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In this paper, we study the behaviours of the commutators [�b, T ] generated by

multilinear Calderón–Zygmund operators T with �b = (b1, . . . , bm) ∈ Lloc(R
n) on

weighted Hardy spaces. We show that for some pi ∈ (0, 1] with
1/p = 1/p1 + · · · + 1/pm, ω ∈ A∞ and bi ∈ BMOω,pi (1 � i � m), which are a class

of non-trivial subspaces of BMO, the commutators [�b, T ] are bounded from
Hp1 (ω) × · · · × Hpm (ω) to Lp(ω). Meanwhile, we also establish the corresponding
results for a class of maximal truncated multilinear commutators T ∗
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.
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1. Introduction and main results

This paper is devoted to exploring the behaviours of the commutators of multilinear
operators in weighted Hardy spaces. As well known, multilinear Calderón–Zygmund
theory was introduced and first investigated by Coifman and Meyer [1, 2]. Later
on, the topic was retaken by several authors: including Grafakos and Torres [10],
Lerner et al. [15] and Cruz-Uribe et al. [4], etc. We first recall the definition of
multilinear Calderón–Zygmund operators.

Definition 1.1. Assume that K(y0, y1, . . . , ym) is a function defined away from
the diagonal y0 = y1 = · · · = ym in (Rn)m+1, which satisfies the following estimates

|∂α0
y0

· · · ∂αm
ym

K(y0, y1, . . . , ym)| � Aα

(
∑m

k,l=0 |yk − yl|)mn+|α| , (1.1)

for all α = (α0, · · · , αm) such that |α| = |α0| + · · · + |αm| � N , where |αj | is the
order of each multi-index αj, and N is a large integer to be determined later. An
m-linear Calderón–Zygmund operator is a multilinear operator T that satisfies

T : Lq1 × · · · × Lqm → Lq

for some 1 < q1, . . . , qm < ∞ and 1/q = 1/q1 + · · · + 1/qm, T has the integral
representation

T (f1, . . . , fm)(x) =
∫

(Rn)m

K(x, y1, . . . , ym)
m∏

j=1

fj(yj)dyj

whenever fi ∈ L∞
c and x /∈ ∩isuppfi.

It was shown in [9] that if T is an m-linear Calderón–Zygmund operator, 1/p1 +
· · · + 1/pm = 1/p and p0 = min{pj , j = 1, . . . , m} > 1, then T is bounded from
Lp1(ω) × · · · × Lpm(ω) into Lp(ω), provided that the weight ω is in the class Ap0(see
subsection 2.1 for the definition of Ap0). In 2001, Grafakos and Kalton [8] discussed
the boundedness of multilinear Calderón–Zygmund operators on the product of
Hardy spaces. Later on, Cruz-Uribe et al. [4] generalized the results in [8] to the
weighted Hardy spaces. Precisely,

Theorem A. (cf. [4]) Let 0 < p1, . . . , pm < ∞, ωi ∈ A∞, 1 � i � m and

1
p

=
1
p1

+ · · · + 1
pm

.

Suppose that T is an m-linear Calderón–Zygmund operator associated to a kernel
K that satisfies (1.1) with

N � max

{⌊
mn

(
qωi

pi
− 1
)⌋

+

, 1 � i � m

}
+ (m − 1)n.
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Multilinear commutators on weighted Hardy spaces 1261

Then

∥∥T (�f)
∥∥

Lp(ν�ω)
�

m∏
i=1

‖fi‖Hpi (ωi),

where ν�ω = Πm
i=1ω

p/pi

i , qω := inf{q > 1 : ω ∈ Aq}.
In this paper, we will focus on the commutators of multilinear operators. For

an m-linear Calderón–Zygmund operator T and a collection of locally integral
functions �b = (b1, . . . , bm), the multilinear commutators generated by T and �b are
defined as follows:

[�b, T ](f1, . . . , fm) =
m∑

j=1

[bj , T ](f1, . . . , fm),

where

[bj , T ](f1, . . . , fm) := bjT (f1, . . . , fm) − T (f1, . . . , fj−1, bjfj , fj+1, . . . , fm).

The m-linear commutators were considered by Pérez and Torres in [20]. Lerner
et al. [15] introduced the multiple weight A�P (see definition 3.5 in [15]), and they
proved that when �b ∈ (BMO)m, [�b, T ] is bounded from Lp1(ω1) × · · · × Lpm(ωm) to
Lp(ν�ω) for �ω = (ω1, . . . , ωm) ∈ A�P , the multiple Muckenhoupt class, where 1/p1 +
· · · + 1/pm = 1/p and ν�ω =

∏m
i=1 ω

p/pi

i . Moreover, inspired by the remarkable work
of Lerner et al. [16], Kunwar and Ou [14] obtained the Bloom type two-weight
inequalities of [�b, T ]. Precisely, 1 < pi < ∞ and 1/p1 + · · · + 1/pm = 1/p, λi, μi ∈
Api

, νi = (μi/λi)1/pi , ν�λ =
∏m

i=1 λ
p/pi

i , for b ∈ BMOνi(see definition in [14]), i =
1, . . . , m, it holds that

‖[�b, T ](f1, . . . , fm)‖Lp(ν�λ
) �

(
m∑

i=1

‖bi‖BMOνi

)
m∏

i=1

‖fi‖Lpi (μi).

On the other hand, for m = 1, in the endpoint case, Harboure et al. [11] showed
that for general b ∈ BMO(Rn), the linear commutator [b, T ] cannot be bounded
from H1(Rn) to L1(Rn). However, Liang et al. [19] and Huy et al. [13] found
out BMOω,p (see subsection 2.2 for the definition and properties), a non-trivial
subspace of BMO(Rn) for some Muckenhoupt weights ω and 0 < p � 1, such that
[b, T ] is bounded from the weighted Hardy spaces Hp(ω) to the weighted Lebesgue
spaces Lp(ω), when b ∈ BMOω,p. For the multilinear setting, He and Liang [12]
recently proved that [�b, T ] is bounded from H1(ω) × · · · × H1(ω) to L1/m(ω), when
�b ∈ (BMOω,1)m.

Based on the results above, it is natural to ask the following question.
Question. Is [�b, T ] bounded from Hp1(ω) × · · · × Hpm(ω) to Lp(ω) for some 0 <

pi < 1, 1 � i � m, when bi ∈ BMOω,pi
, the non-trivial subspaces of BMO(Rn)?

One of the main purpose in this paper is to address the question above. Our
result can be formulated as follows.
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Theorem 1.2. Let 0 < pi � 1, 1 � i � m, and

1
p

=
1
p1

+ · · · + 1
pm

.

