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Abstract

We study generalized continued fraction expansions of the form
a1

N +

a2

N +

a3

N + · · ·
,

where N is a fixed positive integer and the partial numerators ai are positive integers for all i. We call these
expansions dnN expansions and show that every positive real number has infinitely many dnN expansions
for each N. In particular, we study the dnN expansions of rational numbers and quadratic irrationals.
Finally, we show that every positive real number has, for each N, a dnN expansion with bounded partial
numerators.
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1. Introduction
In [1] Anselm and Weintraub introduced a generalization of simple continued
fractions, the cfN expansion

a0 +
N
a1 +

N
a2 +

N
a3 + · · ·

,

where N is a fixed positive integer, a0 is a nonnegative integer and ai is a positive
integer for every i. They showed that every positive real number has infinitely many
cfN expansions for all N > 1 and studied the properties of these expansions for rational
numbers and quadratic irrationals. In particular, they focused on the so-called best cfN
expansion, where the partial denominators ai are chosen to be as large as possible and
which is unique for each real number.

In this paper, we flip the roles of the partial numerators and denominators of the cfN
expansions and study generalized continued fraction expansions of the form

a1

N +

a2

N +

a3

N + · · ·
, (1.1)
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where N is a fixed positive integer and ai are positive integers. We shall call these
continued fractions dnN expansions and denote them by 〈a1, a2, . . .〉N . While a general
study of the dnN expansions of real numbers does not seem to have been carried
out, continued fractions of form (1.1) have been studied extensively. For example,
Ramanujan presented many such continued fractions in his notebooks [2, 3]. Among
them were

1 =
x + N

N +

(x + N)2 − N2

N +

(x + 2N)2 − N2

N +

(x + 3N)2 − N2

N + · · ·
,

where x , −kN for all positive integers k,

1 + 2N2
∞∑

k=1

(−1)k

(N + k)2 =
1
N +

12

N +

1 · 2
N +

22

N +

2 · 3
N +

32

N + · · ·
(1.2)

and, perhaps most famously, Ramanujan’s AGM continued fraction

RN(a, b) =
a
N +

b2

N +

(2a)2

N +

(3b)2

N +

(4a)2

N +

(5b)2

N + · · ·

that satisfies the remarkable equation

RN

(a + b
2

,
√

ab
)

=
RN(a, b) + RN(b, a)

2
connecting the arithmetic and geometric mean of numbers a and b [4]. Some examples
of well-known dnN expansions for real numbers are Lord Brouncker’s dn2 expansion

π =
8
2 +

2
2 +

32

2 +

52

2 + · · ·

(see [6]), the dn1 expansion

ln 2 = R1(1, 1) =
1
1 +

12

1 +

22

1 +

32

1 + · · ·

(see [4]) and the dn1 expansion

ζ(2) − 1 =
π2

6
− 1 =

1
1 +

12

1 +

1 · 2
1 +

22

1 +

2 · 3
1 +

32

1 + · · ·

derived from (1.2).
We will begin with some preliminaries in Section 2, followed by the dnN algorithm

in Section 3. We will show that every positive real number has infinitely many
dnN expansions for every N and define a special dnN expansion called the least dnN
expansion. In Sections 4 and 5, we will examine the dnN expansions of positive
rational numbers and positive real quadratic irrationals, respectively. We will prove
that, for any rational number, there exist infinitely many finite, periodic and aperiodic
dnN expansions, and that for any quadratic irrational number there exist infinitely
many periodic and aperiodic dnN expansions. Special attention is paid to the least
dnN expansion of these numbers. In Section 6, we will show that every positive real
number has a dnN expansion with bounded partial numerators.

In this paper, we denote the set of positive integers by Z+ and the set of nonnegative
integers by N.
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2. On continued fractions

We begin with some preliminaries on (generalized) continued fractions

b0 +
a1

b1 +
a2

b2 + · · ·

= b0 +

∞

K
n=1

an

bn
= b0 +

a1

b1 +

a2

b2 + · · ·
, (2.1)

where the partial numerators an and the partial denominators bn are positive integers
for all n ∈ Z+ and b0 ∈ Z. If the limit of the nth convergent

An

Bn
= b0 +

a1

b1 +

a2

b2 + · · · +

an

bn

at infinity exists, it is called the value of the continued fraction. The numerators An
and denominators Bn of the convergents can be obtained from the recurrence relationsAn+2 = bn+2An+1 + an+2An,

Bn+2 = bn+2Bn+1 + an+2Bn,
(2.2)

with initial values A0 = b0, B0 = 1, A1 = b0b1 + a1 and B1 = b1. These relations imply
the formula

