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Brill–Noether loci in codimension two
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Abstract

Let us consider the locus in the moduli space of curves of genus 2k defined by curves
with a pencil of degree k. Since the Brill–Noether number is equal to −2, such a locus
has codimension two. Using the method of test surfaces, we compute the class of its
closure in the moduli space of stable curves.
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Introduction

The classical Brill–Noether theory is of crucial importance for the geometry of moduli of curves.
While a general curve admits only linear series with non-negative Brill–Noether number, the
locusMr

g,d of curves of genus g admitting a grd with negative Brill–Noether number ρ(g, r, d) :=
g − (r + 1)(g − d+ r)< 0 is a proper subvariety of Mg. Harris, Mumford and Eisenbud have
extensively studied the case ρ(g, r, d) =−1 when Mr

g,d is a divisor in Mg. They computed the
class of its closure inMg and found that it has slope 6 + 12/(g + 1). Since for g > 24 this is less
than 13/2 the slope of the canonical bundle, it follows thatMg is of general type for g composite
and greater than or equal to 24.

While in recent years classes of divisors in Mg have been extensively investigated,
codimension-two subvarieties are basically unexplored. A natural candidate is offered from Brill–
Noether theory. Since ρ(2k, 1, k) =−2, the locus M1

2k,k ⊂M2k of curves of genus 2k admitting
a pencil of degree k has codimension two (see [Ste98]). As an example, consider the hyperelliptic
locus M1

4,2 in M4.
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N. Tarasca

Our main result is the explicit computation of classes of closures of such loci. When g > 12,
a basis for the codimension-two rational homology of the moduli space of stable curves Mg has
been found by Edidin [Edi92]. It consists of the tautological classes κ2

1 and κ2 together with
boundary classes. Such classes are still homologically independent for g > 6. Using the stability
theorem for the rational cohomology of Mg, Edidin’s result can be extended to the case g > 7.
While there might be non-tautological generators coming from the interior ofMg for g = 6, one
knows that Brill–Noether loci lie in the tautological ring of Mg. Indeed in a similar situation,
Harris and Mumford computed classes of Brill–Noether divisors in Mg before knowing that
PicQ(Mg) is generated solely by the class λ, by showing that such classes lie in the tautological
ring of Mg (see [HM82, Theorem 3]). Their argument works in arbitrary codimension.

Since in our case r = 1, in order to extend the result to the Chow group, we will use a
theorem of Faber and Pandharipande, which says that classes of closures of loci of type M1

g,d

are tautological in Mg [FP05].
Then, having a basis for the classes of Brill–Noether codimension-two loci, in order to

determine the coefficients we use the method of test surfaces. That is, we produce several surfaces
in Mg and, after evaluating the intersections on one hand with the classes in the basis and on
the other hand with the Brill–Noether loci, we obtain enough independent relations to compute
the coefficients of the sought-for classes.

The surfaces used are bases of families of curves with several nodes, hence a good theory of
degeneration of linear series is required. For this, the compactification of the Hurwitz scheme
by the space of admissible covers introduced by Harris and Mumford comes into play. The
intersection problems thus boil down first to counting pencils on the general curve, and then to
evaluating the respective multiplicities via a local study of the compactified Hurwitz scheme.

For instance when k = 3, we obtain the class of the closure of the trigonal locus in M6.

Theorem 1. The class of the closure of the trigonal locus inM6 is

[M1
6,3]Q = 41

144κ
2
1 − 4κ2 + 329

144ω
(2) − 2551

144 ω
(3) − 1975

144 ω
(4) + 77

6 λ
(3)

− 13
6 λδ0 − 115

6 λδ1 − 103
6 λδ2 − 41

144δ
2
0 − 617

144δ
2
1 + 18δ1,1

+ 823
72 δ1,2 + 391

72 δ1,3 + 3251
360 δ1,4 + 1255

72 δ2,2 + 1255
72 δ2,3

+ δ0,0 + 175
72 δ0,1 + 175

72 δ0,2 − 41
72δ0,3 + 803

360δ0,4 + 67
72δ0,5

+ 2θ1 − 2θ2.

For all k > 3 we produce a closed formula expressing the class of M1
2k,k.

Theorem 2. For k > 3 the class of the locus M1
2k,k inM2k is

[M1
2k,k]Q =

2k−6(2k − 7)!!
3(k!)

[
(3k2 + 3k + 5)κ2

1 − 24k(k + 5)κ2

+
2k−2∑
i=2

(−180i4 + 120i3(6k + 1)− 36i2(20k2 + 24k − 5)

+ 24i(52k2 − 16k − 5) + 27k2 + 123k + 5)ω(i) + · · ·
]
.

The complete formula is shown in § 7. We also test our result in several ways, for example
by pulling-back toM2,1. The computations include the case g = 4, which was previously known:
the hyperelliptic locus in M4 has been computed in [FP05, Proposition 5].
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Figure 1. Loci in Mg.

1. A basis for R2(Mg)

Let A∗(Mg) be the Chow ring with Q-coefficients of the moduli space of stable curvesMg, and
let R∗(Mg)⊂A∗(Mg) be the tautological ring of Mg (see [FP05]). In [Edi92], Edidin gives a
basis for the space of codimension-two tautological classes R2(Mg) and he also shows that such
a basis holds for the codimension-two rational homology of Mg for g > 12.

Let us quickly recall the notation. There are the tautological classes κ2
1 and κ2 coming from

the interior Mg; the following products of classes from PicQ(Mg): λδ0, λδ1, λδ2, δ
2
0 and δ2

1 ; the
following push-forwards λ(i), λ(g−i), ω(i) and ω(g−i) of the classes λ and ω = ψ respectively from
Mi,1 and Mg−i,1 to ∆i ⊂Mg: λ(3), . . . , λ(g−3) and ω(2), . . . , ω(g−2); for 1 6 i6 b(g − 1)/2c the
Q-class θi of the closure of the locus Θi whose general element is a union of a curve of genus i
and a curve of genus g − i− 1 attached at two points; finally the classes δij defined as follows.
The class δ00 is the Q-class of the closure of the locus ∆00 whose general element is an irreducible
curve with two nodes. For 1 6 j 6 g − 1 the class δ0j is the Q-class of the closure of the locus
∆0j whose general element is an irreducible nodal curve of geometric genus g − j − 1 together
with a tail of genus j. Finally, for 1 6 i6 j 6 g − 2 and i+ j 6 g − 1, the class δij is defined
as δij := [∆ij ]Q, where ∆ij has as general element a chain of three irreducible curves with the
external ones having genus i and j (see Figure 1).

The above classes generate R2(Mg) and Edidin shows that they are homologically
independent for g > 6. It follows that for g > 6 the space of codimension-two tautological classes
R2(Mg) has dimension

b(g2 − 1)/4c+ 3g − 1.

When g > 12, to conclude that the above classes also form a basis for H2(3g−3)−4(Mg,Q),
Edidin gives an upper bound on the rank of H2(3g−3)−4(Mg,Q) using that H4(Mg,Q) = Q2 for
g > 12 as shown by Harer. By the stability theorem for the rational cohomology ofMg, we know
that

Hk(Mg,Q)∼=Hk(Mg+1,Q)∼=Hk(Mg+2,Q)∼= · · ·
for 3k 6 2(g − 1) (see for instance [Wah12]). It follows that the above classes form a basis for
H2(3g−3)−4(Mg,Q) when g > 7.

While for g = 6 there might be non-tautological generators coming from the interior of Mg,
using an argument similar to [HM82, Theorem 3] one knows that classes of Brill–Noether loci
Mr

g,d lie in the tautological ring of Mg. It follows that classes in H2(3g−3)−4(Mg,Q) of closures
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of Brill–Noether loci of codimension two can be expressed as linear combinations of the above
classes for g > 6.

In the case r = 1, we know more; classes of closures of Brill–Noether loci M1
g,d lie in the

tautological ring of Mg (see [FP05, Proposition 1]). Hence for g = 2k > 6 we can write

[M1
2k,k]Q = Aκ2

1
κ2

1 +Aκ2κ2 +Aδ20δ
2
0 +Aλδ0λδ0 +Aδ21δ

2
1 +Aλδ1λδ1 +Aλδ2λδ2

+
g−2∑
i=2

Aω(i)ω(i) +
g−3∑
i=3

Aλ(i)λ(i) +
∑
i,j

Aδij
δij +

b(g−1)/2c∑
i=1

Aθi
θi (1.1)

in R2(Mg,Q), for some rational coefficients A.

2. On the method of test surfaces

The method of test surfaces has been developed in [Edi92]. See [Edi92, §§ 3.1.2, 3.4 and Lemma
4.3] for computing the restriction of the generating classes to cycles parametrizing curves with
nodes. In this section we summarize some results which will be used frequently in § 6.

In order to compute the restriction of κ2
1 to test surfaces, we will use Mumford’s formula for

κ1: if g > 1 then κ1 = 12λ− δ in PicQ(Mg) (see [Mum77]). In the following proposition we note
how to compute the restriction of the class κ2 and the classes ω(i) and λ(i) to a certain kind of
surface which will appear in § 6 in (S1)–(S14).