Suppose that ω ∈ A∞ with
∫

Rn

ω(x)
(1+|x|)np0 < ∞ with p0 = min1�i�m pi, T is an

m-linear Calderón–Zygmund operator with K that satisfies (1.1) with

N � max

{⌊
mn

(
qω

pi
− 1
)⌋

+

, 1 � i � m

}
+ (m − 1)n. (1.2)

Then for �b = (b1, b2, . . . , bm), bi ∈ BMOω,pi
, 1 � i � m,

∥∥[�b, T ](�f)
∥∥

Lp(ω)
�
(

m∑
j=1

‖bj‖BMOω,pj

)
m∏

i=1

‖fi‖Hpi (ω).

Moreover, we consider the maximal truncated multilinear commutators. Let K
satisfy (1.1), the maximal truncated multilinear operator is defined by

T ∗(�f)(x) := sup
δ>0

|Tδ(�f)(x)| = sup
δ>0

∣∣∣∣∣
∫

Rn

Kδ(x, y1, . . . , ym)
m∏

j=1

fj(yj)dyj

∣∣∣∣∣, (1.3)

where Kδ(x, y1, . . . , ym) = φ(
√

|x − y1|2 + · · · + |x − ym|2/2δ)K(x, y1, . . . , ym)
and φ(x) is a smooth function on R

n, which vanishes if |x| � 1/4 and is equal
to 1 if |x| > 1/2. Given a collection of locally integral functions �b = (b1, . . . , bm),
the maximal truncated multilinear commutators are defined by

T ∗
�b

(�f)(x) :=
m∑

i=1

T ∗
bi

(�f)(x),

where

T ∗
bi

(�f)(x) = sup
δ>0

∣∣∣∣∣
∫

Rn

(bi(xi) − bi(yi))Kδ(x, y1, . . . , ym)
m∏

j=1

fj(yj)dyj

∣∣∣∣∣. (1.4)

The boundedness of T ∗ on the weighted Lebesgue spaces was first given by
Grafakos and Torres [9]. Subsequently, Grafakos and Kalton [8] and Li et al. [18]
successively discussed the boundedness of T ∗ on Hardy spaces and weighted Hardy
spaces. Recently, Wen et al. [21] extended and improved the results of [8] and [18]
as follows.
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Theorem B. (cf. [21]) Let 0 < p1, . . . , pm < ∞, ωi ∈ A∞, 1 � i � m, and

1
p

=
1
p1

+ · · · + 1
pm

.

Suppose that T ∗ is defined as in (1.3) and K satisfies (1.1) with N as in theorem
A. Then ∥∥T ∗(�f)

∥∥
Lp(ν�ω)

�
m∏

i=1

‖fi‖Hpi (ωi),

where ν�ω =
∏m

i=1 ω
p/pi

i .
Inspired by the results above, for the maximal truncated multilinear commutator

T ∗
�b

, we can obtain the following theorem.

Theorem 1.3. Let 0 < pi � 1, 1 � i � m, and

1
p

=
1
p1

+ · · · + 1
pm

.

Suppose that ω ∈ A∞ and satisfies
∫

Rn ω(x)/(1 + |x|)np0 < ∞ with p0 =
min1�i�m pi, T ∗

�b
is defined as in (1.4) and K satisfies (1.1) with N as in theorem

1.2. Then for �b = (b1, b2, . . . , bm), bi ∈ BMOω,pi
, 1 � i � m,

∥∥T ∗
�b

(�f)
∥∥

Lp(ω)
�
(

m∑
j=1

‖bj‖BMOω,pj

)
m∏

i=1

‖fi‖Hpi (ω).

Remark 1.4. (i) It is worth noting that for some pi > 1, i = 1, 2, . . . , m, the
results of theorems 1.2 and 1.3 still hold. (ii) Moreover, theorem 1.2 extends the
result in [12] for pi = 1 to the cases for certain 0 < pi < 1(i = 1, . . . , m). (iii) For
the general different ωi ∈ A∞ with

∫
Rn ω(x)/(1 + |x|)npidx < ∞, 1 � i � m, our

method doesn’t work. It would be interesting to know whether [�b, T ] or T ∗
�b

with
bi ∈ BMOωi,pi

(1 � i � m) are bounded from Hp1(ω1) × · · · × Hpm(ωm) to Lp(ν�ω)
for the different Muckenhoupt weights ωi, 1 � i � m, with ν�ω =

∏m
i=1 ω

p/pi

i .

The rest of this paper is organized as follows. We will recall some definitions and
known results about Muckenhoupt weights, BMOω,p spaces and weighted Hardy
spaces in § 2. The proof of theorem 1.2 will be given in § 3. Finally, we will prove
theorem 1.3 in § 4. We remark that some ideas in our arguments are taken from [4,
13, 19, 21], in which the multilinear Calderón–Zygmund operators and the linear
commutators of Calderón–Zygmund operators were dealt with.

Finally, we make some conventions on notation. Throughout the whole paper,
we denote by C a positive constant which is independent of the main parameters,
but it may vary from line to line. We denote f � g, f ≈ g if f � Cg and f � g � f
respectively. For 1 � p � ∞, p′ is the conjugate index of p, and 1/p + 1/p′ = 1.
Ec = R

n\E is the complementary set of any measurable subset E of R
n. Any cube

Q̃ is denoted as Q̃ := 8
√

nQ, where the cube is with the same centre and 8 times
the side length of Q.

https://doi.org/10.1017/prm.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.57


1264 Y. Han, Y. Wen, H. Wu and Q. Xue

2. Preliminaries

In this section, we recall some auxiliary facts and lemmas, which will be used in
our arguments.

2.1. Muckenhoupt weights

A non-negative measurable function ω is said to be in the Muckenhoupt class Ap

with 1 < p < ∞, if there exists a constant C > 0 such that

[ω]Ap,Q =

(
1
|Q|

∫
Q

ω(x)dx

)(
1
|Q|

∫
Q

ω(x)1−p′
dx

)p−1

� C

for all cubes Q ⊂ R
n, where 1/p + 1/p′ = 1. And we denote [w]Ap

:= supQ[ω]Ap,Q.
When p = 1, a non-negative measurable function ω is said to belong A1 if

1
|Q|

∫
Q

ω(y)dy � ess inf
x∈Q

ω(x)

for all cubes Q ⊂ R
n. We denote A∞ := ∪p�1Ap and by qω := inf{q > 1 : ω ∈ Aq}

for ω ∈ A∞. It is well known that if ω ∈ Ap for 1 < p < ∞, then ω ∈ Ar for all
r > p and ω ∈ Aq for some 1 � q < p. Then we give some important results about
Ap weight that will be used later on.

