state transitions of the system.

To address the possible role of noisy fluctuations (whose origins may lay in the turbulent
wake of the disk, or in incident fluctuations of the free stream), we consider the equation
of motion already introduced in § 2.2, to which we add a random source term σnξ :

J φ̈ = −mgl sin(φ) + Γφ + Γφc + σnξ. (4.1)

Here, σn is the noise intensity, and ξ is a random delta correlated signal with normal
distribution and a standard deviation σξ = 1. Using the angular dependency of the quasi-
static aerodynamic force coefficients from Flachsbart (1932) for the disk and a mean
drag coefficient CDc = 1 for the cylindrical rod (Wieselsberger 1922; Tritton 1959), this
stochastic model is now examined in the Pendulum and Windmill states, respectively.

4.1. Modelling the features of the Pendulum state
In the Pendulum state, the stochastic model is further linearised to investigate the response
of the system to noise, as proposed recently by Myskiw et al. (2024) for a cube pendulum.
Briefly, from the average equilibrium position φ, the consideration of a small angular
displacement ε = φ − φ allows the linearisation of (4.1) which gives

ε̈ + ρSL2U∞
2J

H ε̇ + mgl

J
cos(φ)ε = σnξ

J
, (4.2)

where H is the aerodynamic damping coefficient and is written as

H = CD(β0) − dCL

dβ

∣∣∣∣
β0

+ dc
∫ rmax

rmin
r2dr

SL2 CDc. (4.3)

Note here that the aerodynamic force from the cylindrical rod is taken into account.
The relationship between H and the static yaw angle β0 is shown in figure 10(a)

calculated using the mean aerodynamic coefficients for the disk from Flachsbart (1932)
(see figure 1e).
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Figure 10. Modelling of the dynamics in the Pendulum state: (a) reduced aerodynamic damping coefficient
H of the system calculated using the mean aerodynamic coefficients of the disk for different static yaw
angle β0 from Flachsbart (1932) (see figure 2e); (b) time evolution and (c) the corresponding spectrum from
the nonlinear stochastic model (4.1) and experiments for different β0 at U∞ = 3.82 m s−1, different noise
amplitudes σn are considered for the model.

Let us first discuss the β0 ranges, β0 < 50◦ and β0 > 50◦, for which the aerodynamic
damping H is positive. A small value of H is observed for β0 < 50◦, while larger values are
obtained for β0 > 50◦. This is mainly driven by the sign of dCL

dβ
|β0 which reverses at stall.

This difference in aerodynamic damping level explains the different angular responses
shown before in figure 6.

In the vicinity of stall, the sharp evolution of CL with β0 leads to a negative damping
coefficient H when estimated from static aerodynamic coefficients (Flachsbart 1932). This
suggests that the system is unstable when β0 is close to the stall angle and is potentially
subject to the galloping instability (Den Hartog 1932, 1956). This is in accordance with
the experimental measurements shown in figure 6(b), where a peak in the pendulum angle
fluctuations is noticed near stall. However, we note that the response of the system at
β0 = 50◦, as shown before in figure 6(c), although it presents important oscillations at the
natural frequency, is still very different from the typical highly regular galloping response
at high reduced velocities (Zhao, Hourigan & Thompson 2018; Zhang et al. 2024). We
suggest that this difference is primarily caused by the strong flow unsteadiness near stall,
reminiscent of the dynamic stall for 2-D aerofoils (McCrosky 1981; Mulleners & Raffel
2013). Preliminary measurements suggest the existence of dynamical stall for a forced
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oscillating disk. Therefore, a description of the dynamics near stall does require accurately
modelling the unsteadiness of the aerodynamic coefficients, which is beyond the reach for
the present investigation. In the following, we will focus on the modelling of pendulum
dynamics away from stall.

Now, we focus in figure 10(b) on the stochastic modelling of the system dynamics in
the Pendulum state for β0 = 40◦ and 60◦, respectively below and above the stall angle.
Figure 10(b) displays the experimental time series of the pendulum angle fluctuation φ′ =
φ − φ as well as the results of the numerical simulations of the stochastic model (4.1) in the
absence and in the presence of noise. The simulations are initialised by starting from φ =
0◦ and φ̇ = 0 rad s−1 mimicking the experimental situation when the free stream velocity
U∞ is increased from zero. A proper value of the noise intensity σn is adjusted to ensure
that the simulated fluctuations of the pendulum angle σφ have the same standard deviation
as in the experiments, which is of the order of σn ∼ 0.1mgl. As expected, a finite level of
noise is required to observe fluctuations on the simulations reported in figure 10(b), with
a noise amplitude of the order of the fluctuations of the gravitational term mglsin(φ). We
note that the fine-tuned noise level, σn , is doubled for the configuration β0 = 60◦ compared
with β0 = 40◦. This is consistent with previous observation by Obligado et al. (2013) using
a disk pendulum free to rotate in a plane parallel to the free stream, showing a greater
sensitivity of aerodynamic torque to free stream turbulence in configurations with β0 ≥ 60◦
compared with those with β0 ≤ 40◦. Finally, in figure 10(b), we note that the relatively
more regular (random) oscillation for the β0 = 40◦ (60◦) configuration is well simulated.
This is further confirmed by the nice collapse in the PSD of the angular fluctuations shown
in figure 10(c), in particular, regarding the damping of the natural frequency peak for
β0 = 60◦ compared with the case β0 = 40◦.