Proposition 3. Let π1 : X1→B1 be a one-dimensional family of stable curves of genus i with
section σ1 : B1→X1 and similarly let π2 : X2→B2 be a one-dimensional family of stable curves
of genus g − i with section σ2 : B2→X2. Next, obtain a two-dimensional family of stable
curves π : X →B1 ×B2 as the union of X1 ×B2 and B1 ×X2 modulo glueing σ1(B1)×B2

with B1 × σ2(B2). Then the class κ2 and the classes ω(i) and λ(i) restrict to B1 ×B2 as follows

κ2 = 0,
ω(i) = ω(g−i) = −π1∗(σ2

1(B1))π2∗(σ2
2(B2)) if 2 6 i < g/2,

ω(g/2) = −2π1∗(σ2
1(B1))π2∗(σ2

2(B2)) if g = 2i,
ω(j) = 0 for j 6∈ {i, g − i},
λ(i) = λB1π2∗(σ2

2(B2)) if 3 6 i < g/2,

λ(g−i) = λB2π1∗(σ2
1(B1)) if 3 6 i < g/2,

λ(g/2) = λB1π2∗(σ2
2(B2)) + λB2π1∗(σ2

1(B1)) if g = 2i,
λ(j) = λB1δj−i,1|B2 + λB2δj−g+i,1|B1 for j 6∈ {i, g − i},

where δh,1|B1 ∈ PicQ(Mi,1) and similarly δh,1|B2 ∈ PicQ(Mg−i,1).

Proof. Let ν : X̃ →X be the normalization, where X̃ :=X1 ×B2 ∪B1 ×X2. Let KX/B1×B2
=

c1(ωX/B1×B2
). We have

κ2 = π∗(K3
X/B1×B2

) = π∗ν∗((ν∗KX/B1×B2
)3)

where we have used that ν is a proper morphism, hence the push-forward is well defined. One
has

KX̃/B1×B2
= (KX1/B1

×B2)⊕ (B1 ×KX2/B2
)

hence

ν∗KX/B1×B2
= ((KX1/B1

+ σ1(B1))×B2)⊕ (B1 × (KX2/B2
+ σ2(B2))).
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Finally

((KX1/B1
+ σ1(B1))×B2)3 = (KX1/B1

+ σ1(B1))3 ×B2 = 0

since KX1/B1
+ σ1(B1) is a class on the surface X1, and similarly for B1 × (KX2/B2

+ σ2(B2)),
hence κ2 is zero.

The statement about the classes ω(i) and λ(i) follows almost by definition. For instance, since
the divisor δi is

δi = π∗(σ2
1(B1)×B2) + π∗(B1 × σ2

2(B2))

we have

ω(i) =−π1∗(σ2
1(B1)) · π2∗(σ2

2(B2)).

The other equalities follow in a similar way. 2

3. Enumerative geometry on the general curve

In order to construct admissible covers, we will often have to count pencils on general curves.
Here we recall some well-known results in Brill–Noether theory.

Let C be a complex smooth projective curve of genus g and l = (L , V ) a linear series of
type grd on C, that is L ∈ Picd(C) and V ⊂H0(C,L ) is a subspace of vector-space dimension
r + 1. The vanishing sequence al(p) : 0 6 a0 < · · ·< ar 6 d of l at a point p ∈ C is defined as
the sequence of distinct order of vanishing of sections in V at p, and the ramification sequence
αl(p) : 0 6 α0 6 · · ·6 αr 6 d− r as αi := ai − i, for i= 0, . . . , r. The weight wl(p) will be the
sum of the quantities αi.

Given an n-pointed curve (C, p1, . . . , pn) of genus g and l a grd on C, the adjusted Brill–
Noether number is

ρ(C, p1, . . . pn) = ρ(g, r, d, αl(p1), . . . , αl(pn)) := g − (r + 1)(g − d+ r)−
∑
i,j

αlj(pi).

3.1 Fixing two general points
Let (C, p, q) be a general 2-pointed curve of genus g > 1 and let α= (α0, . . . , αr) and β =
(β0, . . . , βr) be Schubert indices of type r, d (that is 0 6 α0 6 · · ·6 αr 6 d− r and similarly for
β) such that ρ(g, r, d, α, β) = 0. The number of linear series grd having ramification sequence α
at the point p and β at the point q is counted by the adjusted Castelnuovo number

g! det
(

1
[αi + i+ βr−j + r − j + g − d]!

)
06i,j6r

where 1/[αi + i+ βr−j + r − j + g − d]! is taken to be zero when the denominator is negative
(see [Far09, Proof of Proposition 2.2] and [Ful98, Example 14.7.11(v)]). Note that the above
expression may be zero, that is the set of desired linear series may be empty.

When r = 1 let us denote the above expression by Ng,d,α,β. If α0 = β0 = 0 then

Ng,d,α,β = g!
(

1
(β1 + 1 + g − d)!(α1 + 1 + g − d)!

− 1
(g − d)!(α1 + β1 + 2 + g − d)!

)
.

Subtracting the base locus α0p+ β0q, one can reduce the count to the case α0 = β0 = 0, hence
Ng,d,α,β =Ng,d−α0−β0,(0,α1−α0),(0,β1−β0).

In the following we will also use the abbreviation Ng,d,α when β is zero, that is Ng,d,α counts
the linear series with the only condition of ramification sequence α at a single general point.
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3.2 A moving point
Let C be a general curve of genus g > 1 and α= (α0, α1) be a Schubert index of type
1, d (that is 0 6 α0 6 α1 6 d− 1). When ρ(g, 1, d, α) =−1, there is a finite number ng,d,α of
(x, lC) ∈ C ×W 1

d (C) such that αlC (x) = α. (Necessarily ρ(g, 1, d) > 0 since the curve is general.)
Assuming α0 = 0, one has α1 = 2d− g − 1 and

ng,d,α = (2d− g − 1)(2d− g)(2d− g + 1)
g!

d!(g − d)!
.

If α0 > 0 then ng,d,α = ng,d−α0,(0,α1−α0). Each l̃C := lC(−α0x) satisfies h0(l̃C) = 2, is generated by
global sections, and H0(C, l̃C) gives a covering of P1 with ordinary branch points except for a
(α1 − α0)-fold branch point, all lying over distinct points of P1. Moreover, since for general C
the above points x are distinct, one can suppose that fixing one of them, the lC is unique. See
[HM82, Theorem B and p. 78]. Clearly α in the lower indexes of the numbers n is redundant in
our notation, but for our purposes it is useful to keep track of it.

3.3 Two moving points
Let C be a general curve of genus g > 1 and α= (α0, α1) be a Schubert index of type 1, d (that is
0 6 α0 6 α1 6 d− 1). When ρ(g, 1, d, α, (0, 1)) =−2 (and ρ(g, 1, d) > 0), there is a finite number
mg,d,α of (x, y, lC) ∈ C × C ×G1

d(C) such that αlC (x) = α and αlC (y) = (0, 1). Subtracting the
base locus as usual, one can always reduce to the case α0 = 0.

Lemma 4. Assuming α0 = 0, one has

mg,d,α = ng,d,α · (3g − 1).

Proof. Since ρ(g, 1, d, α) =−1, one can first compute the number of points of type x, and then,
fixing one of these, use the Riemann–Hurwitz formula to find the number of points of type y. 2

4. Compactified Hurwitz scheme

Let Hk,b be the Hurwitz scheme parametrizing coverings π : C→ P1 of degree k with b ordinary
branch points and C a smooth irreducible curve of genus g. By considering only the source curve
C, Hk,b admits a map to Mg

σ : Hk,b→Mg.

In the following, we will use the compactification Hk,b of Hk,b by the space of admissible covers
of degree k, introduced by Harris and Mumford in [HM82]. Given a semi-stable curve C of genus
g and a stable b-pointed curve (R, p1, p2, . . . , pb) of genus 0, an admissible cover is a regular map
π : C→B such that the following hold: π−1(Bsmooth) = Csmooth, π|Csmooth is simply branched
over the points pi and unramified elsewhere, π−1(Bsingular) = Csingular and if C1 and C2 are two
branches of C meeting at a point p, then π|C1 and π|C2 have the same ramification index at p.
Note that one may attach rational tails at C to cook up the degree of π.

The map σ extends to
σ : Hk,b→Mg.

In our case g = 2k, the image of this map is M1
2k,k. It is classically known that the Hurwitz

scheme is connected and its image in Mg (that is, M1
2k,k in our case) is irreducible (see for

instance [Ful69]).
Similarly for a Schubert index α= (α0, α1) of type 1, k such that ρ(g, 1, k, α) =−1 (and

ρ(g, 1, k) > 0), the Hurwitz scheme Hk,b(α) (respectively Hk,b(α)) parameterizes k-sheeted
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Figure 2. The admissible covers for the two fibers of the family C when g = 2.

(admissible) coverings π : C→ P1 with b ordinary branch points p1, . . . , pb and one point p with
ramification profile described by α (see [Dia85, § 5]). By forgetting the covering and keeping
only the pointed source curve (C, p), we obtain a map Hk,b(α)→Mg,1 with image the pointed
Brill–Noether divisor M1

g,k(α).

Let us see these notions at work. Let (C, p, q) be a 2-pointed general curve of genus g − 1 > 1.
In the following, we consider the curve C in Mg,1 obtained by identifying the point q with a
moving point x in C. In order to construct this family of curves, one blows up C × C at (p, p)
and (q, q) and identifies the proper transforms S1 and S2 of the diagonal ∆C and q × C. This is
a family π : X → C with a section corresponding to the proper transform of p× C, hence there
exists a map C→Mg,1. We denote by C the image of C in Mg,1.

Lemma 5. Let g = 2 and let W be the closure of the Weierstrass divisor inM2,1. We have

`2,2 := deg(C · W) = 2.

Proof. There are two points in C with an admissible cover of degree 2 with simple ramification
at the marked point, and such admissible covers contribute with multiplicity 1. Note that here
C is an elliptic curve. One admissible cover is for the fiber over x such that 2p≡ q + x, and the
other one for the fiber over x= p (see Figure 2). In both cases the covering is determined by
|q + x| and there is a rational curve R meeting C in q and x.

When 2p≡ q + x, the situation is as in [HM82, Theorem 6(a)]. Let C ′→ P be the
corresponding admissible covering. If

C

��??
??