Lemma 2.1 [7]. Let ω ∈ Ap, p � 1. Then, for any cube Q and λ > 1,

ω(λQ) � λnpω(Q).

Lemma 2.2 [4]. Let ω ∈ A∞, 0 < p < ∞ and max{1, p} < q < ∞. Then for any
collection of cubes {Qk}∞k=1 in R

n and non-negative integrable functions {fk}∞k=1

with supp fk ⊂ Qk, we have∥∥∥∥∥
∞∑

k=1

fk

∥∥∥∥∥
Lp(ω)

�
∥∥∥∥∥

∞∑
k=1

(
1

ω(Qk)

∫
Qk

fk(x)qω(x)dx

)1/q

χQk

∥∥∥∥∥
Lp(ω)

.

2.2. BMOω,p spaces and basic facts

This subsection is concerning with the definition of BMOω,p and its basic
properties.

Definition of BMOω,p. Let p ∈ (0, ∞), ω ∈ A∞ and satisfy
∫

Rn ω(x)/(1 + |x|)np

dx < ∞. A locally integrable function b is said to be in BMOω,p if

‖b‖BMOω,p
:= sup

Q

{(
1

ω(Q)

∫
Qc

ω(x)
|x − x0|np

dx

)1/p ∫
Q

|b(y) − bQ|dy

}
< ∞,

where the supremum is taken over all cubes Q := Q(x0, l) ⊂ R
n with x0 ∈ R

n and
l ∈ (0, ∞). Here and hereafter,

ω(Q) :=
∫

Q

ω(z)dz and bQ :=
1
|Q|

∫
Q

b(z)dz.
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A locally integrable function b is said to be in BMO if

‖b‖BMO := sup
Q⊂Rn

1
|Q|

∫
Q

|b(x) − bQ|dx < ∞,

where the supremum is taken over all cubes Q ⊂ R
n.

Basic facts ([13, 19]). (i) BMOω,p ⊂ BMO, which is a proper inclusion.
(ii) Let 0 < p � 1, ω ∈ A∞ such that

∫
Rn ω(x)/(1 + |x|)npdx < ∞. Any Lipschitz

function b with compact support belongs to BMOω,p.

Lemma 2.3 [19]. Let ω ∈ A∞ and q ∈ [1, ∞). Then for b ∈ BMO and any cube
Q := Q(x0, l) ⊂ R

n with some x0 ∈ R
n and l ∈ (0, ∞),

(
1

ω(Q)

∫
Q

|b(x) − bQ|qω(x)dx

)1/q

� ‖b‖BMO.

2.3. Weighted Hardy spaces

Let S be the Schwartz class of smooth functions. For a large integer N0, denote

SN0 =

{
φ ∈ S (Rn) :

∫
Rn

(1 + |x|)N0

( ∑
|β|�N0

∣∣∣∣∣ ∂β

∂xβ
φ(x)

∣∣∣∣∣
2)

dx � 1

}
.

Given ω ∈ A∞ and 0 < p < ∞, the weighted Hardy spaces Hp(ω) is defined by

Hp(ω) = {f ∈ S ′(Rn) : MN0(f) ∈ Lp(ω)}

with the quasi-norm

‖f‖Hp(ω) = ‖MN0(f)‖Lp(ω),

where MN0(f) is given by

MN0(f)(x) = sup
φ∈SN0

sup
t>0

|φt ∗ f(x)|.

Given an integer N � 0, we say that a function a is an (Hp(ω), ∞, N)-atom if

supp ak ⊂ Qk, ‖ak‖L∞ �
(
ω(Qk)

)−1/p
,

∫
Rn

xαak(x)dx = 0, |α| � N.

For ω ∈ A∞ and 0 < p < ∞, denote Sω := �n(qω/p − 1)
+. Let N � Sω, we define

ON =

{
f ∈ C∞

0 :
∫

Rn

xαf(x)dx = 0, 0 � |α| � N

}
.

Then ON is dense in Hp(ω) (see [4, 5]).
In addition, we have the following finite atomic decomposition which was given

in [5].
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Lemma 2.4 [5]. Given 0 < p < ∞ and ω ∈ A∞, Sω := �n(qω/p − 1)
+, fix N � Sω.
Then if f ∈ ON , there exists a finite sequence {ak}M

k=1 of (Hp(ω), ∞, N)-atoms
with supports Qk, and a non-negative sequence {λi}M

i=1 such that f =
∑M

k=1 λkak

and
M∑

k=1

λp
k � ‖f‖p

Hp(ω).

3. The proof of theorem 1.2

This section is devoted to proving theorem 1.2. First, we need to prove a weighted
norm inequality for [�b, T ]. To do so, we will make use of some recent developments
in the theory of Harmonic analysis on the domination of multilinear operators by
sparse operators. Next, we sketch the basic definitions.

A collection of cubes S is called a sparse family if each cube Q ∈ S contains
measurable subset EQ ⊂ Q such that |EQ| � 1/2|Q| and the family {EQ}Q∈S is
pairwise disjoint. Given a sparse family S, the sparse operator TS,b defined with a
locally integrable function b by Lerner et al. in [16],

TS,b(f)(x) =
∑
Q∈S

|b(x) − bQ|fQχQ(x).

Let T 

S,b denote the adjoint operator to TS,b :

T 

S,b(f)(x) =

∑
Q∈S

(
1
|Q|

∫
Q

|b(y) − bQ|f(y)dy

)
χQ(x).

Proposition 3.1 [16]. Let 1 < p < ∞ and ω ∈ Ap, then for b ∈ BMO, given any
sparse linear operators TS,b(f) and T 


S,b(f) have

‖TS,b(f)‖Lp(ω) � [ω]max{1,p′/p}
Ap

‖b‖BMO‖f‖Lp(ω)

and

‖T 

S,b(f)‖Lp(ω) � [ω]max{1,p′/p}

Ap
‖b‖BMO‖f‖Lp(ω).

In a similar way, for bl ∈ L1
loc, l = 1, . . . , m, given a sparse family S we define

the multilinear sparse operator:

TS,bl
(f1, . . . , fm)(x) =

∑
Q∈S

|bl(x) − bl,Q|
m∏

i=1

fi,QχQ(x).

Let T 

S,bl

denote the adjoint operator to TS,bl
:

T 

S,bl

(f1, . . . , fm)(x) =
∑
Q∈S

(
1
|Q|

∫
Q

|bl(y) − bl,Q|fl(y)dy

)
m∏

i=1,i �=l

fi,QχQ(x).