An+1

Bn+1
−

An

Bn
=

(−1)na1 . . . an+1

BnBn+1
,

which is valid for all n ∈ N. If continued fraction (2.1) converges to τ ∈ R, then

τ = b0 +

∞∑
k=0

(−1)ka1 . . . ak+1

BkBk+1
, (2.3)

as shown, for example, in [5]. Using recurrence relations (2.2) and the standard error
estimates of alternating series, we get

bn+2a1 . . . an+1

BnBn+2
<

∣∣∣∣∣τ − An

Bn

∣∣∣∣∣ < a1 . . . an+1

BnBn+1
. (2.4)

We can also determine the sign of τ − An/Bn since Equations (2.2) and (2.3) imply that

A0

B0
<

A2

B2
< · · · <

A2k

B2k
< τ <

A2l+1

B2l+1
< · · · <

A3

B3
<

A1

B1
(2.5)

for all k, l ∈ N.
As the partial coefficients an and bn of continued fraction (2.1) are positive integers

for all n ∈ Z+, the following theorem gives us a convergence criterion.

Theorem 2.1 (The Seidel–Stern theorem). Let an and bn be positive real numbers for
all n. Then the continued fraction K∞n=1 an/bn converges if and only if the Stern–Stolz
series

∞∑
n=1

bn

n∏
k=1

a(−1)n−k+1

k (2.6)

diverges to∞.

https://doi.org/10.1017/S1446788718000332 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000332


[4] Generalized continued fraction expansions with constant partial denominators 275

Proof. See [7], Ch. III, Theorem 3 and the subsequent Remark 2. �

Corollary 2.2. Let an and bn be positive integers for all n. If the sequence (an) has a
bounded subsequence, then the continued fraction K∞n=1 an/bn converges.

Proof. Let us assume that (an) has a bounded subsequence (aki ) such that aki ≤ M for
all i ∈ Z+ and some M ∈ Z+. Without loss of generality, we may also assume that
ki+1 ≥ ki + 2. By denoting

S n =

n∏
k=1

a(−1)n−k+1

k ,

the Stern–Stolz series of the continued fraction K∞n=1 an/bn can be written as∑∞
n=1 bnS n, where S 1 = 1/a1 and S n+1 = 1/(S nan+1). Now either S ki ≥ 1 or S ki < 1

and S ki+1 = 1/(S ki aki+1) > 1/M, so
∞∑

n=1

bnS n ≥

∞∑
i=1

(S ki + S ki+1) ≥
∞∑

i=1

1
M
→∞.

Hence the Stern–Stolz series of K∞n=1 an/bn diverges to infinity, and by Theorem 2.1
the continued fraction K∞n=1 an/bn converges. �

We say that the (infinite) expansion 〈a1, a2, . . .〉N is (eventually) periodic if there
exist positive integers k and m such that ai = ai+k for every i ≥ m. Then we denote

〈a1, a2, . . .〉N = 〈a1, . . . , am−1, am, . . . , am+k−1〉N .

Every periodic dnN expansion converges by Corollary 2.2 since the partial numerators
of periodic continued fractions are bounded. It is easy to see that every periodic dnN
expansion represents a rational number or a quadratic irrational.

Finally, we recall some useful results from the theory of simple continued fractions

c0 +
1
c1 +

1
c2 + · · ·

= [c0; c1, c2, . . .],

which are a special case of continued fractions (2.1) with an = 1 and bn = cn for all n.
We denote the convergents of the simple continued fraction expansion by Cn/Dn. As is
well known, the simple continued fraction expansion of a real number τ is finite if and
only if τ is rational and periodic if and only if τ is a quadratic irrational. In particular,

√
d = [c0; c1, . . . , ck−1, 2c0],

where d is a positive nonsquare integer, c0 = b
√

dc and ci = ck−i for all 1 ≤ i ≤ k − 1
(see [8]).

For simple continued fractions, error estimates (2.4) take the form

1
(dn+1 + 2)D2

n
<

dn+2

DnDn+2
<

∣∣∣∣∣τ − Cn

Dn

∣∣∣∣∣ < 1
DnDn+1

<
1

dn+1D2
n
, (2.7)

which suggests that the convergents Cn/Dn are good approximants for τ. In a way,
they are the only very good approximants, as the following theorem shows.
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Theorem 2.3. If τ is a real number, p ∈ Z and q ∈ N are coprime and∣∣∣∣∣τ − p
q

∣∣∣∣∣ < 1
2q2 ,

then p/q is a convergent of the simple continued fraction expansion of τ.

