Atomic Resolution Study of W-Doped VO₂ Nanowires Hasti Asayesh-Ardakani^{1, 2}, Anmin Nie^{1, 2}, Peter M. Marley³, Yihan Zhu⁴, Patrick J. Phillips², Sujay Singh⁵, Farzad Mashayek⁶, Ganapathy Sambandamurthy⁵, Ke-bin Low⁷, Robert F. Klie², Sarbajit Banerjee³, Gregory M. Odegard¹ and Reza Shahbazian-Yassar^{1, 2,6} ²Department of Physics, University of Illinois at Chicago, Chicago, IL60607-7059, USA Metal-Insulator Transition (MIT) in VO_2 has attracted attention of many theorists and experimentalists for more than fifty years since the discovery of the phenomena by Morin [1]. The distinctive aspects of this phenomena are structural phase transition, sharp resistivity and optical transparency changes by several order of magnitudes at ~ 340 K [2]. These distinctive properties have inspired many applications such as thermo/electrochromics, Mott transistors, memristors, thermal actuators, gas sensors, strain sensors and temperature sensors. Recent efforts focus on controlling of phase transition and domain structures in finite size VO_2 , which results in different material properties and play a critical role in device applications. In this work, we have focused on the effect of tungsten (W) dopant in MIT of individual single-crystalline VO_2 nanowires by use of aberration corrected scanning transition electron microscopy. The high-resolution Z-contrast imaging of individual single-crystalline $W_xV_{1-x}O_2$ nanowires indicates W dopant atoms in the structure as shown in Figure 1a. The strain map analysis of high-resolution images reveals the effect of dopants in MIT of VO_2 (Figure 1b-c). The dopants create anisotropic stress and structural distortions into the VO_2 structure. This stress facilitates the phase transition form monoclinic structure to tetragonal structure. We also verified the experimental observation by Density Functional Theory (DFT) calculations. ¹Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49933-1295, USA ³Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA ⁴ Advanced Membranes and Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia ⁵Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA ⁶Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607-7059, USA ⁷Research Resource Center, University of Illinois at Chicago, IL60607-7059, USA ## References: - [1] FJ Morin, Phys Rev Lett 3 (1959), p. 34. - [2] V Eyert, Ann Phys (Berlin) 11 (2002), p. 650. **Figure 1.** (a) Atomic resolution HAADF image of $W_xV_{1-x}O_2$ nanowires. Insets correspond to the FFT of (a) which indicates that (a) has been acquired along the [301] zone axis of the monoclinic structure. The spots with higher intesity implie the existance of W in each column as compared to other spots. (b-c) strain maps relate along to and perpendicular to (113) lattice planes.