The following pointwise sparse domination for the multilinear commutators of
Calderón–Zygmund operators was proved by Kunwar and Ou [14]:
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Proposition 3.2 [14]. Let T be an m-linear Calderón–Zygmund operator with K

satisfying (1.1) with N as in theorem 1.2. Given locally integral functions �b =
(b1, . . . , bm) on R

n. Then for any bounded functions �f = (f1, . . . , fm) with compact
support, there exists 3n sparse families Sj such that

∣∣[�b, T ](f1, . . . , fm)(x)
∣∣ � m∑

i=1

(
3n∑

j=1

(
TSj ,bi

(|f1|, . . . , |fm|)(x)

+ T 

Sj ,bi

(|f1|, . . . , |fm|)(x)
))

.

Next, we prove the following weighted estimate for [�b, T ].

Lemma 3.3. Let T be an m-linear Calderón–Zygmund operator with K that
satisfies (1.1) with N as in theorem 1.2. Fix ω ∈ Ap, 1 < p < ∞. Given functions
�b = (b1, . . . , bm) which bi ∈ BMO, i = 1, . . . , m. Then for any bounded functions
�f = (f1, . . . , fm) with compact support, we have

∥∥[�b, T ](f1, . . . , fm)
∥∥

Lp(ω)
�
(

m∑
i=1

‖bi‖BMO

)
‖fl‖Lp(ω)

m∏
j=1,j �=l

‖fj‖L∞ , l = 1, 2, . . . ,m.

Proof. By linearity it is enough to consider the operator with only one symbol.
For 1 � k � m, fix bk ∈ BMO and consider the operator [bk, T ](f1, . . . , fm)(x). By
proposition 3.2, it suffices to prove this estimate for any multilinear sparse operators
TS,bk

, T 

S,bk

and non-negative functions f1, . . . , fm. By the definition of the sparse
operator, we have

TS,bk
(f1, . . . , fm)(x) �

m∏
i=1,i �=l

‖fi‖L∞
∑
Q∈S

|bk(x) − bk,Q|fl,QχQ(x)

= TS,bk
(fl)(x)

m∏
i=1,i �=l

‖fi‖L∞ .

Then, by proposition 3.1, we obtain

‖TS,bk
(f1, . . . , fm)‖Lp(ω) � ‖bk‖BMO‖fl‖Lp(ω)

m∏
i=1,i �=l

‖fi‖L∞ ,

Next, we estimate T 

S,bk

in two different cases:
Case 1: k = l,

T 

S,bk

(f1, . . . , fm)(x) �
m∏

i=1,i �=l

‖fi‖L∞
∑
Q∈S

(
1
|Q|

∫
Q

|bk(y) − bk,Q||fk(y)|dy

)
χQ(x)

= T 

S,bk

(fk)(x)
m∏

i=1,l �=l

‖fi‖L∞ .
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Then, by proposition 3.1, we have that

‖T 

S,bk

(f1, . . . , fm)‖Lp(ω) � ‖bk‖BMO‖fl‖Lp(ω)

m∏
i=1,i �=k

‖fi‖L∞ .

Case 2: k �= l,

T 

S,bk

(f1, . . . , fm)(x) �
m∏

i=1,i �=l

‖fi‖L∞
∑
Q∈S

(
1
|Q|

∫
Q

|bk(y) − bk,Q|dy

)
fl,QχQ(x)

� ‖bk‖BMO

m∏
i=1,i �=l

‖fi‖L∞
∑
Q∈S

fl,QχQ(x)

=: ‖bk‖BMO

m∏
i=1,i �=l

‖fi‖L∞TS(fl)(x),

Recall the well-known bound for the sparse operator TS (see [3]):

‖TS(fl)‖Lp(ω) � [ω]max{1,p′/p}
Ap

‖fl‖Lp(ω), p ∈ (1,∞).

Thus, we have

‖T 

S,bk

(f1, . . . , fm)‖Lp(ω) � ‖bk‖BMO‖fl‖Lp(ω)

m∏
i=1,i �=l

‖fi‖L∞ ,

which completes the proof of lemma 3.3. �

We also need the following lemma:

Lemma 3.4 [17]. Let T be an m-linear Calderón–Zygmund operator with K that
satisfies (1.1) with N as in theorem 1.2. Let 0 < pi � 1, ai be an (Hpi(ω), ∞, N)-
atom supported in Qk, and ci be the centre of Qi, li be the side length of Qi,
i = 1, . . . , m. Assume Q̃1 ∩ · · · ∩ Q̃m �= ∅. Then for any x ∈ (Q̃1 ∩ · · · ∩ Q̃m)c, we
have

|T (a1, . . . , am)(x)| �
m∏

i=1

(
ω(Qi)

)−1/pi |Qi|1+(N+1)/nm

(|x − ci| + li)n+(N+1)/m
.

Now, we are in the position to prove theorem 1.2.

Proof of theorem 1.2. By linearity, it is enough to consider the operator with only
one symbol. For 1 � l � m, fix then bl ∈ BMOω,pl

and consider the operator
[bl, T ](f1, . . . , fm)(x). By lemma 2.4, we will work with finite sums of weighted
Hardy atoms and obtain estimates independent of the number of terms in each
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sum. We write fi as a finite sum of atoms,

fi =
M∑

ki=1

λi,ki
ai,ki

, i = 1, 2, . . . ,m,

where λi,ki
� 0 and ai,ki

are (Hpi(ω), ∞, N)-atoms. They are supported in cubes
Qi,ki

, ‖ai,ki
‖L∞ � (ω(Qi,ki

))−1/pi ,
∫

Qi,ki
xβai,ki

(x)dx = 0 for all |β| � N, and

∑
ki

λpi

i,ki
� ‖fi‖pi

Hpi (ω).

Denote the centre of Qi,ki
by ci,ki

and the side length of Qi,ki
by li,ki

. Using
multilinearity we write

[bl, T ](f1, . . . , fm)(x) =
∑

k1,...,km

λ1,k1 · · ·λm,km
[bl, T ](a1,k1 , . . . , am,km

)(x).

Then, we decompose [bl, T ](f1, . . . , fm)(x) into two parts, for x ∈ R
n∣∣[bl, T ](f1, . . . , fm)(x)

∣∣ � I1(x) + I2(x),

where

I1(x) =
∑

k1,...,km

λ1,k1 · · ·λm,km

∣∣[bl, T ](a1,k1 , . . . , am,km
)(x)

∣∣χQ̃1,k1∩···∩Q̃m,km
,

I2(x) =
∑

k1,...,km

λ1,k1 · · ·λm,km

∣∣[bl, T ](a1,k1 , . . . , am,km
)(x)

∣∣χQ̃c
1,k1

∪···∪Q̃c
m,km

.