4.2. Modelling the dynamics in the Windmill state
Let us first recall that, in the Windmill state, the variation of the gravitational term
mglsin(φ) due to the rotation is one order of magnitude higher than that in the Pendulum
state, while we expect the aerodynamic fluctuations to be of the same order of magnitude
for both states. We checked that the dynamical features in the Windmill state are correctly
reproduced in the absence of the noise term in (4.1), thus leading to a deterministic
model for the Windmill state. The difference between a deterministic simulation and a
stochastic simulation (with a small noise amplitude) leads to no observable difference in
the time evolution of the rotation velocity. All simulations reported in the present section
are therefore deterministic (i.e. σn = 0 in (4.1)).

The experimental results in the Windmill state previously reported in figures 8(a) and
8(c) are reproduced in figure 11 and are compared with the simulation results. The initial
condition for the simulations is set to φ = 0◦ and φ̇ = 60 rad s−1, which is similar to the
experimental situation when U∞ is gradually decreased. For all the cases in the Windmill
state, we note that the model captures the rotatory dynamics very adequately. Figure 11(a)

highlights the capacity of the model to reproduce the instantaneous evolution of the
rotation speed and figure 11(b) shows that the time-averaged mean angular velocity φ̇

is also very well captured by the model. The fact that a deterministic model reproduces
all the features of the Windmill state suggests that, experimentally, the dynamics in the
Windmill state are more immune to the presence of noise due to aerodynamics, which is
in accordance with the more deterministic nature of the Windmill-to-Pendulum transition
measured in figure 4. We will further explore in the next subsection the nature of the
transitions between Pendulum and Windmill states.
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Figure 11. Modelling of the dynamics in the Windmill state: (a) time evolution of φ̇ and (b) evolution of the
mean rotation velocity φ̇ as a function of U∞ from the nonlinear stochastic model (4.1) and experiments. The
cases shown in (a) are highlighted by arrows in (b).

4.3. Nature of the transitions between the Pendulum and the Windmill states
We start analysing the Pendulum-to-Windmill transition by neglecting first the fluctuations
of the angular position of the pendulum around its equilibrium position (i.e. assuming
φ̇ = 0), hence in a deterministic scenario of the transition. This assumption (which will be
further discussed below) may appear reasonable at first sight since the experimental data
in the Pendulum state shows that, though the spectral content of the fluctuations is rich (as
previously illustrated in figure 10), the maximum velocity of the pendulum oscillations is
one order of magnitude smaller than the free stream velocity (max(Lφ̇) ∼ 0.1U∞). Under
this assumption, we consider the equilibrium scenarios in the Pendulum state sketched in
figure 12(a) for different mean free stream conditions. When U∞ = 0 (no aerodynamic
torque is exerted on the disk, Γφ = 0), the system has two equilibrium positions: a
stable one φs = 0 and an unstable one φu = π . As U∞ increases, the aerodynamic forces
gradually move the two equilibrium positions towards π/2. Indeed, when the mean
aerodynamic force is smaller than the weight torque (Γφ < mgl), the two equilibrium
positions are φs = arcsin(Γφ/(mgl)) and φu = π − φs . When the aerodynamic force
attains the threshold Γφ = mgl, the two solutions collide and a saddle-node bifurcation
is expected towards the Windmill state, as no fixed equilibrium exists when the mean
aerodynamic torque exceeds the weight torque, with Γφ > mgl.

In this deterministic transition scenario, the Pendulum state is sustained if the pendulum
locates around φs and the transition to Windmill state should occur for the deterministic
critical velocity U∞ = U det

P2W such that Γφ = mgl and φ = π/2. However, as reported
in figure 5(a), it is experimentally observed that the transition to the Windmill state
is systematically anticipated compared with this scenario and occurs for experimental
conditions at which the mean angular position prior to transition is φ < π/2, hence the
actual transition threshold UP2W < U det

P2W . This reflects the non-deterministic nature of the
Pendulum-to-Windmill transition and the triggering role of angular fluctuations to promote
oscillations passing the unstable position of the pendulum even if the conditions are not
met for the stable and unstable steady equilibrium points to collide at π/2.

The relevance of this scenario is supported by figure 12(b), which represents the
temporal signal of angular position fluctuations for two different values of the mean free
stream such that U∞ < UP2W and U∞ = UP2W (for the case β0 = 40◦). The horizontal
solid lines in these plots represent respectively the average stable equilibrium position
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Figure 12. (a) Stable φs and unstable φu fixed points for increasing mean aerodynamic moments F∗
φ L (or

equivalently increasing U∞) from top to bottom in the Pendulum state. (b) Time evolution of the pendulum
angle φ for β0 = 40◦ (left) below and (right) at the Pendulum-to-Windmill transition velocity UP2W . (c)
Evolution of max(φ)/(π − φ) with U∞ for all available experimental cases in the Pendulum state. (d) Minimum
of the angular velocity min(φ̇) in the Windmill state for all experimental cases and for the model.