For the proof, see, for example, [5, Lemma 2.33].

3. The dnN expansion

Throughout the rest of this paper, N is a fixed positive integer and τ0 is an arbitrary
positive real number unless stated otherwise.

We now present the dnN algorithm for obtaining a dnN expansion for τ0.

(1) Let i = 1.
(2) Choose a positive integer ai such that ai/τi−1 ≥ N.
(3) Let τi = ai/τi−1 − N. If τi = 0, terminate. Otherwise let i = i + 1 and go to step 2.

As the only criterion for choosing each ai is to keep τi nonnegative, we can obtain
uncountably many dnN expansions for τ0. However, we would like our continued
fraction to converge to the number τ0. Therefore the partial numerators ai should be
chosen so that the series

∞∑
n=1

n∏
k=1

a(−1)n−k+1

k

diverges to infinity, which, in the case of dnN expansions, implies the divergence of
the Stern–Stolz series (2.6).

Lemma 3.1. If the dnN expansion obtained for τ0 by the dnN algorithm converges, then
it converges to τ0.

Proof. By induction,

τ0 =
An + An−1τn

Bn + Bn−1τn
.

Then ∣∣∣∣∣τ0 −
An

Bn

∣∣∣∣∣ =

∣∣∣∣∣An + An−1τn

Bn + Bn−1τn
−

An

Bn

∣∣∣∣∣
=

∣∣∣∣∣AnBn + An−1Bnτn − AnBn − AnBn−1τn

Bn(Bn + Bn−1τn)

∣∣∣∣∣
=

τn
∏n

i=1 ai

Bn(Bn + Bn−1τn)
<

∏n
i=1 ai

BnBn−1
.

Since the continued fraction converges,

lim
n→∞

∏n
i=1 ai

BnBn−1
= 0

by (2.3), and hence limn→∞ An/Bn = τ0. �
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In the multitude of possibilities for choosing the partial numerators there is a natural
method for making the choices uniquely, and that is by choosing each ai to be as small
as possible. Since the smallest positive integer ai such that τi = ai/τi−1 − N ≥ 0 is
dNτi−1e, we give the following definition.

Definition 3.2. The dnN expansion of τ0 obtained from the dnN algorithm by choosing
ai = dNτi−1e for every i is the least dnN expansion of τ0.

Theorem 3.3. The least dnN expansion of τ0 converges.

Proof. If the least dnN expansion of τ0 is finite, we interpret it as converging. Let the
least dnN expansion 〈a1, a2, . . .〉N of τ0 be infinite. If τi ≥ 1, then

0 < τi+1 =
dNτie

τi
− N <

Nτi + 1
τi

− N =
1
τi
≤ 1,

so there are infinitely many i such that τi ≤ 1. Since τi ≤ 1 implies that ai+1 =

dNτie ≤ N, there are infinitely many i such that ai ≤ N. Therefore the sequence (ai)
has a bounded subsequence, so by Corollary 2.2 the continued fraction 〈a1, a2, . . .〉N
converges, and by Lemma 3.1 it converges to τ0. �

We have now established that every positive real number has at least one converging
dnN expansion. In fact, there are uncountably many such expansions since we
may choose ai = dNτi−1e + 1 instead of ai = dNτi−1e and still get a converging dnN

expansion. From this point forward, when we talk about a dnN expansion 〈a1, a2, . . .〉N
of a positive real number τ0, we indicate that the expansion converges to τ0, that is,
τ0 = 〈a1, a2, . . .〉N .

Example 3.4. Here are some least dnN expansions of different numbers.

τ0 N Least dnN expansion of τ0

5/17 1 〈1, 3, 1, 3〉1
10 〈3, 2〉10√

2 1 〈2, 1〉1
2 〈3, 1, 13, 1, 21, 1, 24, 1, 27, 1, 136, 1, 140, 1, 7849, . . .〉2
7 〈10, 1, 50〉7

π 1 〈4, 1, 3, 1, 7, 1, 37, 1, 71, 1, 449, 1, 657, 1, 991, . . .〉1
2 〈7, 1, 5, 1, 17, 1, 20, 1, 108, 1, 204, 1, 239, 1, 326, . . .〉2

e 1 〈3, 1, 9, 1, 24, 1, 65, 1, 67, 1, 335, 1, 881, 1, 1152, . . .〉1
7 〈20, 3, 10, 2, 23, 2, 5, 6, 4, 5, 9, 2, 4, 2, 22, . . .〉7
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4. Rational numbers

Throughout this section, τ0 = p/q is a positive rational number with p, q ∈ Z+.