Now, let us begin to discuss ‖I1‖Lp(ω). For fixed k1, . . . , km, assume that

Q̃1,k1 ∩ · · · ∩ Q̃m,km
�= ∅,

since otherwise there is nothing needed to be proved. Suppose that ω(Q̃1,k1) has
the smallest value among ω(Q̃i,ki

), i = 1, 2, . . . , m. For q ∈ (qω, ∞), by lemma
3.3, we have(

1
ω(Q̃1,k1)

∫
Q̃1,k1

∣∣[bl, T ](a1,k1 , . . . , am,km
)(x)

∣∣qω(x)dx

)1/q

�
(
ω(Q̃1,k1)

)−1/q∥∥[bl, T ](a1,k1 , . . . , am,km
)
∥∥

Lq(ω)

� ‖bl‖BMO

(
ω(Q̃1,k1)

)−1/q‖a1,k1‖Lq(ω)

m∏
i=2

‖ai,ki
‖L∞

� ‖bl‖BMO

(
ω(Q̃1,k1)

)−1/q(
ω(Q1,k1)

)1/q−1/p1
m∏

i=2

(
ω(Qi,ki

)
)−1/pi

� ‖bl‖BMO

m∏
i=1

(
ω(Qi,ki

)
)−1/pi

.
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By lemma 2.2 and Hölder’s inequality, we obtain

‖I1‖Lp(ω) � ‖bl‖BMO

∥∥∥∥∥
∑

k1,...,km

λ1,k1 · · ·λm,km

m∏
i=1

(
ω(Qi,ki

)
)−1/pi

χQ̃1,k1

∥∥∥∥∥
Lp(ω)

� ‖bl‖BMO

∥∥∥∥∥
m∏

i=1

(∑
ki

λi,ki

(
ω(Qi,ki

)
)−1/pi

χQ̃1,k1

)∥∥∥∥∥
Lp(ω)

� ‖bl‖BMO

m∏
i=1

∥∥∥∥∥
∑
ki

λi,ki

(
ω(Qi,ki

)
)−1/pi

ω(·)1/piχQ̃1,k1

∥∥∥∥∥
Lpi

� ‖bl‖BMO

m∏
i=1

(∑
ki

λpi

i,ki

)1/pi

� ‖bl‖BMO

m∏
i=1

‖fi‖Hpi (ω).

Thus,

‖I1‖Lp(ω) � ‖bl‖BMO

m∏
i=1

‖fi‖Hpi (ω).

Next, we estimate ‖I2‖Lp(ω), we split it again

‖I2‖Lp(ω) �
∥∥∥∥∥
∑

k1,...,km

λ1,k1 · · ·λm,km

∣∣bl − bl,Ql,kl

∣∣

× |T (a1,k1 , . . . , al,kl
, . . . , am,km

)|χQ̃c
1,k1

∪···∪Q̃c
m,km

∥∥∥∥∥
Lp(ω)

+

∥∥∥∥∥
∑

k1,...,km

λ1,k1 · · ·λm,km

×
∣∣T (a1,k1 , . . . , (bl − bl,Ql,kl

)al,kl
, . . . , am,km

)∣∣χQ̃c
1,k1

∪···∪Q̃c
m,km

∥∥∥∥∥
Lp(ω)

=: ‖I21‖Lp(ω) + ‖I22‖Lp(ω).

For ‖I21‖Lp(ω), using the Hölder inequality and lemma 3.4, we get

‖I21‖Lp(ω) �
∥∥∥∥∥
∑

k1,...,km

λ1,k1 · · ·λm,km
|bl − bl,Ql,kl

|
m∏

i=1

×
(
ω(Qi,ki

)
)−1/pi |Qi,ki

|1+(N+1)/nm

(li,ki
+ | · −ci,ki

|)n+(N+1)/m

∥∥∥∥∥
Lp(ω)
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�
∥∥∥∥∥
(∑

kl

λl,kl

(
ω(Ql,kl

)
)−1/pl |bl − bl,Ql,kl

|ln+(N+1)/m
l,kl

(ll,kl
+ | · −cl,kl

|)n+(N+1)/m

)

×
m∏

i=1,i �=l

(∑
ki

λi,ki

(
ω(Qi,ki

)
)−1/pi

l
n+(N+1)/m
i,ki

(li,ki
+ | · −ci,ki

|)n+(N+1)/m

)∥∥∥∥∥
Lp(ω)

�
∥∥∥∥∥
∑
kl

λl,kl

(
ω(Ql,kl

)
)−1/pl |bl − bl,Ql,kl

|ln+(N+1)/m
l,kl

(ll,kl
+ | · −cl,kl

|)n+(N+1)/m

∥∥∥∥∥
Lpl (ω)

×
m∏

i=1,i �=l

∥∥∥∥∥
∑
ki

λi,ki

(
ω(Qi,ki

)
)−1/pi

l
n+(N+1)/m
i,ki

(li,ki
+ | · −ci,ki

|)n+(N+1)/m

∥∥∥∥∥
Lpi (ω)

=: J1 · J2.

For J2, by (1.2) and lemma 2.1, we have∥∥∥∥∥
∑
ki

λi,ki

(
ω(Qi,ki

)
)−1/pi

l
n+(N+1)/m
i,ki

(li,ki
+ | · −ci,ki

|)n+(N+1)/m

∥∥∥∥∥
pi

Lpi (ω)

�
∑
ki

λpi

i,ki

(∫
Qi,ki

(
ω(Qi,ki

)
)−1

l
pin+pi(N+1)/m
i,ki

ω(x)

(li,ki
+ |x − ci,ki

|)pin+pi(N+1)/m
dx

+
∞∑

j=1

∫
2jQi,ki

\2j−1Qi,ki

(
ω(Qi,ki

)
)−1

l
pin+pi(N+1)/m
i,ki

ω(x)

(li,ki
+ |x − ci,ki

|)pin+pi(N+1)/m
dx

)

�
∑
ki

λpi

i,ki

(
ω(Qi,ki

)
)−1

( ∞∑
j=0

ω(2jQi,ki
)

2j(pin+pi(N+1)/m)

)

�
∑
ki

λpi

i,ki

(
ω(Qi,ki

)
)−1

( ∞∑
j=1

ω(Qi,ki
)

2j(pin+pi(N+1)/m−nqω)

)

�
∑
ki

λpi

i,ki
� ‖fi‖pi

Hpi (ω).