φ and the average corresponding unstable position π − φ. It can be seen that below
the threshold (U∞ < UP2W ), the stable and unstable equilibrium positions are separated
enough to prevent the angular fluctuations of the pendulum around its stable position to
approach the unstable position. The transition to the Windmill state occurs at the critical
velocity U∞ = UP2W for which the stable equilibrium position φ < π/2 (meaning that
UP2W < U det

P2W ) and the peaks of fluctuations do approach the unstable position. The
ansatz can therefore be formulated that the condition for the transition can be written
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as max(φ) ≈ π − φ. To test the relevance of this condition, we plot in figure 12(c) the
quantity max(φ)/(π − φ) for all β0 cases we explored, as a function of U∞ up to the
transition threshold UP2W . It can be observed that the transition threshold accurately
corresponds to the condition max(φ)/(π − φ) = 1 ± 8%, which validated the proposed
condition and the phenomenology that the Pendulum-to-Windmill transition is anticipated
by the fluctuations compared with the deterministic prediction.

We have seen in §§ 3.2.2 and 4.2 that the Windmill state dynamics is quite regular,
and overall faithfully reproduced by the deterministic model, without the noise term. In
particular, we have observed that the rotation rate φ̇ of the pendulum is modulated by
the weight imbalance with a maximum value φ̇max when φ = 0 (the pendulum being at
its most downwards position) and a minimum value φ̇min when φ = π (the pendulum
being at its most upwards position). The amplitude of the modulation increases as the
free stream velocity U∞ decreases, up to the point where φ̇min vanishes and the cycle
over the upwards position cannot be sustained anymore, which defines the Windmill-
to-Pendulum threshold UW 2P . Figure 12(d) represents the minimum rotation rate φ̇min
determined from the experiments for all the explored parameters (symbols) and for the
numerical resolution of the deterministic equation of motion ((4.1) with σn = 0). The
agreement is very good, in particular near the Windmill-to-Pendulum transition, where
φ̇min → 0. The minimum U∞ required to sustain rotation differs by at most 0.16 m s−1

between the experimental results and the model across all configurations. This confirms
that the Windmill-to-Pendulum transition is primarily deterministic and the threshold is
accurately predicted using a deterministic model (UW 2P = U det

W 2P ).

5. Concluding remarks
In this article, we reported a detailed experimental characterisation of the dynamics of a
disk pendulum swept by a flow and free to rotate in the direction perpendicular to the
flow. The system exhibits two states: a pendulum state, static on average and subject
to strong aerodynamic fluctuations, and a regularly rotating windmill state. Subcritical
bifurcations between these states, as well as bi-stability, were observed for all values of the
static yaw angle of the disk β0. The features of the time-averaged characteristics in both
states are faithfully captured using a quasi-steady approach with aerodynamic coefficients
measured for fixed disks (Flachsbart 1932). The dynamical features and the nature of
the transitions were also explored using a stochastic model based on the quasi-steady
approach with additive noise. In the Pendulum state, this model accurately reproduces
all dynamical features for the cases far from the stall angle. In particular, the variation
in system behaviour for yaw angles, especially the more regular dynamics below the stall
angle compared with the irregularities above, are shown to be linked to the concavity of
the aerodynamic lift curve CL(β0). Moreover, this model also validates the experimental
observations that the bifurcation from the Pendulum state to the Windmill state is triggered
by aerodynamic fluctuations. However, the features of the Windmill state are faithfully
captured by a fully deterministic quasi-steady model (i.e. no additive noise is required).
This also endorses the deterministic nature of the Windmill-to-Pendulum bifurcation
observed.

The goal of the present work was to reveal and investigate the two different states, the
bi-stability and the nature of the transitions between the states. We have shown that a
quasi-steady description accurately captures most of the features of the pendulum bi-stable
dynamics for yaw angles far from stall. In contrast, the present experimental data near stall
is not well described by this quasi-steady approach. Further investigations for yaw angles
close to the stall angle would be required to explore whether transient phenomena such
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as dynamic stall or transient detachment–attachment of the wake structure would help to
improve the predictions. In particular, dedicated time-resolved flow visualisations of the
wake structure in the Pendulum state or precise embedded pressure measurements would
help clarifying these issues in the vicinity of the stall angle.

This study adds to previous investigations showing that a configuration as simple as a
pendulum in a flow displays non-trivial behaviours (Obligado et al. 2013; Gayout et al.
2021). Moreover, this configuration, where the pendulum freely rotates in the cross-flow
plane, could be a test bed for investigating stochastic processes in multi-stable systems. The
influence of more complex geometries could be investigated. The influence of asymmetric
damage on the dynamics of rotating systems would, for instance, be easy to probe. Finally,
this canonical configuration is also appealing for detailed studies on the influence of
extreme aerodynamic events or of the amplitude (and characteristic correlation time) of the
free stream turbulent fluctuations, for instance, using active-grid generated fluctuations.
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