Theorem 4.1. Let (k j) be a sequence of positive integers such that k jq > N for all j.
Then

p
q

= 〈k1 p, k2
1q2 − N2, k1(p + Nq), k2 p, k2

2q2 − N2, k2(p + Nq), . . .〉N

= ∞
j=1〈k j p, k2

j q
2 − N2, k j(p + Nq)〉N . (4.1)

Proof. With the choices 
a3 j−2 = k j p,
a3 j−1 = k2

j q
2 − N2,

a3 j = k j(p + Nq)

for all j ∈ Z+, we get inductively from the dnN algorithm that

τ3 j−2 =
k j p
p/q
− N = k jq − N > 0,

τ3 j−1 =
k2

j q
2 − N2

k jq − N
− N = k jq

and

τ3 j =
k j(p + Nq)

k jq
− N =

p
q

= τ0.

Hence we obtain the dnN expansion

∞
j=1〈k j p, k2

j q
2 − N2, k j(p + Nq)〉N .

Using the same notation as in the proof of Corollary 2.2, if S 3 j−3 ≤ 1, then, since
k jq ≥ N + 1,

S 3 j =
a3 j−1

a3 j−2a3 jS 3 j−3
>

k2
j q

2 − N2

k2
j p(p + Nq)

≥
q2(2N + 1)

p(p + Nq)(N + 1)2 .

Therefore the sequence (S 3 j) is bounded below by a positive constant and the Stern–
Stolz series of continued fraction (4.1) diverges to infinity. Then the convergence of
continued fraction (4.1) to p/q follows from Theorem 2.1 and Lemma 3.1. �

Corollary 4.2. The rational number p/q has infinitely many periodic dnN expansions
and uncountably many aperiodic dnN expansions.

Proof. By Theorem 4.1, the rational number p/q has the dnN expansion (4.1) for any
sequence of positive integers (k j) that satisfies k jq > N for all j. If (k j) is periodic of
period length m, then the dnN expansion

p
q

= ∞
j=1〈k j p, k2

j q
2 − N2, k j(p + Nq)〉N
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is periodic of period length 3m at most. As there are infinitely many periodic sequences
(k j), it follows that there are infinitely many periodic dnN expansions for p/q.

On the other hand, if we choose the sequence (k j) to be such that it has a strictly
increasing subsequence, then the dnN expansion (4.1) is aperiodic because it contains
arbitrarily large partial numerators. As there are uncountably many such sequences
(k j), there are uncountably many aperiodic dnN expansions for p/q. �

Example 4.3. Let τ0 = 22/7 and N = 13. It is then that Theorem 4.1 gives the dn13

expansion
22
7

= ∞
j=1〈22k j, 49k2

j − 169, 127k j〉13,

where the sequence (k j) satisfies k j ≥ 2 for all j. Using different sequences (k j) we get
the following dn13 expansions.

(k j) dn13 expansion of 22/7
k j = 2 for all j 〈44, 27, 254〉13

k2i−1 = 2, k2i = 3 〈44, 27, 254, 66, 272, 381〉13
k j = j + 1 for all j 〈44, 27, 254, 66, 272, 381, 88, 615, . . .〉13

In Example 3.4 both of the least dnN expansions calculated for 5/17 were finite.
It turns out that this is the case for every least dnN expansion of a positive rational
number.

Theorem 4.4. The least dnN expansion of τ0 = p/q is finite.

Proof. Let us denote P0 = p, Q0 = q and S 0 = P0 + Q0. By the division algorithm
there exist unique q1, r1 ∈ N such that NP0 = q1Q0 + r1, where 0 < r1 ≤ Q0. Then
dNP0/Q0e = q1 + 1. Using the dnN algorithm,

τ1 =
dNP0/Q0e

P0/Q0
− N =

Q0(q1 + 1) − NP0

P0
=

Q0 − r1

P0
.

If r1 = Q0, then τ1 = 0 and the algorithm terminates. If 0 < r1 < Q0, we put P1 =

Q0 − r1 and Q1 = P0. Note that now

S 0 = P0 + Q0 > P0 + Q0 − r1 = P1 + Q1 = S 1.