For J1, by (1.2) and lemmas 2.1 and 2.3, we obtain∥∥∥∥∥
∑
kl

λl,kl

(
ω(Ql,kl

)
)−1/pl |bl − bl,Ql,kl

|ln+(N+1)/m
l,kl

(ll,kl
+ | · −cl,kl

|)n+(N+1)/m

∥∥∥∥∥
pl

Lpl (ω)

�
∑
kl

λpl

l,kl

(
ω(Ql,kl

)
)−1

(∫
Ql,kl

|bl(x) − bl,Ql,kl
|pl l

pln+pl(N+1)/m
l,kl

ω(x)

(ll,kl
+ |x − cl,kl

|)pln+pl(N+1)/m
dx

+
∞∑

j=1

∫
2j+1Ql,kl

\2jQl,kl

|bl(x) − bl,Ql,kl
|pl l

pln+pl(N+1)/m
l,kl

ω(x)

(ll,kl
+ |x − cl,kl

|)pln+pl(N+1)/m
dx

)

� ‖bl‖pl

BMO‖fl‖pl

Hpl (ω).
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Thus,

‖I21‖Lp(ω) � ‖bl‖BMO

m∏
i=1

‖fi‖Hpi (ω).

To estimate ‖I22‖Lp(ω), we write

‖I22‖Lp(ω) =

∥∥∥∥∥T
(

f1, . . . ,
∑
kl

λl,kl
(bl − bl,Ql,kl

)al,kl
, . . . , fm

)∥∥∥∥∥
Lp(ω)

.

By the boundedness of T from Hp1(ω) × · · · × Hpm(ω) to Lp(ω), we only need to
show ∥∥∥∥∥

∑
kl

λl,kl
(bl − bl,Ql,kl

)al,kl

∥∥∥∥∥
Hpl (ω)

� ‖fl‖Hpl (ω)‖bl‖BMOω,pl
,

that is,∥∥∥∥∥
∑
kl

λl,kl
MN

(
(bl − bl,Ql,kl

)al,kl

)∥∥∥∥∥
Lpl (ω)

� ‖fl‖Hpl (ω)‖bl‖BMOω,pl
. (3.1)

We write∥∥∥∥∥
∑
kl

λl,kl
MN

(
(bl − bl,Ql,kl

)al,kl

)∥∥∥∥∥
pl

Lpl (ω)

�
∑
kl

λpl

l,kl

∫
2Ql,kl

∣∣MN

(
(bl − bl,Ql,kl

)al,kl

)
(x)
∣∣plω(x)dx

+
∑
kl

λpl

l,kl

∫
(2Ql,kl

)c

∣∣MN

(
(bl − bl,Ql,kl

)al,kl

)
(x)
∣∣plω(x)dx =: L1 + L2.

For L1, by Hölder’s inequality for t/pl (qω < t < ∞), lemma 2.3 and the bounded-
ness of MN on Lt(ω), we obtain

L1 =
∑
kl

λp1
l,kl

∫
2Ql,kl

∣∣MN

(
(bl − bl,Ql,kl

)al,kl

)
(x)
∣∣plω(x)dx

�
∑
kl

λpl

l,kl

∥∥MN

(
(bl − bl,Ql,kl

)al,kl

)∥∥pl

Lt(ω)

(∫
2Ql,kl

ω(x)dx

)1−pl/t

�
∑
kl

λpl

l,kl

∥∥(bl − bl,Ql,kl
)al,kl

∥∥pl

Lt(ω)

(
ω(Ql,kl

)
)1−pl/t

�
∑
kl

λpl

l,kl
‖bl‖pl

BMO � ‖fl‖pl

Hpl (ω)‖bl‖pl

BMOω,pl
.
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For L2, note that for x ∈ (2Ql,kl
)c and y ∈ Ql,kl

, |x − y| ≈ |x − cl,kl
|. Then, for

φ ∈ SN , t > 0, we have

1
tn

∣∣∣∣∣
∫

Ql,kl

(bl(y) − bl,Ql,kl
)al,kl

(y)φ
(x − y

t

)
dy

∣∣∣∣∣
� 1

|x − cl,kl
|n
∫

Ql,kl

|bl(y) − bl,Ql,kl
||al,kl

(y)|dy

� 1

|x − cl,kl
|n
(
ω(Ql,kl

)
)1/pl

∫
Ql,kl

|bl(y) − bl,Ql,kl
|dy.

This, together with the definition of BMOω,pl
, deduces that

L2 �
∑
kl

λpl

l,kl
‖bl‖pl

BMOω,pl
� ‖fl‖pl

Hpl (ω)‖bl‖pl

BMOω,pl
.

Summing up the estimates of L1 and L2, we obtain

‖I22‖Lp(ω) � ‖bl‖BMOω,pl

m∏
i=1

‖fi‖Hpi (ω).

Combining the estimates in both cases, there is

∥∥[�b, T ](�f)
∥∥

Lp(ω)
�
(

m∑
j=1

‖bj‖BMOω,pj

)
m∏

i=1

‖fi‖Hpi (ω),

which completes the proof of theorem 1.2. �

4. The proof of theorem 1.3

Before proving theorem 1.3, we need to prove a weighted norm inequality for T ∗
�b

.

We first recall some definitions and results. Given �f = (f1, . . . , fm), we define the
multilinear maximal operator M by

M(�f)(x) = sup
Q
x

m∏
i=1

1
|Q|

∫
Q

|fi(yi)|dyi,

where the supremum is taken over all cubes Q containing x.
For ρ > 0, let Mρ be the maximal function

Mρ(f)(x) = M(|f |ρ)1/ρ(x) =

(
sup
Q
x

1
|Q|

∫
Q

|f(y)|ρdy

)1/ρ

.

Also, let M � be the sharp maximal function of Fefferman-Stein [6],

M �(f)(x) = sup
Q
x

inf
c

1
|Q|

∫
Q

|f(y) − c|dy ≈ sup
Q
x

1
|Q|

∫
Q

|f(y) − fQ|dy,
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and

M �
ρ(f)(x) =

(
M �(|f |ρ)(x)

)1/ρ =

(
sup
Q
x

inf
c

1
|Q|

∫
Q

∣∣|f(y)|ρ − c
∣∣dy

)1/ρ

.

The maximal function ML(log L)(�f)(x) is defined by

ML(log L)(�f)(x) = sup
Q
x

m∏
i=1

‖fi‖L(log L),Q,

and ML(log L)(�f) is pointwise controlled by a multiple of
∏m

j=1 M2(fj)(x).
We will use the following form of classical result of Fefferman and Stein [6]. Let

0 < p, ρ < ∞ and ω ∈ A∞. Then

∫
Rn

(
Mρ(f)(x)

)p
ω(x)dx �

∫
Rn

(
M �

ρ(f)(x)
)p

ω(x)dx,

for all functions f for which the left-hand side is finite.