??
?

// P

��~~
~~

~~
~

B

is a general deformation of [C ′→ P ] in H2,b(0, 1), blowing down the curve R we obtain a family
of curves C̃ →B with one ordinary double point. That is, B meets ∆0 with multiplicity 2.
Considering the involution of [C ′→ P ] obtained by interchanging the two ramification points
of R, we see that the map H2,b(0, 1)→M2,1 is ramified at [C ′→ P ]. Hence [C ′] is a transverse
point of intersection of W with ∆0 and it follows that C and W meet transversally at [C ′].
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When x= p, the situation is similar. In a general deformation in H2,b(0, 1)

C

��??
??

??
?

// P

��~~
~~

~~
~

B

of the corresponding admissible covering [C ′→ P ], one sees that C ′ is the only fiber of C →B
inside ∆00, and at each of the two nodes of C ′, the space C has local equation x · y = t. It follows
that C ′ is a transverse point of intersection of W with ∆00. Hence C ′ is a transverse point of
intersection of C with W. See also [Har84, § 3]. 2

Lemma 6. Let g = 2k − 2> 2. The intersection of C with the pointed Brill–Noether divisor

M1
2k−2,k(0, 1) is reduced and it has degree

`g,k := deg(C · M1
2k−2,k(0, 1)) = 2

(2k − 3)!
(k − 2)!(k − 1)!

.

Proof. Let us write the class ofM1
g,k(0, 1) as aλ+ cψ −

∑
biδi ∈ PicQ(Mg,1). First we study the

intersection of the curve C with the classes generating the Picard group. Let π : Mg,1→Mg be
the map forgetting the marked point and σ : Mg→Mg,1 the section given by the marked point.
Note that on C we have deg ψ =−deg π∗(σ2) = 1, since the marked point is generically fixed and
is blown up in one fiber. Moreover, deg δg−1 = 1, since only one fiber contains a disconnecting
node and the family is smooth at this point. The intersection with δ0 deserves more care. The
family is indeed inside ∆0: the generic fiber has one non-disconnecting node and moreover the
fiber over x= p has two non-disconnecting nodes. We have to use [HM98, Lemma 3.94]. Then

deg δ0 = deg S2
1 + deg S2

2 + 1 =−2(g − 1)− 1 + 1 = 2− 2g. (4.1)

All other generating classes restrict to zero. Then

deg(C · [M1
g,k(0, 1)]) = c+ (2g − 2)b0 − bg−1.

On the other hand, one has an explicit expression for the class of M1
g,k(0, 1):

(2k − 4)!
(k − 2)!k!

(
6(k + 1)λ+ 6(k − 1)ψ − kδ0 +

g−1∑
i=1

3(i+ 1)(2 + i− 2k)δi

)
(see [Log03, Theorem 4.5]), whence the first part of the statement is proved.

Finally, the intersection is reduced. Indeed, since the curve C is general, an admissible cover
with the desired property for a fiber of the family over C is determined by a unique linear series
(see [HM82, p. 75]). Moreover, reasoning as in the proof of the previous lemma, one sees that C
and M1

g,k(0, 1) always meet transversally. 2

5. Limit linear series

The theory of limit linear series will be used. Let us quickly recall some notation and results.
On a tree-like curve, a linear series or a limit linear series is called generalized if the line bundles
involved are torsion-free (see [EH87, § 1]). For a tree-like curve C = Y1 ∪ · · · ∪ Ys of arithmetic
genus g with disconnecting nodes at the points {pij}ij , let {lY1 , . . . , lYs

} be a generalized limit
linear series grd on C. Let {qik}k be smooth points on Yi, i= 1, . . . , s. In [EH86] a moduli space
of such limit series is constructed as a disjoint union of schemes on which the vanishing sequences

1542

https://doi.org/10.1112/S0010437X13007215 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007215
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Figure 3. How the general fiber of a family in (S1) moves.

of the aspects lYi
at the nodes are specified. A key property is the additivity of the adjusted

Brill–Noether number, that is

ρ(g, r, d, {αlYi (qik)}ik) >
∑
i

ρ(Yi, {pij}j , {qik}k).

The smoothing result [EH86, Corollary 3.7] assures the smoothability of dimensionally proper
limit series. The following facts will ease the computations. The adjusted Brill–Noether number
for any grd on 1-pointed elliptic curves or on n-pointed rational curves is non-negative. For a
general curve C of arbitrary genus g, the adjusted Brill–Noether number for any grd with respect
to n general points is non-negative. Moreover, ρ(C, y) >−1 for any y ∈ C and any grd (see [EH89]).

We will use the fact that if a curve of compact type has no limit linear series of type grd, then
it is not in the closure of the locus Mr

g,d ⊂Mg of smooth curves admitting a grd.

6. Test surfaces

We are going to intersect both sides of (1.1) with several test surfaces. This will produce linear
relations in the coefficients A.

The surfaces will be defined for arbitrary g > 6 (also odd values). Note that while the
intersections of the surfaces with the generating classes (that is the left-hand sides of the relations
we get) clearly depend solely on g, only the right-hand sides are specific to our problem of
intersecting the test surfaces with M1

2k,k.
When the base of a family is the product of two curves C1 × C2, we will denote the obvious

projections by π1 and π2.

(S1) For 2 6 i6 bg/2c consider the family of curves whose fibers are obtained by identifying a
moving point on a general curve C1 of genus i with a moving point on a general curve C2 of
genus g − i (see Figure 3).

The base of the family is the surface C1 × C2. In order to construct this family, consider
C1 × C1 × C2 and C1 × C2 × C2 and identify ∆C1 × C2 with C1 ×∆C2 . Let us denote this family
by X → C1 × C2.

One has

δi = c1(N(∆C1×C2)/X ⊗N(C1×∆C2 )/X) =−π∗1(KC1)− π∗2(KC2).

Such surfaces are in the interior of the boundary ofMg. The only nonzero classes in codimension
two are the ones considered in § 2.

We claim that the intersection of these test surfaces with M1
2k,k has degree

Ti :=
∑

α=(α0,α1)
ρ(i,1,k,α)=−1

ni,k,α · ng−i,k,(k−1−α1,k−1−α0)

(in the sum, α is a Schubert index of type 1, k). Indeed, by the remarks in § 5, if {lC1 , lC2} is a
limit linear series of type g1

k on the fiber over some (x, y) ∈ C1 × C2, then the only possibility
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Figure 4. How the general fiber of a family in (S2) moves.

is ρ(C1, x) = ρ(C2, y) =−1. By § 3.2, there are exactly Ti points (x, y) with this property, the
linear series lC1 , lC2 are uniquely determined and give an admissible cover of degree k. Thus to
prove the claim we have to show that such points contribute with multiplicity 1.

Let us first assume that i > 2. Let π : C ′→ P be one of these admissible covers of degree k,
that is, C ′ is stably equivalent to a certain fiber C1 ∪x∼y C2 of the family over C1 × C2. Let us
describe the admissible covering more precisely. Note that P is the union of two rational curves
P = (P1)1 ∪ (P1)2. Moreover, π|C1 : C1→ (P1)1 is the admissible covering of degree k − α0 defined
by lC1(−α0x), π|C2 : C2→ (P1)2 is the admissible covering of degree k − (k − 1− α1) = α1 + 1
defined by lC2(−(k − 1− α1)y), and π has `-fold branching at p := x≡ y with ` := α1 + 1− α0.
Finally there are α0 copies of P1 over (P1)1 and further k − 1− α1 copies over (P1)2.

Such a cover has no automorphisms, hence the corresponding point [π : C ′→ P ] in the
Hurwitz scheme Hk,b is smooth, and moreover such a point is not fixed by any σ ∈ Σb. Let
us embed π : C ′→ P in a one-dimensional family of admissible coverings

C

��??
??

??
?

// P

��~~
~~

~~
~

B

where locally near the point p

C is r · s= t,

P is u · v = t`,

π is u= r`, v = s`

and B := Spec C[[t]]. Now C is a smooth surface and after contracting the extra curves P1, we
obtain a family C →B in Mg transverse to ∆i at the point [C ′]. Hence (x, y) appears with
multiplicity 1 in the intersection of M1

2k,k with C1 × C2.
Finally, if i= 2, then one has to take into account the automorphisms of the covers. To solve

this, one has to work with the universal deformation space of the corresponding curve. The
argument is similar (see [HM82, p. 80]).

For each i we deduce the following relation:

(2i− 2)(2(g − i)− 2)[2Aκ2
1
−Aω(i) −Aω(g−i) ] = Ti.

Note that, if i= g/2, then Aω(i) and Aω(g−i) sum up.

(S2) Choose i, j such that 2 6 i6 j 6 g − 3 and i+ j 6 g − 1. Take a general 2-pointed curve
(F, p, q) of genus g − i− j and attach at p a moving point on a general curve C1 of genus i and
at q a moving point on a general curve C2 of genus j (see Figure 4).

The base of the family is C1 × C2. To construct the family, consider C1 × C1 × C2 and C1 ×
C2 × C2 and identify ∆C1 × C2 and C1 ×∆C2 with the general constant sections p× C1 × C2
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Figure 5. How the general fiber of a family in (S3) moves.

and q × C1 × C2 of F × C1 × C2→ C1 × C2. Denote this family by X → C1 × C2. Then

δi = c1(N(∆C1×C2)/X ⊗N(p×C1×C2)/X) =−π∗1(KC1),
δj = c1(N(C1×∆C2 )/X ⊗N(q×C1×C2)/X) =−π∗2(KC2)

and

δij = c1(N(∆C1×C2)/X ⊗N(p×C1×C2)/X) · c1(N(C1×∆C2 )/X ⊗N(q×C1×C2)/X)
= π∗1(KC1)π∗2(KC2).