Suppose we have reached τi = Pi/Qi, Pi,Qi ∈ Z+ and S i = Pi + Qi. By the division
algorithm, there exist unique qi+1, ri+1 ∈ N such that

NPi = qi+1Qi + ri+1,

where 0 < ri+1 ≤ Qi. Then dNPi/Qie = qi+1 + 1 and

τi+1 =
dNPi/Qie

Pi/Qi
− N =

Qi(qi+1 + 1) − NPi

Pi
=

Qi − ri+1

Pi
.
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If ri+1 = Qi, then τi+1 = 0 and the algorithm terminates. If 0 < ri+1 < Qi, we put
Pi+1 = Qi − ri+1 and Qi+1 = Pi. Then

S i = Pi + Qi > Pi + Qi − ri+1 = Pi+1 + Qi+1 = S i+1.

Because the sequence (S i) is a strictly decreasing sequence of positive integers and
Qi > 0, it follows there must exist an n ∈ Z+ such that Pn = 0. Then τn = 0 and the
algorithm terminates. Thus the least dnN expansion of τ0 is finite. �

We get infinitely many finite dnN expansions for p/q by choosing the first finitely
many ai as we please and then making the least choice from there on.

5. Quadratic irrationals

Let us start by noting that because there are uncountably many infinite dnN

expansions for every positive real number but there exist only countably many
periodic dnN expansions, it follows that every positive quadratic irrational number
has uncountably many aperiodic dnN expansions.

Throughout this section, τ0 is a positive real quadratic irrational. Now there exist
P,Q, d ∈ Z such that τ0 = (

√
d + P)/Q, d ≥ 2 is not a perfect square and Q | (d − P2)

(see, for example, [8, Lemma 10.5]). Then we denote Q′ = |(d − P2)/Q| = |
√

d − P|τ0.

Lemma 5.1. If |P| <
√

d and k ∈ Z+ is such that k(
√

d − P) > N, then

τ0 = 〈kQ′,D − 2kPN − N2,D〉N , (5.1)

where D = k2(d − P2).

Proof. Since |P| <
√

d and τ0 is positive, it follows that Q and D are positive and
Q′ = (d − P2)/Q. If we choose a1 = kQ′, we get from the dnN algorithm that

τ1 =
kQ′

τ0
− N =

k(d − P2)
√

d + P
− N = k

√
d − (kP + N) > 0.

As k(
√

d + P) + N > 0, we may continue by choosing

a2 = D − 2kPN − N2 = k2d − (kP + N)2 = (k(
√

d + P) + N)τ1 > 0

and get

τ2 =
(k(
√

d + P) + N)τ1

τ1
− N = k

√
d + kP > 0.

Finally, with a3 = D,

τ3 =
k2(d − P2)

k
√

d + kP
− N = k

√
d − (kP + N) = τ1,

and thus we get the periodic expansion τ0 = 〈kQ′,D − 2kPN − N2,D〉N . �
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Theorem 5.2. There exists a periodic dnN expansion of the positive real quadratic
irrational τ0.

Proof. We begin by constructing the desired dnN expansion for τ0. Let us denote P0 =

P, Q0 = Q and R0 = 1. Let k1 be the smallest positive integer such that k1|
√

d − P0| > N
and a1 = k1Q′. Then, from the dnN algorithm,

τ1 =
a1

τ0
− N =

k1|
√

d − P0|τ0

τ0
− N = k1|

√
d − P0| − N > 0.

Now we denote τ1 = R1
√

d + P1, whereR1 = k1 and P1 = −k1P0 − N when
√

d > P0,

R1 = −k1 and P1 = k1P0 − N when
√

d < P0.

If τi = Ri
√

d + Pi, we choose ai+1 = ki+1|R2
i d − P2

i |, where ki+1 is the smallest positive
integer such that ki+1|Ri

√
d − Pi| > N and get

τi+1 =
ki+1|R2

i d − P2
i |

Ri
√

d + Pi
− N = ki+1|Ri

√
d − Pi| − N > 0.

Then we denote τi+1 = Ri+1
√

d + Pi+1, whereRi+1 = ki+1Ri and Pi+1 = −ki+1Pi − N when Ri
√

d > Pi,

Ri+1 = −ki+1Ri and Pi+1 = ki+1Pi − N when Ri
√

d < Pi.