Lemma 4.1. Let T ∗
�b

be defined as in (1.4) and K satisfies (1.1) with N as in theorem

1.2. Fix ω ∈ Ap, 1 < p < ∞. Given functions �b = (b1, . . . , bm) which bi ∈ BMO, i =
1, . . . , m. Then for any bounded functions �f = (f1, . . . , fm) with compact support,
we have

∥∥T ∗
�b

(f1, . . . , fm)
∥∥

Lp(ω)
�
(

m∑
i=1

‖bi‖BMO

)
‖fl‖Lp(ω)

m∏
j=1,j �=l

‖fj‖L∞ , l = 1, 2, . . . ,m.

Proof. By sublinearity, it is enough to consider the operator with only one symbol.
For 1 � i � m, fix bi ∈ BMO and consider the operator T ∗

bi
(�f)(x). Let 0 < δ < ε

with 0 < δ < 1/m, Xue [22] proved:

M �
δ (T ∗

bi
(�f))(x) � ‖bi‖BMO

(
ML(log L)(�f)(x) + Mε(T ∗(�f))(x)

)
, (4.1)

and

M �
δ (T ∗(�f))(x) � M(�f)(x). (4.2)
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Taking 0 < δ < ε < 1/m, using (4.1) and (4.2) and the Fefferman–Stein inequal-
ity, we have

‖T ∗
bi

(�f)‖Lp(ω) � ‖Mδ(T ∗
bi

(�f))‖Lp(ω) � ‖M �
δ (T ∗

bi
(�f))‖Lp(ω)

� ‖bi‖BMO

(
‖ML(log L)(�f)‖Lp(ω) + ‖Mε(T ∗(�f))‖Lp(ω)

)
� ‖bi‖BMO

(
‖ML(log L)(�f)‖Lp(ω) + ‖M �

ε(T ∗(�f))‖Lp(ω)

)
� ‖bi‖BMO

(
‖ML(log L)(�f)‖Lp(ω) + ‖M(�f)‖Lp(ω)

)
� ‖bi‖BMO‖ML(log L)(�f)‖Lp(ω) � ‖bi‖BMO

∥∥∥∥∥
m∏

j=1

M2(fj)

∥∥∥∥∥
Lp(ω)

� ‖bi‖BMO

m∏
j=1,j �=l

‖M2(fj)‖L∞‖M2(fl)‖Lp(ω)

� ‖bi‖BMO‖fl‖Lp(ω)

m∏
j=1,j �=l

‖fj‖L∞ .

To apply the Fefferman–Stein inequality in the above computations, we need to
check that ‖Mδ(T ∗

bi
)(�f)‖Lp(ω) and ‖Mε(T ∗(�f))‖Lp(ω) are finite. Note that ω ∈ Ap,

ω is also in Ap0 with pm < p0 < ∞. So with ε < p/p0 < 1/m and the boundedness
of Hardy–Littlewood maximal function, we have

‖Mε(T ∗(�f))‖Lp(ω) � ‖Mp/p0(T
∗(�f))‖Lp(ω) = ‖M(T ∗(�f)p/p0)‖p0/p

Lp0 (ω)

� ‖T ∗(�f)p/p0‖p0/p
Lp0 (ω) = ‖T ∗(�f)‖Lp(ω).

Then it is enough to prove ‖T ∗(�f)‖Lp(ω) is finite for each family �f of bounded func-
tions with compact support for which ‖ML(log L)(�f)‖Lp(ω) is finite. The arguments
are as follows.

Without loss of generality, we assume supp fi ⊂ Q(0, l) for i = 1, . . . , m. The
weight ω is also in Lr

loc for r sufficiently close to 1 such that its dual exponent r′

satisfies 1/m < pr′ < ∞. Thus, it follows from Hölder’s inequality and the
boundedness of T ∗

‖T ∗(�f)χ2Q‖Lp(ω) �
(∫

2Q

|T ∗(�f)(x)|pr′
dx

)1/pr′(∫
2Q

ω(x)rdx

)1/pr

� ‖T ∗(�f)‖Lpr′ �
m∏

i=1

‖fi‖Lsi < ∞, (4.3)
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where 1/pr′ =
∑m

i=1 1/si. For x ∈ (2Q)c, yi ∈ Q, we have |x − yi| ≈ |x|,
i = 1, . . . , m,

|T ∗(�f)(x)| �
∫

(Q(0,l))m

∏m
i=1 |fi(yi)|

(
∑m

i=1 |x − yi|)mn
dyi

�
m∏

i=1

1
|x|n

∫
Q(0,|x|)

|fi(yi)|dyi � M(�f)(x) � ML(log L)(�f)(x). (4.4)

Fom the assumption ‖ML(log L)(�f)‖Lp(ω) is finite, we have

‖T ∗(�f)χ(2Q)c‖Lp(ω) � ‖ML(log L)(�f)χ(2Q)c‖Lp(ω) < ∞.

Thus, we obtain ‖Mε(T ∗(�f))‖Lp(ω) is finite.
Next, we show ‖Mδ(T ∗

bi
)(�f)‖Lp(ω) is finite. It suffices to prove ‖T ∗

bi
(�f)‖Lp(ω) is

finite. First, we assume bi is bounded,

T ∗
bi

(�f)(x) = sup
δ>0

∣∣∣∣∣
∫

(Rn)m

(bi(x) − bi(yj))Kδ(x, y1, . . . , ym)
m∏

i=1

fi(yi)dyi

∣∣∣∣∣
� |bi(x)|T ∗(�f)(x) + T ∗(f1, . . . , bifi, . . . , fm)(x)

� T ∗(�f)(x) + T ∗(f1, . . . , bifi, . . . , fm)(x).

Thus, following the similar arguments as (4.3), we have

‖T ∗
bi

(�f)χ2Q‖Lp(ω) � ‖T ∗(�f)χ2Q‖Lp(ω) + ‖T ∗(f1, . . . , bifi, . . . , fm)χ2Q‖Lp(ω)

�
m∏

i=1

‖fi‖Lsi (ω) < ∞.

On the other hand, for x ∈ (2Q)c, note that b is bounded, then similar to the
arguments of (4.4), we have

T ∗
bi

(�f)(x) � ML(log L)(�f)(x).

From the assumption, we obtain

‖T ∗
bi

(�f)χ(2Q)c‖Lp(ω) � ‖ML(log L)(�f)χ(2Q)c‖Lp(ω) < ∞.

Thus, we proved ‖T ∗
bi

(�f)‖Lp(ω) is finite when bi is bounded.
For general b, we use the limiting argument as in [16]. Let {bi,j} be a sequence

of functions such that

bi,j(x) =

⎧⎪⎨
⎪⎩

j, bi(x) > j

bi(x), |bi(x)| � j,

−j, bi(x) < −j.