We claim that the intersection of these test surfaces with M1
2k,k has degree

Dij :=
∑

α=(α0,α1)
β=(β0,β1)

ρ(i,1,k,α)=−1
ρ(j,1,k,β)=−1

ni,k,α nj,k,β Ng−i−j,k,(k−1−α1,k−1−α0),(k−1−β1,k−1−β0)

(in the sum, α and β are Schubert indices of type 1, k). Indeed by § 5, if {lC1 , lF , lC2} is a
limit linear series of type g1

k on the fiber over some (x, y) ∈ C1 × C2, then the only possibility is
ρ(C1, x) = ρ(C2, y) =−1 while ρ(F, p, q) = 0. By §§ 3.1 and 3.2, there are∑

α=(α0,α1)
β=(β0,β1)

ρ(i,1,k,α)=−1
ρ(j,1,k,β)=−1

ni,k,α nj,k,β

points (x, y) in C1 × C2 with this property, the lC1 , lC2 are uniquely determined and there are

N :=Ng−i−j,k,(k−1−α1,k−1−α0),(k−1−β1,k−1−β0)

choices for lF . That is, there are N points of Hk,b/Σb over [C1 ∪x∼p F ∪y∼q C2] ∈M1
2k,k and

M1
2k,k has N branches at [C1 ∪x∼p F ∪y∼q C2]. The claim is thus equivalent to saying that each

branch meets ∆ij transversely at [C1 ∪x∼p F ∪y∼q C2].
The argument is similar to the previous case. Let π : C ′→D be an admissible cover of degree

k with C ′ stably equivalent to a certain fiber of the family over C1 × C2. The image of a general
deformation of [C ′→D] in Hk,b to the universal deformation space of C ′ meets ∆ij only at
[C ′] and locally at the two nodes, the deformation space has equation xy = t. Hence [C ′] is a
transverse point of intersection of M1

2k,k with ∆ij and the surface C1 × C2 and M1
2k,k meet

transversally.
For i, j we obtain the following relation:

(2i− 2)(2j − 2)[2Aκ2
1

+Aδij
] =Dij .

(S3) Let (E, p, q) be a general 2-pointed elliptic curve. Identify the point q with a moving point
x on E and identify the point p with a moving point on a general curve C of genus g − 2 (see
Figure 5).
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Figure 6. How the general fiber of a family in (S4) moves.

The base of the family is E × C. To construct the family, let us start from the blow-up Ẽ × E
of E × E at the points (p, p) and (q, q). Denote by σp, σq, σ∆ respectively the proper transforms
of p× E, q × E,∆E . The family is the union of Ẽ × E × C and E × C × C with σq × C identified
with σ∆ × C and σp × C identified with E ×∆C . We denote the family by π : X → E × C.

The study of the restriction of the generating classes in codimension one is similar to the case
in the proof of Lemma 6. Namely

δ0 =−π∗1(2q), δ1 = π∗1(q), δg−2 =−π∗1(p)− π∗2(KC).

Indeed, the family is entirely contained inside ∆0: each fiber has a unique non-disconnecting node
with the exception of the fibers over p× C, which have two non-disconnecting nodes. Looking
at the normalization of the family, fibers become smooth with the exception of the fibers over
p× C, which now have one non-disconnecting node, and the family is smooth at these points. It
follows that δ0 = π∗(σq × C)2 + π∗(σ∆ × C)2 + p× C. Only the fibers over q × C contain a node
of type ∆1, and the family is smooth at these points. Finally the family is entirely inside ∆g−2

and δg−2 = π∗(σp × C)2 + π∗(E ×∆C)2. We note the following

δ1,g−2 = [π∗1(q)][−π∗2(KC)], δ0,g−2 = [−π∗1(2q)][−π∗2(KC)].

Let us study the intersection of this test surface with M1
2k,k. Let C ′→D be an admissible

cover of degree k with C ′ stably equivalent to a certain fiber of the family. Clearly the only
possibility is to map E and C to two different rational components of D with q and x in the
same fiber, and have a 2-fold ramification at p. From Lemma 5 there are two possibilities for
the point x ∈ E, and there are ng−2,k,(0,1) points in C where a degree k covering has a 2-fold
ramification. In each case the covering is unique up to isomorphism. The combination of the two
makes

2ng−2,k,(0,1)

admissible coverings. We claim that they count with multiplicity 1.
The situation is similar to Lemma 5. The image of a general deformation of [C ′→D] in Hk,b

to the universal deformation space of C ′ meets ∆00 ∩∆2 only at [C ′]. Locally at the three nodes,
the deformation space has equation xy = t. Hence [C ′] is a transverse point of intersection of
M1

2k,k with ∆00 ∩∆2 and counts with multiplicity 1 in the intersection of the surface E × C
with M1

2k,k.
We deduce the following relation:

(2(g − 2)− 2)[4Aκ2
1
−Aω(2) −Aω(g−2) −Aδ1,g−2 + 2Aδ0,g−2 ] = 2ng−2,k,(0,1).

(S4) For 2 6 i6 g − 3, let (F, r, s) be a general 2-pointed curve of genus g − i− 2. Let (E, p, q)
be a general 2-pointed elliptic curve and, as above, identify the point q with a moving point x
on E. Finally identify the point p ∈ E with r ∈ F and identify the point s ∈ F with a moving
point on a general curve C of genus i (see Figure 6).
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Figure 7. How the general fiber of a family in (S5) moves.

The base of the family is E × C. Let Ẽ × E, σp, σq, σ∆ be as above. Then the family is
the union of Ẽ × E × C, E × C × C and F × E × C with the following identifications. First,
σq × C is identified with σ∆ × C. Next, σp × E is identified with r × E × C ⊂ F × E × C, and
s× E × C ⊂ F × E × C with E ×∆C .

The restriction of the generating classes in codimension one is

δ0 =−π∗1(2q), δ1 = π∗1(q), δ2 =−π∗1(p), δi =−π∗2(KC)

and one has the following restrictions:

δ1,i = [π∗1(q)][−π∗2(KC)],
δ0,i = [−π∗1(2q)][−π∗2(KC)],
δ2,i = [−π∗1(p)][−π∗2(KC)].

Suppose C ′→D is an admissible covering of degree k with C ′ stably equivalent to a certain
fiber of this family. The only possibility is to map E, F, C to three different rational components
of D, with a 2-fold ramification at r and ramification prescribed by α= (α0, α1) at s, such that
ρ(i, 1, k, α) =−1. The condition on α is equivalent to

ρ(g − i− 2, 1, k, (0, 1), (k − 1− α1, k − 1− α0)) = 0.

Moreover, q and x have to be in the same fiber of such a covering. There are∑
α=(α0,α1)

ρ(i,1,k,α)=−1

2ni,k,α

fibers which admit an admissible covering with such properties (in the sum, α is a Schubert
index of type 1, k). While the restriction of the covering to E and C is uniquely determined up
to isomorphism, there are

N :=Ng−i−2,k,(0,1),(k−1−α1,k−1−α0)

choices for the restriction to F up to isomorphism. As in (S2), this is equivalent to saying that
M1

2k,k has N branches at [C ′]. Moreover, each branch meets the boundary transversally at [C ′]

(similarly to (S3)), hence [C ′] counts with multiplicity 1 in the intersection of E × C withM1
2k,k.

Finally, for each i we deduce the following relation:

(2i− 2)[4Aκ2
1
−Aδ1,i

+ 2Aδ0,i
+Aδ2,i

] =
∑

α=(α0,α1)
ρ(i,1,k,α)=−1

2Ng−i−2,k,(0,1),(k−1−α1,k−1−α0) · ni,k,α.

(S5) Identify a base point of a generic pencil of plane cubic curves with a moving point on a
general curve C of genus g − 1 (see Figure 7).

The base of the family is P1 × C. Let us construct this family. We start from an elliptic
pencil Y → P1 of degree 12 with zero section σ. To construct Y , blow up P2 in the nine points
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Figure 8. How the general fiber of a family in (S6) moves.

of intersection of two general cubics. Then consider Y × C and P1 × C × C and identify σ × C
with P1 ×∆C . Let x be the class of a point in P1. Then

λ= π∗1(x), δ0 = 12λ, δ1 =−π∗1(x)− π∗2(KC).

Note that

δ0,g−1 = [12π∗1(x)][−π∗2(KC)].

This surface is disjoint from M1
2k,k. Indeed, C has no linear series with adjusted Brill–

Noether number less than −1 at some point, and an elliptic curve or a rational nodal curve
has no (generalized) linear series with adjusted Brill–Noether number less than 0 at some point.
Adding, we see that no fiber of the family has a linear series with Brill–Noether number less
than −1, hence

(2(g − 1)− 2)[2Aκ2
1
− 12Aδ0,g−1 + 2Aδ21 −Aλδ1 ] = 0.

(S6) For 3 6 i6 g − 3 take a general curve F of genus i− 1 and attach at a general point p an
elliptic tail varying in a pencil of degree 12 and at another general point a moving point on a
general curve C of genus g − i (see Figure 8).

The base of the family is P1 × C. In order to construct the family, start from Y × C
and P1 × C × C and then identify σ × C and P1 ×∆C with two general constant sections of
F × P1 × C→ P1 × C. Here Y, σ are as above. Then

λ= π∗1(x), δ0 = 12λ, δ1 =−π∗1(x), δg−i =−π∗2(KC).

Note that

δ1,g−i = [−π∗1(x)][−π∗2(KC)], δ0,g−i = [12π∗1(x)][−π∗2(KC)].