It remains to be shown that the dnN expansion 〈a1, a2, . . .〉N constructed above is
periodic. Note that if we choose k in Lemma 5.1 to be as small as possible, then
the periodic dnN expansion (5.1) is a special case of the dnN expansion under study.
Therefore it suffices to show that there exists a j ≥ 1 such that R j is positive and

|P j| < |R j
√

d| = R j
√

d =

√
R2

jd,

in which case Lemma 5.1 gives us the periodicity.
Suppose, on the contrary, that

|Pi| > |Ri
√

d| for all i ≥ 1. (5.2)

Then Pi is positive for all i because τi = Ri
√

d + Pi is positive for all i. If ki = 1 for
every large i, then Pi+1 = Pi − N and Ri+1 = −Ri for every large i. In this case, the
sequence (Pi) is a strictly decreasing sequence of integers and so there exists a j such
that P j < 0, which we cannot have. Hence there exist infinitely many j such that k j > 1.
This implies that the sequence (|Ri|) is tending to infinity so there exists an n such that
|Ri
√

d| > N for all i ≥ n.
Let m ≥ n be such that km+1 ≥ 2. As km+1 is the least positive integer such that

km+1Pm − km+1Rm
√

d = km+1|Pm − Rm
√

d| > N,

https://doi.org/10.1017/S1446788718000332 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000332


282 T. Törmä [11]

then
(km+1 − 1)Pm − (km+1 − 1)Rm

√
d < N.

Combining the above inequalities yields

0 < km+1Pm − km+1Rm
√

d − N < Pm − Rm
√

d < N, (5.3)

where the last inequality holds because km+1 ≥ 2. Since Pm > |Rm
√

d| > N and
Pm − Rm

√
d < N, then Rm > 0 and

Pm+1 − Rm+1
√

d = km+1Pm − N + km+1Rm
√

d > 3N.

Thus km+2 = 1 and, by (5.3),

Pm+2 = Pm+1 − N = km+1Pm − 2N < km+1Rm
√

d = Rm+2
√

d,

where Rm+2 = km+1Rm is positive. This is in contradiction to assumption (5.2). Thus
there exists a j ≥ 1 such that R j is positive and |P j| < R j

√
d, and by Lemma 5.1

τ0 = 〈a1, a2, . . . , a j,D/k j+1,D − 2k j+1P jN − N2,D〉N ,

where D = k2
j+1(R2

jd − P2
j). �

Since we may choose the first finitely many ai as we please and then continue
as described in Lemma 5.1 and Theorem 5.2, every positive quadratic irrational has
infinitely many different periodic dnN expansions.

Example 5.3. Let τ0 = (7 +
√

10)/13 and N = 4. Constructing the dn4 expansion
described in Theorem 5.2 gives

k1 = 2, a1 = 6, τ1 = 10 − 2
√

10,

k2 = 1, a2 = 60, τ2 = 6 + 2
√

10,

k3 = 13, a3 = 52, τ3 = 26
√

10 − 82,

k4 = 1, a4 = 36, τ4 = 26
√

10 + 78,

k5 = 1, a5 = 676, τ5 = 26
√

10 − 82 = τ3

and so
7 +
√

10
13

= 〈6, 60, 52, 36, 676〉4.

We now turn our attention to the least dnN expansions of positive real quadratic
irrationals. In [1], it is conjectured that the best cfN expansion of a positive quadratic
irrational is not periodic for every N. It seems likely that this is the case for the least
dnN expansion as well. For example, the dn1 expansion of

√
3 is

√
3 = 〈2, 1, 6, 1, 10, 1, 11, 1, 18, 1, 50, 1, 65, 1, 750, 1, 8399, 1, 11727, 1, 12855,

1, 66368, 1, 281130, 1, 437015, 1, 482182, 1, 643701, 1, 743770, 1,
2808107, 1, 11306550, 1, 12268089, 1, 24304646, 1, 98323268, 1, . . .〉1,
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where the partial numerators seem to alternate between 1 and a rapidly increasing
sequence of positive integers.

However, there are some cases when we can find a periodic least dnN expansion.
Recall that if |P| <

√
d and k ∈ Z+ is such that k(

√
d − P) > N, then, by Lemma 5.1,

τ0 = 〈kQ′,D − 2kPN − N2,D〉N , (5.4)

where D = k2(d − P2).

Theorem 5.4. Let |P| <
√

d and k ∈ Z+ be such that k(
√

d − P) > N. Then expansion
(5.4) is the least dnN expansion of τ0 if and only if

0 < (
√

d − P) −
N
k
<

1

(
√

d + P)k2
. (5.5)

Proof. As noted in the proof of 5.1, in this case, the numbers Q, Q′ and D are positive
integers. Expansion (5.4) is the least dnN expansion if and only if ai = dNτi−1e for
every i. Since expansion (5.4) is periodic, it suffices to check that kQ′ = dNτ0e,
D − 2kPN − N2 = dNτ1e and D = dNτ2e. From the proof of 5.1 we have that τ1 =

k
√

d − (kP + N) and τ2 = k
√

d + kP. If D = dNτ2e, then

k2(d − P2) = dNk(
√

d + P)e = Nk(
√

d + P) + c, (5.6)

where 0 < c < 1. Now

kQ′ = N

√
d + P
Q

+
c

kQ
= Nτ0 +

c
kQ

,

where 0 < c/kQ < 1 and

D − 2kPN − N2 = Nk(
√

d + P) − 2kPN − N2 + c

= N(k
√

d − (kP + N)) + c = Nτ1 + c,

so kQ′ = dNτ0e and D − 2kPN − N2 = dNτ1e. It is therefore enough to study when
D = dNτ2e.