Note that the sequence converges pointwise to bi almost everywhere, and
‖bi,j‖BMO � ‖bi‖BMO.

https://doi.org/10.1017/prm.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.57


Multilinear commutators on weighted Hardy spaces 1277

Since the family �f is bounded with compact support and T ∗ is bounded, we have
that T ∗

bi,j
(�f) convergence to T ∗

bi
(�f) in Lp is for every 1 < p < ∞. It follows that for

a subsequence {bi,j′} ⊂ {bi,j}, T ∗
bi,j′

(�f) convergence to T ∗
bi

(�f) is almost everywhere.
Then by Fatou’s lemma, we get the required estimate. Thus, we complete the proof
of lemma 4.1. �

Lemma 4.2 [18, 21]. Let T ∗ be defined as in (1.3) and K satisfies (1.1) with N
as in theorem 1.2. For 0 < pi � 1, let ai be an (Hpi(ω), ∞, N)-atom supported in
Qk, and ci be the centre of Qi, li be the side length of Qi, i = 1, . . . , m. Assume
Q̃1 ∩ · · · ∩ Q̃m �= ∅, then for any x ∈ (Q̃1 ∩ · · · ∩ Q̃m)c, we have

|T ∗(a1, . . . , am)(x)| �
m∏

i=1

(
ω(Qi)

)−1/pi |Qi|1+(N+1)/nm

(|x − ci| + li)n+(N+1)/m
.

Now, we are in the position to prove theorem 1.3.

Proof of theorem 1.3. We use the same arguments as in proving theorem 1.2. By
sublinearity, it is enough to consider the operator with only one symbol. For 1 � l �
m, fix then bl ∈ BMOω,pl

and consider the operator T ∗
bl

(f1, . . . , fm)(x). By lemma
2.4, we will work with finite sums of weighted Hardy atoms and obtain estimates
independent of the number of terms in each sum. We write fi as a finite sum of
atoms,

fi =
M∑

ki=1

λi,ki
ai,ki

, i = 1, 2, . . . ,m,

where λi,ki
� 0 and ai,ki

are (Hpi(ω), ∞, N)-atoms. They are supported in cubes
Qi,ki

, ‖ai,ki
‖L∞ � (ω(Qi,ki

))−1/pi ,
∫

Qi,ki
xβai,ki

(x)dx = 0 for all |β| � N, and

∑
ki

λpi

i,ki
� ‖fi‖pi

Hpi (ω).

Denote the centre of Qi,ki
by ci,ki

and the side length of Qi,ki
by li,ki

. Using
multi-sublinearity, we write

T ∗
bl

(f1, . . . , fm)(x) �
∑

k1,...,km

λ1,k1 · · ·λm,km
T ∗

bl
(a1,k1 , . . . , am,km

)(x).

Then, we decompose T ∗
bl

(f1, . . . , fm)(x) into two parts, for x ∈ R
n

T ∗
bl

(f1, . . . , fm)(x) � I(x) + II(x),

where

I(x) :=
∑

k1,...,km

λ1,k1 · · ·λm,km
T ∗

bl
(a1,k1 , . . . , am,km

)(x)χQ̃1,k1∩···∩Q̃m,km
,

II(x) :=
∑

k1,...,km

λ1,k1 · · ·λm,km
T ∗

bl
(a1,k1 , . . . , am,km

)(x)χQ̃c
1,k1

∪···∪Q̃c
m,km

.
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By lemmas 2.2 and 4.1 and the same arguments as estimating I1 in the proof of
theorem 1.2, we have

‖I‖Lp(ω) � ‖bl‖BMO

m∏
i=1

‖fi‖Hpi (ω).

Next, we estimate ‖II‖Lp(ω), we split it again

‖II‖Lp(ω) �
∥∥∥∥∥
∑

k1,...,km

λ1,k1 · · ·λm,km

∣∣bl − bl,Ql,kl

∣∣

× T ∗(a1,k1 , . . . , al,kl
, . . . , am,km

)χQ̃c
1,k1

∪···∪Q̃c
m,km

∥∥∥∥∥
Lp(ω)

+

∥∥∥∥∥
∑

k1,...,km

λ1,k1 · · ·λm,km

× T ∗(a1,k1 , . . . , (bl − bl,Ql,kl
)al,kl

, . . . , am,km

)
χQ̃c

1,k1
∪···∪Q̃c

m,km

∥∥∥∥∥
Lp(ω)

=: ‖II1‖Lp(ω) + ‖II2‖Lp(ω).

Using lemmas 2.3 and 4.2 and the same arguments as estimating I21 in the proof
of theorem 1.2, we can obtain

‖II1‖Lp(ω) � ‖bl‖BMO

m∏
i=1

‖fi‖Hpi (ω).

To estimate ‖II2‖Lp(ω), for any ki ∈ {1, 2, . . . , M}, i = 1, . . . , m, we only need to
show ∥∥∥∥∥T ∗(λ1,k1a1,k1 , . . . , λl,kl

(bl − bl,Ql,kl
)al,kl

, . . . , λm,km
am,km

)∥∥∥∥∥
Lp(ω)

� ‖bl‖BMOω,pl

m∏
i=1

‖fi‖Hpi (ω).

By the boundedness of T ∗ from Hp1(ω) × · · · × Hpm(ω) to Lp(ω), we need to show∥∥λi,ki
ai,ki

∥∥
Hpi (ω)

� ‖fi‖Hpi (ω), ki ∈ {1, . . . , M}, i ∈ {1, . . . ,m}\l,

and∥∥λl,kl
(bl − bl,Ql,kl

)al,kl

∥∥
Hpl (ω)

� ‖fl‖Hpl (ω)‖bl‖BMOω,pl
, kl ∈ {1, . . . , M}.

Using the same argument as (3.1), we can obtain∥∥λi,ki
MN (ai,ki

)
∥∥

Lpi (ω)
� ‖fi‖Hpi (ω), ki ∈ {1, . . . , M}, i ∈ {1, . . . , m}\l,
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and∥∥λl,kl
MN

(
(bl − bl,Ql,kl

)al,kl

)∥∥
Lpl (ω)

� ‖fl‖Hpl (ω)‖bl‖BMOω,pl
, kl ∈ {1, . . . , M}.

Thus,

‖II2‖Lp(ω) � ‖bl‖BMOω,pl

m∏
i=1

‖fi‖Hpi (ω).

Combining the estimates in both cases, there is

∥∥T ∗
�b

(�f)
∥∥

Lp(ω)
�
(

m∑
j=1

‖bj‖BMOω,pj

)
m∏

i=1

‖fi‖Hpi (ω),

which completes the proof of theorem 1.3. �
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