Again C has no linear series with adjusted Brill–Noether number less than −1 at some point,
an elliptic curve or a rational nodal curve has no (generalized) linear series with adjusted Brill–
Noether number less than 0 at some point and F has no linear series with adjusted Brill–Noether
number less than 0 at some general points. Adding, we see that no fiber of the family has a linear
series with Brill–Noether number less than −1, hence

(2(g − i)− 2)[2Aκ2
1
−Aλ(i) +Aδ1,g−i

− 12Aδ0,g−i
] = 0.

In case i= g − 2 we have

2[2Aκ2
1
−Aλδ2 +Aδ1,2 − 12Aδ0,2 ] = 0.

(S7) Let (E1, p1, q1) and (E2, p2, q2) be two general pointed elliptic curves. Identify the point qi
with a moving point xi in Ei, for i= 1, 2. Then identify p1 and p2 with two general points r1, r2

on a general curve F of genus g − 4 (see Figure 9).
The base of the family is E1 × E2. For i= 1, 2, let Ẽi × Ei be the blow-up of Ei × Ei at (pi, pi)

and (qi, qi). Denote by σpi
, σqi

, σ∆Ei
the proper transforms of pi × Ei, qi × Ei,∆Ei

, respectively.
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Figure 9. How the general fiber of a family in (S7) moves.

Figure 10. How the general fiber of a family in (S8) moves.

The family is the union of Ẽ1 × E1 × E2, E1 × Ẽ2 × E2 and F × E1 × E2 with the following
identifications. First, σq1 × E2 and E1 × σq2 are identified with σ∆E1

× E2 and E1 × σ∆E2
,

respectively. Then σp1 × E2 and E1 × σp2 are identified with r1 × E1 × E2 and r2 × E1 × E2,
respectively. We deduce that

δ0 = −π∗1(2q1)− π∗2(2q2),

δ1 = π∗1(q1) + π∗2(q2),

δ2 = −π∗1(p1)− π∗2(p2)

and we note that

δ2,2 = π∗1(p1)π∗2(p2),

δ1,2 = −π∗1(q1)π∗2(p2)− π∗2(q2)π∗1(p1),

δ1,1 = π∗1(q1)π∗2(q2),

δ00 = π∗1(2q1)π∗2(2q2),

δ02 = π∗1(2q1)π∗2(p2) + π∗2(2q2)π∗1(p1),

δ01 = −π∗1(q1)π∗2(2q2)− π∗2(q2)π∗1(2q1).

If a fiber of this family admits an admissible cover of degree k, then r1 and r2 have to be
2-fold ramification points, and qi and xi have to be in the same fiber, for i= 1, 2. From Lemma 5
there are only 4 fibers with this property, namely the fibers over (p1, p2), (p1, q2), (q1, p2) and
(q1, q2), where qi is such that 2pi ≡ qi + qi for i= 1, 2.

In these cases, the restriction of the covers to E1, E2 is uniquely determined up to
isomorphism, while there are Ng−4,k,(0,1),(0,1) choices for the restriction to F up to isomorphism.
As for (S3), such covers contribute with multiplicity 1, hence we have the following relation:

8Aκ2
1

+Aδ2,2 − 2Aδ1,2 +Aδ1,1 + 2Aδ21 + 8Aδ20 + 4Aδ00 + 4Aδ02 − 4Aδ01 = 4Ng−4,k,(0,1),(0,1).

(S8) Consider a general curve F of genus g − 2 and, at two general points, attach elliptic tails
varying in pencils of degree 12 (see Figure 10).

The base of the family is P1 × P1. Let us construct the family. Let Y → P1 and Y ′→ P1 be
two elliptic pencils of degree 12, and let σ and σ′ be the respective zero sections. Consider Y × P1
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Figure 11. How the general fiber of a family in (S9) moves.

and P1 × Y ′ and identify σ × P1 and P1 × σ′ with two general constant sections of F × P1 × P1→
P1 × P1. If x is the class of a point in P1, then

λ= π∗1(x) + π∗2(x), δ0 = 12λ, δ1 =−λ.

Note that

δ00 = [12π∗1(x)][12π∗2(x)],
δ1,1 = [−π∗1(x)][−π∗2(x)],
δ01 = [12π∗1(x)][−π∗2(x)] + [−π∗1(x)][12π∗2(x)].

Studying the possibilities for the adjusted Brill–Noether numbers of the aspects of limit linear
series on some fiber of this family, we see that this surface is disjoint from M1

2k,k, hence

2Aκ2
1

+ 288Aδ20 + 24Aλδ0 + 2Aδ21 − 2Aλδ1 + 144Aδ00 +Aδ1,1 − 24Aδ01 = 0.

(S9) For 2 6 j 6 g − 3 let R be a smooth rational curve, attach at the point ∞∈R a general
curve F of genus g − j − 2, attach at the points 0, 1 ∈R two elliptic tails E1, E2 and identify a
moving point in R with a moving point on a general curve C of genus j (see Figure 11).

The base of the family is R× C. Let us start from a family P →R of 4-pointed rational
curves. Construct P by blowing up P1 × P1 at (0, 0), (1, 1) and (∞,∞), and consider the sections
σ0, σ1, σ∞ and σ∆ corresponding to the proper transforms of 0× P1, 1× P1,∞× P1 and ∆P1 .

To construct the family over R× C, consider P × C and R× C × C. Identify σ∆ × C with
R×∆C . Finally identify σ0 × C, σ1 × C and σ∞ × C respectively with general constant sections
of the families E1 ×R× C, E2 ×R× C and F ×R× C. Then

δ1 = −π∗1(0 + 1),
δ2 = π∗1(∞),
δj = −π∗1(KP1 + 0 + 1 +∞)− π∗2(KC),

δg−j−2 = −π∗1(∞),
δg−j−1 = π∗1(0 + 1).

If for some value of j some of the above classes coincide (for instance, if j = g − 3 then
δ1 ≡ δg−j−2), then one has to sum up the contributions. Note that

δ1j = [−π∗1(0 + 1)][−π∗2(KC)],
δj,g−j−2 = [−π∗1(∞)][−π∗2(KC)],

δ2,j = [π∗1(∞)][−π∗2(KC)],
δj,g−j−1 = [π∗1(0 + 1)][−π∗2(KC)].
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Figure 12. How the general fiber of a family in (S10) moves.

As for (S8), this surface is disjoint from M1
2k,k, hence

(2j − 2)[2Aκ2
1

+ 2Aδ1j
+Aδj,g−j−2 −Aδ2,j

− 2Aδj,g−j−1 −Aω(j) −Aω(g−j) ] = 0.

Again, let us remark that for some value of j, some terms add up.

(S10) Let (R1, 0, 1,∞) and (R2, 0, 1,∞) be two 3-pointed smooth rational curves, identify a
moving point on R1 with a moving point on R2, attach a general pointed curve F of genus g − 5
to ∞∈R2 and attach elliptic tails to all the other marked points (see Figure 12).

The base of the family is R1 ×R2. First construct two families of 4-pointed rational curves
P1→R1 and P2→R2 respectively with sections σ0, σ1, σ∞, σ∆ and τ0, τ1, τ∞, τ∆ as for the
previous surface. Consider P1 ×R2 and R1 × P2. Identify σ∆ ×R2 with R1 × τ∆. Finally identify
R1 × τ∞ with a general constant section of F ×R1 ×R2 and identify σ0 ×R2, σ1 ×R2, σ∞ ×
R2, R1 × τ0, R1 × τ1 with the respective zero sections of five constant elliptic fibrations over
R1 ×R2.

This surface is disjoint from M1
2k,k. For g > 8

δ1 = −π∗1(0 + 1 +∞)− π∗2(0 + 1),

δ2 = π∗1(0 + 1 +∞) + π∗2(∞),

δ3 = −π∗1(KR1 + 0 + 1 +∞)− π∗2(KR2 + 0 + 1 +∞),

δg−5 = −π∗2(∞),

δg−4 = π∗2(0 + 1)

and note the restriction of the following classes

δ1,1 = [−π∗1(0 + 1 +∞)][−π∗2(0 + 1)],

δ1,g−5 = [−π∗1(0 + 1 +∞)][−π∗2(∞)],

δ1,3 = [−π∗1(KR1 + 0 + 1 +∞)][−π∗2(0 + 1)],

δ3,g−5 = [−π∗1(KR1 + 0 + 1 +∞)][−π∗2(∞)],

δ1,g−3 = [−π∗1(0 + 1 +∞)][−π∗2(KR2 + 0 + 1 +∞)],

δ2,g−3 = [π∗1(0 + 1 +∞)][−π∗2(KR2 + 0 + 1 +∞)],

δ2,g−5 = [π∗1(0 + 1 +∞)][−π∗2(∞)],

δ1,2 = [π∗1(0 + 1 +∞)][−π∗2(0 + 1)] + [−π∗1(0 + 1 +∞)][π∗2(∞)],

δ1,g−4 = [−π∗1(0 + 1 +∞)][π∗2(0 + 1)],
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Figure 13. How the general fiber of a family in (S11) moves.

δ3,g−4 = [−π∗1(KR1 + 0 + 1 +∞)][π∗2(0 + 1)],

δ2,3 = [−π∗1(KR1 + 0 + 1 +∞)][π∗2(∞)],

δ2,g−4 = [π∗1(0 + 1 +∞)][π∗2(0 + 1)],

δ2,2 = [π∗1(0 + 1 +∞)][π∗2(∞)].

It follows that

2Aκ2
1

+ 12Aδ21 + 6Aδ1,1 + 3Aδ1,g−5 + 2Aδ1,3 +Aδ3,g−5 + 3Aδ1,g−3

−Aω(3) −Aω(g−3) − 3(Aδ2,g−3 +Aδ2,g−5 + 2Aδ1,2)
− 2(3Aδ1,g−4 +Aδ3,g−4)− (3Aδ1,2 +Aδ2,3) + 6Aδ2,g−4 + 3Aδ2,2 = 0.