By (5.6), D = dNτ2e if and only if

0 < c = k2(d − P2) − Nk(
√

d + P) = k(
√

d + P)(k(
√

d − P) − N) < 1,

which is equivalent to (5.5). �

Remark 5.5. If
√

d + P > 2, then by Theorem 2.3 and inequalities (2.5), condition
(5.5) can hold only if N/k is an even convergent of the simple continued fraction
expansion of

√
d − P. If

√
d − P = [c0; c1, . . . , cm−1, cm],

then, by (2.7),
1

(c2n+1 + 2)D2
2n

< (
√

d − P) −
C2n

D2n
<

1
c2n+1D2

2n

(5.7)
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for all n ∈ N. Thus if there exists a c2n+1 >
√

d + P, then, by Theorem 5.4, expansion
(5.4) is the least dnN expansion of τ0 when N = C2n+lm and k = D2n+lm for any l ∈ N.
By contrast, if c2n+1 + 2 <

√
d + P for all n, then (5.4) is never the least dnN expansion

of τ0.

Theorem 5.6. Let τ0 =
√

d, where d is a positive integer and not a perfect square. If m
is a positive integer, then

√
d = 〈2kd, 2(k2d − m2), k2d − m2〉2m, (5.8)

where k is a positive integer such that k
√

d > m. Expansion (5.8) is the least dn2m

expansion of
√

d if and only if

0 <
√

d −
m
k
<

1

2k
√

d
. (5.9)

Proof. Let k be a positive integer such that k
√

d > m. By choosing a1 = 2kd, we get
from the dnN algorithm that

τ1 =
2kd
√

d
− 2m = 2(k

√
d − m) > 0.

We continue by choosing a2 = 2(k2d − m2) > 0 and get

τ2 =
2(k2d − m2)

2(k
√

d − m)
− 2m = k

√
d − m > 0.

Finally, with a3 = k2d − m2,

τ3 =
k2d − m2

k
√

d − m
− 2m = k

√
d − m = τ2

and hence we get periodic expansion (5.8).
Now a1 = 2kd = d2m

√
de if and only if 0 < 2kd − 2m

√
d < 1, which is equivalent

to (5.9). If inequality (5.9) holds, then

0 < a2 − 2mτ1 = 2(k
√

d − m)(k
√

d + m − 2m) <
1

2d

and
0 < a3 − 2mτ2 = (k

√
d − m)(k

√
d + m − 2m) <

1
4d
,

so a2 = d2mτ1e and a3 = d2mτ2e. Hence expansion (5.8) is the least dn2m expansion of√
d if and only if inequality (5.9) holds. �

Remark 5.7. By (5.7), inequality (5.9) has infinitely many solutions in m/k for every√
d, as we may choose m = C2n and k = D2n when n is large enough. Consequently,

every irrational
√

d has infinitely many periodic least dnN expansions.
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Example 5.8. Periodic least dnN expansions given by Theorem 5.4.

τ0 N Least dnN expansion of τ0√
K2 + 1 K 〈K2 + 1, 1〉K√

2 7 〈10, 1, 50〉7
1+
√

5
2 1 〈2, 1, 4〉1

−2+
√

13
3 5 〈3, 4, 9〉5

Periodic least dnN expansions given by Theorem 5.6.

τ0 N Least dnN expansion of τ0√
2 14 〈20, 2, 1〉14√
3 10 〈18, 4, 2〉10√
6 44 〈108, 4, 2〉44

Other periodic least dnN expansions.

τ0 N Least dnN expansion of τ0√
7 13 〈35, 3, 2, 59, 2〉13

3 +
√

2 1 〈5, 1, 7, 1, 14〉1
6+
√

3
2 5 〈20, 1, 4, 1, 2, 2, 1, 5, 5〉5

6. Bounded partial numerators

One of the major open questions of Diophantine approximation is whether the
simple continued fraction expansions of algebraic numbers of degree greater than two
have bounded partial denominators. In the case of dnN expansions, the analogue is
quickly solved. In fact, we show below that, for every positive real number, there
exists a dnN expansion that has partial numerators from a set of two digits only.

Lemma 6.1. Let α1 and α2 be positive integers such that α1 < α2 and

α1α2/(α1 + α2) ≥ N2, (6.1)

and denote

τm =
−(N2 + α2 − α1) +

√
(N2 + α2 − α1)2 + 4α1N2

2N
,

τM =
−(N2 − α2 + α1) +

√
(N2 + α2 − α1)2 + 4α1N2

2N
= τm +

α2 − α1

N
and I = [τm, τM]. If τ0 ∈ I, there exists a dnN expansion τ0 = 〈a1, a2, . . .〉N such that
ai ∈ {α1, α2} for all i.
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Proof. As the positive solutions x to equations

x =
α1

N + α2
N+x

and x =
α2

N + α1
N+x

are x = τm and x = τM , respectively, it follows that

τm = 〈α1, α2〉N and τM = 〈α2, α1〉N .

Let us denote T1(x) = α1/(N + x) and T2(x) = α2/(N + x) for x ∈ I. Then

T1(τM) = τm, T2(τm) = τM , T1(τm) =
α1

α2
τM and T2(τM) =

α2

α1
τm.

Because

α1

α2
τM =

α1

α2

(
τm +

α2 − α1

N

)
≥
α2

α1
τm

⇔
α1(α2 − α1)

α2N
·
α1α2

α2
2 − α

2
1

=
α2

1

N(α2 + α1)
≥ τm

⇔
2α2

1

(α2 + α1)
+ N2 + α2 − α1 ≥

√
(N2 + α2 − α1)2 + 4α1N2

⇔
α3

1

α2 + α1
+ α1(N2 + α2 − α1) ≥ (α2 + α1)N2

⇔
α1α2

α2 + α1
≥ N2,

inequality (6.1) implies that T1(τm) ≥ T2(τM). Therefore

T1(I) ∪ T2(I) = [τm,T1(τm)] ∪ [T2(τM), τM] = [τm, τM] = I. (6.2)

Let τ0 ∈ I. As the functions T1 and T2 are injective on I, by (6.2) there exists a τ1 ∈ I
such that

τ0 =
a1

N + τ1
⇔ τ1 =

a1

τ0
− N,

where a1 ∈ {α1, α2}. Similarly, if τi ∈ I, then there exists a τi+1 ∈ I such that

τi =
ai+1

N + τi+1
⇔ τi+1 =

ai+1

τi
− N,

where ai+1 ∈ {α1, α2}. It follows by induction that τ0 = 〈a1, a2, a3, . . .〉N , where ai ∈

{α1, α2} for all i. �

Theorem 6.2. Let τ0 be a positive real number. Then there exist positive integers α1

and α2 such that τ0 = 〈a1, a2, . . .〉N , where ai ∈ {α1, α2} for all i.

Proof. Due to Lemma 6.1 it is sufficient to show that there exist positive integers α1

and α2 such that α1 < α2, α1α2/(α1 + α2) ≥ N2 and τ0 ∈ [τm, τM], where τm and τM are
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as in Lemma 6.1. Now

τm =
−(N2 + α2 − α1) +

√
(N2 + α2 − α1)2 + 4α1N2

2N

=
N2 + α2 − α1

2N

(
−1 +

√
1 +

4α1N2

(N2 + α2 − α1)2

)
.

Since the function

f (x) = x
(
−1 +

√
1 +

α1

x2

)
is strictly decreasing and tends to zero as x tends to infinity for all positive α1,

τm < τ0 < τm +
α2 − α1

N
= τM (6.3)

when α2 − α1 is large enough. Because

α1α2

α1 + α2
=

1
1/α1 + 1/α2

≥
α1

2
,

we may choose α1 ≥ 2N2 and α2 such that α2 − α1 is large enough for (6.3) to hold
true. �

Example 6.3. Here are the first 20 digits of some dn1 expansions with bounded
numerators.

τ0 {a, b} Bounded dnN expansion of τ0
3√2 {2, 4} 〈2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, . . .〉1
π {2, 5} 〈5, 2, 5, 2, 2, 5, 5, 2, 2, 2, 2, 5, 5, 2, 2, 5, 2, 5, 5, 5, . . .〉1
e {3, 7} 〈7, 3, 3, 7, 7, 7, 3, 3, 7, 3, 7, 3, 3, 7, 3, 3, 3, 7, 3, 3, . . .〉1

ln 2 {2, 4} 〈2, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, . . .〉1
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