For g = 6 the coefficient of Aδ21 is 18. When g ∈ {6, 7, 8}, note that some terms add up.

(S11) Consider a general curve F of genus g − 4, attach at a general point an elliptic tail varying
in a pencil of degree 12 and identify a second general point with a moving point on a rational
3-pointed curve (R, 0, 1,∞). Attach elliptic tails at the marked point on the rational curve (see
Figure 13).

The base of the family is P1 ×R. Consider the elliptic fibration Y over P1 with zero
section σ as in (S5), and the family P over R with sections σ0, σ1, σ∞, σ∆ as in (S9). Identify
σ ×R⊂ Y ×R and P1 × σ∆ ⊂ P1 × P with two general constant sections of F × P1 ×R. Finally
identify P1 × σ0, P1 × σ1, P1 × σ∞ ⊂ P1 × P with the respective zero sections of three constant
elliptic fibrations over P1 ×R. Then

λ= π∗1(x),

δ0 = 12λ, δ1 =−π∗1(x)− π∗2(0 + 1 +∞),

δ2 = π∗2(0 + 1 +∞), δ3 =−π∗2(KR + 0 + 1 +∞).

Note the restriction of the following classes

δ1,1 = [−π∗1(x)][−π∗2(0 + 1 +∞)],

δ1,3 = [−π∗1(x)][−π∗2(KR + 0 + 1 +∞)],

δ01 = [12π∗1(x)][−π∗2(0 + 1 +∞)],

δ03 = [12π∗1(x)][−π∗2(KR + 0 + 1 +∞)],

δ02 = [12π∗1(x)][π∗2(0 + 1 +∞)],

δ1,2 = [−π∗1(x)][π∗2(0 + 1 +∞)].
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Figure 14. How the general fiber of a family in (S12) moves.

This surface is disjoint from M1
2k,k, hence

2Aκ2
1
−Aλ(g−3) + 6Aδ21 + 3Aδ1,1 − 3Aλδ1 +Aδ1,3 − 36Aδ01 − 12Aδ03

+ 3[Aλδ2 + 12Aδ02 −Aδ1,2 ] = 0.

(S12) Let R be a rational curve, attach two fixed elliptic tails at the points 0 and 1, attach at
the point ∞ an elliptic tail moving in a pencil of degree 12 and identify a moving point in R
with a general point on a general curve F of genus g − 3 (see Figure 14).

The base of the family is P1 ×R. Let Y, σ and P, σ0, σ1, σ∞, σ∆ be as above. Identify
σ ×R⊂ Y ×R with P1 × σ∞ ⊂ P1 × P , and P1 × σ∆ ⊂ P1 × P with a general constant section
of F × P1 ×R. Finally identify P1 × σ0, P1 × σ1 with the zero sections of two constant elliptic
fibrations over P1 ×R. Then

λ= π∗1(x),
δ0 = 12λ, δ1 =−π∗1(x)− π∗2(∞+ 0 + 1),

δ2 = π∗2(∞+ 0 + 1), δ3 =−π∗2(KP1 + 0 + 1 +∞).

Let us note the following restrictions

δ01 = [12π∗1(x)][−π∗2(0 + 1)],
δ0,g−3 = [12π∗1(x)][−π∗2(KP1 + 0 + 1 +∞)],
δ0,g−1 = [12π∗1(x)][−π∗2(∞)],
δ1,1 = [−π∗1(x)][−π∗2(0 + 1)],

δ1,g−3 = [−π∗1(x)][−π∗2(KP1 + 0 + 1 +∞)],
δ0,g−2 = [12π∗1(x)][π∗2(0 + 1)],
δ1,g−2 = [−π∗1(x)][π∗2(0 + 1)],
δ02 = [12π∗1(x)][π∗2(∞)],
δ1,2 = [−π∗1(x)][π∗2(∞)].

This surface is disjoint from M1
2k,k, hence

2Aκ2
1
− 3Aλδ1 − 24Aδ01 − 12Aδ0,g−3 − 12Aδ0,g−1 + 6Aδ21 + 2Aδ1,1 +Aδ1,g−3

−Aλ(3) + 2(Aλδ2 + 12Aδ0,g−2 −Aδ1,g−2) + (Aλδ2 + 12Aδ02 −Aδ1,2) = 0.

(S13) Let (C, p, q) be a general 2-pointed curve of genus g − 3 and identify the point q with a
moving point x on C. Let (E, r, s) be a general 2-pointed elliptic curve and identify the point s
with a moving point y on E. Finally identify the points p and r (see Figure 15).

The base of the family is C × E. Let C̃ × C (respectively Ẽ × E) be the blow-up of C × C at
(p, p) and (q, q) (respectively of E × E at (r, r) and (s, s)). Let τp, τq, τ∆ (respectively σr, σs, σ∆)
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Figure 15. How the general fiber of a family in (S13) moves.

Figure 16. How the general fiber of a family in (S14) moves.

be the proper transform of p× C, q × C,∆C (respectively r × E, s× E,∆E) and identify τq
with τ∆ (respectively σs with σ∆). Finally identify τp × E with C × σr. Then from the proof of
Lemma 6, we have

δ0 = −π∗1(KC + 2q)− π∗2(2s),
δ1 = π∗1(q) + π∗2(s),
δ2 = −π∗1(p)− π∗2(r)

and note that

δ00 = [−π∗1(KC + 2q)][−π∗2(2s)],
δ02 = [−π∗1(KC + 2q)][−π∗2(r)],

δ0,g−2 = [−π∗2(2s)][−π∗1(p)],
δ01 = [−π∗1(KC + 2q)][π∗2(s)] + [−π∗2(2s)][π∗1(q)],

δ1,g−2 = [−π∗1(p)][π∗2(s)],
δ1,2 = [π∗1(q)][−π∗2(r)],
δ1,1 = [π∗1(q)][π∗2(s)].

If a fiber of this family admits an admissible covering of degree k, then such a covering has
a 2-fold ramification at the point p∼ r, q is in the same fiber as x, and s is in the same fiber as
y. By Lemmas 5 and 6 there are two points in E and `g−2,k points in C with such a property,
and the cover is unique up to isomorphism. Reasoning as in (S3), one shows that each cover
contributes with multiplicity 1. It follows that

2(g − 3)[4Aκ2
1

+ 2Aδ00 + 4Aδ20 +Aδ02 ] + 2Aδ0,g−2 −Aω(2) −Aω(g−2)

− [2(g − 3)Aδ01 +Aδ1,g−2 ]− [2Aδ01 +Aδ1,2 ] + [Aδ1,1 + 2Aδ21 ] = 2 · `g−2,k.

(S14) Let (C, p, q) be a general 2-pointed curve of genus g − 2, attach at p an elliptic tail moving
in a pencil of degree 12 and identify q with a moving point on C (see Figure 16).

The base of this family is C × P1. Let C̃ × C be the blow-up of C × C at the points (p, p)
and (q, q). Let τp, τq, τ∆ be the proper transform of p× C, q × C,∆ and identify τq with τ∆.
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Figure 17. How the general fiber of a family in (S15) moves.

Figure 18. How the general fiber of a family in (S16) moves.

Then consider Y, σ as in (S5) and identify C × σ with τp × P1. Then

λ= π∗2(x), δ0 = 12λ− π∗1(KC + 2q), δ1 = π∗1(q)− π∗1(p)− λ.

Note that

δ00 = [12π∗2(x)][−π∗1(KC + 2q)],
δ01 = [π∗1(q)][12π∗2(x)] + [−π∗1(KC + 2q)][−π∗2(x)],

δ0,g−1 = [−π∗1(p)][12π∗2(x)],
δ1,1 = [π∗1(q)][−π∗2(x)].

This surface is disjoint from M1
2k,k, hence

(2g − 4)[2Aκ2
1
−Aλδ0 − 24Aδ20 − 12Aδ00 +Aδ01 ]− 12Aδ0,g−1 + (12Aδ01 −Aδ1,1) = 0.

(S15) Let C be a general curve of genus g − 1 and consider the surface C × C with fiber C/(p∼ q)
over (p, q) (see Figure 17).

To construct the family, start from p2,3 : C × C × C→ C × C, blow up the diagonal ∆⊂
C × C × C and then identify the proper transform of ∆1,2 := p∗1,2(∆) with the proper transform
of ∆1,3 := p∗1,3(∆). Then

δ0 =−(π∗1KC + π∗2KC + 2∆), δ1 = ∆.

The class κ2 has been computed in [Fab90a, § 2.1(1)]. The curve C has no generalized linear
series with Brill–Noether number less than zero, hence

(8g2 − 26g + 20)Aκ2
1

+ (2g − 4)Aκ2 + (4− 2g)Aδ21 + 8(g − 1)(g − 2)Aδ20 = 0.

(S16) For bg/2c6 i6 g − 2, take a general curve C of genus i and attach an elliptic curve E
and a general pointed curve F of genus g − i− 1 at two varying points in C (see Figure 18).

To construct the family, blow up the diagonal ∆ in C × C × C as before, and then identify
the proper transform of ∆1,2 with the zero section of a constant elliptic fibration over C × C,
and identify the proper transform of ∆1,3 with a general constant section of F × C × C. For
i < g − 2

δ1 =−π∗1KC −∆, δg−i−1 =−π∗2KC −∆, δi = ∆
while for i= g − 2 the δ1 is the sum of the above δ1 and δg−i−1.

Note that replacing the tail of genus g − i− 1 with an elliptic tail does not affect the
computation of the class κ2, hence we can use the count from [Fab90b, § 3(γ)], that is κ2 = 2i− 2.
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Figure 19. How the general fiber of a family in (S17) moves.

Regarding the ω classes, on these test surfaces one has ω(i) =−δ2
i and ω(i+1) =−δ2

i+1 =−δ2
g−i−1.

Finally note that δ1,g−i−1 is the product of the classes c1 coming from the two nodes, that is,
δ1,g−i−1 = δ1δg−i−1.

If a fiber of this family has a g1
k limit linear series {lE , lC , lF }, then necessarily the adjusted

Brill–Noether number has to be zero on F and E, and−2 on C. Note that in any case lE = |2 · 0E |.
From § 3.3 there are ∑

α=(α0,α1)
ρ(i,1,k,α)=−1

mi,k,α

pairs in C with such a property, lC is also uniquely determined and there are

Ng−i−1,d,(d−1−α1,d−1−α0)

choices for lF . With a similar argument to (S2), such pairs contribute with multiplicity 1.
All in all for i < g − 2

(2i− 2)[(4i− 1)Aκ2
1

+Aκ2 +Aω(i) −Aω(i+1) +Aδ21 + (2i− 1)Aδ1,g−i−1 ]

=
∑

06α06α16k−1
α0+α1=g−i−1

mi,k,(α0,α1) ·Ng−i−1,k,(k−1−α1,k−1−α0),

while for i= g − 2

(2g − 6)[(4g − 9)Aκ2
1

+Aκ2 +Aω(g−2) + (4g − 8)Aδ21 + (2g − 5)Aδ1,1 ] =mg−2,k,(0,1).

(S17) Consider a general element in θ1, vary the elliptic curve in a pencil of degree 12 and vary
one point on the elliptic curve (see Figure 19).

The base of this family is the blow-up of P2 in the nine points of intersection of two general
cubic curves. Let us denote by H the pull-back of an hyperplane section in P2, by Σ the sum of
the nine exceptional divisors and by E0 one of the exceptional divisors. We have

λ= 3H − Σ, δ0 = 30H − 10Σ− 2E0, δ1 = E0

(see also [Fab89, § 2(9)]). Replacing the component of genus g − 2 with a curve of genus 2, we
obtain a surface in M4. The computation of the class κ2 remains unaltered, that is κ2 = 1 (see
[Fab90b, § 3(ι)]). Similarly for δ00 and θ1, while δ0,g−1 corresponds to the value of δ01a on the
surface in M4.

Let us study the intersection with M1
2k,k. An admissible cover for some fiber of this family

would necessarily have the two nodes in the same fiber, which is impossible, since the two points
are general on the component of genus g − 2. We deduce the following relation:

3Aκ2
1

+Aκ2 − 2Aλδ0 +Aλδ1 − 44Aδ20 −Aδ21 + 12Aδ0,g−1 − 12Aδ00 +Aθ1 = 0.
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Figure 20. How the general fiber of a family in (S18) moves.

(S18) For 2 6 i6 b(g + 1)/2c we consider a general curve of type δi−1,g−i and we vary the central
elliptic curve E in a pencil of degree 12 and one of the points on E (see Figure 20).

The base of this family is the same surface as in (S17). For i> 3 we have

λ= 3H − Σ,
δ0 = 12λ, δ1 = E0,

δi−1 =−3H + Σ− E0, δg−i =−3H + Σ− E0

while for i= 2 the δ1 is the sum of the above δ1 and δi−1, that is δ1 =−3H + Σ (see also
[Fab90b, § 3(λ)]).

Note that replacing the two tails of genus i− 1 and g − i with tails of genus 1 and 2, we obtain
a surface inM4. The computation of the class κ2 remains unaltered, that is κ2 = 1 (see [Fab90b,
§ 3(λ)]). Moreover, on these test surfaces ω(i) =−δ2

i =−δ2
g−i and for i> 3, ω(g−i+1) =−δ2

g−i+1 =
−δ2

i−1 holds, while λ(i) = λδi = λδg−i for i> 3 and λ(g−i+1) = λδg−i+1 = λδi−1 for i> 4. All
fibers are in δi−1,g−i, hence δi−1,g−i is the product of the classes c1 of the two nodes, that
is, δi−1,g−i = δi−1 · δg−i. Note that on these surfaces, δ0,i−1 = δ0δi−1 and δ0,g−i = δ0δg−i. There
are exactly 12 fibers which contribute to θi−1, namely when the elliptic curve degenerates into a
rational nodal curve and the moving point hits the non-disconnecting node. Similarly, there are
12 fibers which contribute to δ0,g−1, namely when the elliptic curve degenerates into a rational
nodal curve and the moving point hits the disconnecting node.

These surfaces are disjoint from M1
2k,k. Indeed the two tails of genus i− 1 and g − i have

no linear series with adjusted Brill–Noether number less than zero at general points. Moreover,
an elliptic curve has no g1

k with adjusted Brill–Noether number less than −1 at two arbitrary
points. Finally a rational nodal curve has no generalized linear series with adjusted Brill–Noether
number less than zero at arbitrary points.

It follows that for i> 4 we have

3Aκ2
1

+Aκ2 −Aω(i) −Aω(g−i+1) −Aδ21 +Aδi−1,g−i
−Aλ(i) −Aλ(g−i+1)

+Aλδ1 − 12Aδ0,i−1 − 12Aδ0,g−i
+ 12Aδ0,g−1 + 12Aθi−1 = 0,

when i= 3

3Aκ2
1

+Aκ2 −Aω(3) −Aω(g−2) −Aδ21 +Aδ2,g−3 −Aλ(3) −Aλδ2
+Aλδ1 − 12Aδ0,2 − 12Aδ0,g−3 + 12Aδ0,g−1 + 12Aθ2 = 0,

and when i= 2

3Aκ2
1

+Aκ2 −Aω(2) +Aδ1,g−2 −Aλδ2 − 12Aδ0,1 − 12Aδ0,g−2 + 12Aδ0,g−1 + 12Aθ1 = 0.
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7. Non-singularity

In (S1)–(S18) we have constructed

b(g2 − 1)/4c+ 3g − 1

linear relations in the coefficients A. Let us collect here all the relations. For 2 6 i6 bg/2c from
(S1) we obtain

2Aκ2
1
−Aω(i) −Aω(g−i) =

Ti
(2i− 2)(2(g − i)− 2)

,

from (S2) for 2 6 i6 j 6 g − 3 and i+ j 6 g − 1

2Aκ2
1

+Aδij
=

Dij

(2i− 2)(2j − 2)
,

from (S3)

4Aκ2
1
−Aω(2) −Aω(g−2) −Aδ1,g−2 + 2Aδ0,g−2 =

ng−2,k,(0,1)

g − 3
,

from (S4) for 2 6 i6 g − 3

4Aκ2
1
−Aδ1,i

+ 2Aδ0,i
+Aδ2,i

=
D2,i

6(i− 1)
,

from (S5)

2Aκ2
1
− 12Aδ0,g−1 + 2Aδ21 −Aλδ1 = 0,

from (S6) for 3 6 i6 g − 3

2Aκ2
1
−Aλ(i) +Aδ1,g−i

− 12Aδ0,g−i
= 0

and

2Aκ2
1
−Aλδ2 +Aδ1,2 − 12Aδ0,2 = 0,

from (S7)

8Aκ2
1

+Aδ2,2 − 2Aδ1,2 +Aδ1,1 + 2Aδ21 + 8Aδ20 + 4Aδ00 + 4Aδ02 − 4Aδ01 = 4Ng−4,k,(0,1),(0,1),

from (S8)

2Aκ2
1

+ 288Aδ20 + 24Aλδ0 + 2Aδ21 − 2Aλδ1 + 144Aδ00 +Aδ1,1 − 24Aδ01 = 0,

from (S9) for 2 6 j 6 g − 3

2Aκ2
1

+ 2Aδ1j
+Aδj,g−j−2 −Aδ2,j

− 2Aδj,g−j−1 −Aω(j) −Aω(g−j) = 0,

from (S10) for g > 6

2Aκ2
1

+ 12Aδ21 + 6Aδ1,1 + 3Aδ1,g−5 + 2Aδ1,3 +Aδ3,g−5 + 3Aδ1,g−3

−Aω(3) −Aω(g−3) − 3(Aδ2,g−3 +Aδ2,g−5 + 2Aδ1,2)
− 2(3Aδ1,g−4 +Aδ3,g−4)− (3Aδ1,2 +Aδ2,3) + 6Aδ2,g−4 + 3Aδ2,2 = 0

while for g = 6

2Aκ2
1

+ 18Aδ21 + 6Aδ1,1 + 3Aδ1,g−5 + 2Aδ1,3 +Aδ3,g−5 + 3Aδ1,g−3

−Aω(3) −Aω(g−3) − 3(Aδ2,g−3 +Aδ2,g−5 + 2Aδ1,2)
− 2(3Aδ1,g−4 +Aδ3,g−4)− (3Aδ1,2 +Aδ2,3) + 6Aδ2,g−4 + 3Aδ2,2 = 0,
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from (S11)

2Aκ2
1
−Aλ(g−3) + 6Aδ21 + 3Aδ1,1 − 3Aλδ1 +Aδ1,3 − 36Aδ01 − 12Aδ03

+ 3[Aλδ2 + 12Aδ02 −Aδ1,2 ] = 0,

from (S12)

2Aκ2
1
− 3Aλδ1 − 24Aδ01 − 12Aδ0,g−3 − 12Aδ0,g−1 + 6Aδ21 + 2Aδ1,1 +Aδ1,g−3

−Aλ(3) + 2(Aλδ2 + 12Aδ0,g−2 −Aδ1,g−2) + (Aλδ2 + 12Aδ02 −Aδ1,2) = 0,

from (S13)

2(g − 3)[4Aκ2
1

+ 2Aδ00 + 4Aδ20 +Aδ02 ] + 2Aδ0,g−2 −Aω(2) −Aω(g−2)

− [2(g − 3)Aδ01 +Aδ1,g−2 ]− [2Aδ01 +Aδ1,2 ] + [Aδ1,1 + 2Aδ21 ] = 2 · `g−2,k,

from (S14)

(2g − 4)[2Aκ2
1
−Aλδ0 − 24Aδ20 − 12Aδ00 +Aδ01 ]− 12Aδ0,g−1 + (12Aδ01 −Aδ1,1) = 0,

from (S15)

(8g2 − 26g + 20)Aκ2
1

+ (2g − 4)Aκ2 + (4− 2g)Aδ21 + 8(g − 1)(g − 2)Aδ20 = 0,

from (S16) for bg/2c6 i6 g − 3

(4i− 1)Aκ2
1

+Aκ2 +Aω(i) −Aω(i+1) +Aδ21 + (2i− 1)Aδ1,g−i−1

=
1

2i− 2

∑
06α06α16k−1
α0+α1=g−i−1

mi,k,(α0,α1) ·Ng−i−1,k,(k−1−α1,k−1−α0)

and

(4g − 9)Aκ2
1

+Aκ2 +Aω(g−2) + (4g − 8)Aδ21 + (2g − 5)Aδ1,1 =
mg−2,k,(0,1)

2g − 6
,

from (S17)

3Aκ2
1

+Aκ2 − 2Aλδ0 +Aλδ1 − 44Aδ20 −Aδ21 + 12Aδ0,g−1 − 12Aδ00 +Aθ1 = 0,

from (S18) for 4 6 i6 b(g + 1)/2c

3Aκ2
1

+Aκ2 −Aω(i) −Aω(g−i+1) −Aδ21 +Aδi−1,g−i
−Aλ(i) −Aλ(g−i+1)

+Aλδ1 − 12Aδ0,i−1 − 12Aδ0,g−i
+ 12Aδ0,g−1 + 12Aθi−1 = 0,

and

3Aκ2
1

+Aκ2 −Aω(3) −Aω(g−2) −Aδ21 +Aδ2,g−3 −Aλ(3) −Aλδ2
+Aλδ1 − 12Aδ0,2 − 12Aδ0,g−3 + 12Aδ0,g−1 + 12Aθ2 = 0,

3Aκ2
1

+Aκ2 −Aω(2) +Aδ1,g−2 −Aλδ2 − 12Aδ0,1 − 12Aδ0,g−2 + 12Aδ0,g−1 + 12Aθ1 = 0.

Our aim is to show that the above linear relations yield a non-degenerate linear system. Let

{eκ2
1
, eκ2 , eδ20 , eλδ0 , eδ21 , eλδ1 , eλδ2 , . . . , eω(i) , . . . , eλ(j) , . . . , eδk,l

, . . . , eθ1 , . . . , eθb(g−1)/2c}

be the canonical basis of Qb(g2−1)/4c+3g−1 indexed by the tautological codimension-two generating
classes from § 1. Let Qg be the square matrix of order b(g2 − 1)/4c+ 3g − 1 associated to the
linear system given by the above relations. As we have already noted, since the test surfaces in
(S1)–(S18) are also defined for odd values of g > 6, the matrix Qg is also defined for g odd, g > 7.
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For each g > 6 we construct a square matrix Tg of order b(g2 − 1)/4c+ 3g − 1 such that Qg · Tg
is lower-triangular with nonzero diagonal coefficients.

We describe the columns of Tg dividing them into 18 groups, similarly to the description of
the relations that yield the rows of Qg.

(T1) For 2 6 i6 bg/2c consider the column eω(i) .
(T2) For i, j such that 2 6 i6 j 6 g − 3 and i+ j 6 g − 1 consider eδi,j

.
(T3) Consider the column eδ1,g−2 .
(T4) For 2 6 i6 g − 3 consider eδ1,i

.
(T5) Take eδ0,g−1 .
(T6) For 3 6 i6 g − 3 consider eλ(i) . Moreover, consider the column eλδ2 .
(T7) Consider the column eδ1,1 .
(T8) Consider eλδ0 .
(T9) Consider

2eδ1,2 + eδ0,2 − 10eλδ2 .
Moreover for 3 6 j 6 g − 3 consider

2eδ1,j
+ eδ0,j

− 10eλ(g−j) .

Take the following:
(T10) 60eλδ1 + 12eδ21 − 3eδ0,g−1 + 8eδ0,1 + 2eδ00 ;
(T11) 12eλδ1 + eλδ0 − eδ0,g−1 ;
(T12) eδ0,g−2 + 2eδ1,g−2 ;
(T13) 12eλδ1 + 6eλδ0 − eδ0,g−1 − eδ0,1 − eδ00 ;

(T14)

6
(
eκ2

1
+ eω(bg/2c) + 2

∑
26s<g/2

eω(s) + 12
(
eλδ0 + 2eλδ1 + 2eλδ2 + 2

∑
36s6g−3

eλ(s)

)
− 2

∑
(i,j)6=(0,g−1)

eδij

)
− 11eδ0,g−1 ;

(T15) eκ2 .

(T16) For bg/2c6 i6 g − 3 consider eω(i+1) − eω(g−i−1) . Furthermore consider

(g − 1)
( ∑

26s6g/2

12
(
g

2
− s
)

(eω(g−s) − eω(s)) + 12eδ21 − 24eδ1,1 + 2eδ0,g−1

)
+ 3eδ20 − 6eδ00 .

(T17) Consider

6g eκ2 +
∑

26s6g/2

12
(
g

2
− s
)

(eω(g−s) − eω(s)) + 12
(

1− g

2

)
eδ21

+ 12(g − 2)eδ1,1 − 3eδ20 + (2− g)eδ0,g−1 + 6eδ00 .

(T18) For 4 6 i6 b(g + 1)/2c consider eθi−1 . Moreover consider eθ2 and finally the column

−6g eκ2 +
∑

26s6g/2

12
(
g

2
− s
)

(eω(s) − eω(g−s)) + 12
(
g

2
− 1
)
eδ21

+ 12(2− g)eδ1,1 + 3eδ20 + (g − 2)eδ0,g−1 − 6eδ00 + 72eθ1 .
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One checks that Qg · Tg is an lower-triangular matrix with all the coefficients on the main
diagonal different from zero. It follows that det(Qg) 6= 0 for all g > 6. In particular, when g = 2k,
we are able to solve the system and find the coefficients A.

Theorem 7. For k > 3, the class of the locus M1
2k,k ⊂M2k is

[M1
2k,k]Q = c

[
Aκ2

1
κ2

1 +Aκ2κ2 +Aδ20δ
2
0 +Aλδ0λδ0 +Aδ21δ

2
1 +Aλδ1λδ1 +Aλδ2λδ2

+
2k−2∑
i=2

Aω(i)ω(i) +
2k−3∑
i=3

Aλ(i)λ(i) +
∑
i,j

Aδij
δij +

b(2k−1)/2c∑
i=1

Aθi
θi

]
in R2(M2k,Q), where

c =
2k−6(2k − 7)!!

3(k!)
,

Aκ2
1

=−Aδ20 = 3k2 + 3k + 5,
Aκ2 = −24k(k + 5),
Aδ21 = −(3k(9k + 41) + 5),
Aλδ0 = −24(3(k − 1)k − 5),
Aλδ1 = 24(−33k2 + 39k + 65),
Aλδ2 = 24(3(37− 23k)k + 185),
Aω(i) = −180i4 + 120i3(6k + 1)− 36i2(20k2 + 24k − 5)

+ 24i(52k2 − 16k − 5) + 27k2 + 123k + 5,
Aλ(i) = 24[6i2(3k + 5)− 6i(6k2 + 23k + 5) + 159k2 + 63k + 5],
Aθ(i) = −12i[5i3 + i2(10− 20k) + i(20k2 − 8k − 5)− 24k2 + 32k − 10],
Aδ1,1 = 48(19k2 − 49k + 30),

Aδ1,2k−2 = 2
5(3k(859k − 2453) + 2135),

Aδ00 = 24k(k − 1),
Aδ0,2k−2 = 2

5(3k(187k − 389)− 745),
Aδ0,2k−1 = 2(k(31k − 49)− 65)

and for i> 1 and 2 6 j 6 2k − 3

Aδij
= 2[3k2(144ij − 1)− 3k(72ij(i+ j + 4) + 1) + 180i(i+ 1)j(j + 1)− 5]

while

Aδ0j
= 2(−3(12j2 + 36j + 1)k + (72j − 3)k2 − 5)

for 1 6 j 6 2k − 3.

As usual, for a positive integer n, the symbol (2n+ 1)!! denotes

(2n+ 1)!
2n · n!

,

while (−1)!! = 1.
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(a)

(b)

(c)

(d)

Figure 21. Loci in M2,1.

8. Pull-back to M2,1

As a check, in this section we obtain four more relations for the coefficients A considering
the pull-back of M1

2k,k to M2,1. Let j : M2,1→Mg be the map obtained by attaching a
fixed general pointed curve of genus g − 2 at elements (D, p) in M2,1. This produces a map
j∗ : A2(Mg)→A2(M2,1).

In [Fab88, Ch. 3, § 1] it is shown that A2(M2,1) has rank 5 and is generated by the classes
of the loci composed by curves of type ∆00, (a), (b), (c) and (d) as in Figure 21.

We have the following pull-backs:

j∗(δ0,1) = [(a)]Q, j∗(δ0,g−1) = [(b)]Q,

j∗(θ1) = [(c)]Q,

j∗(δ1,1) = [(d)]Q, j∗(δ00) = [∆00]Q,

j∗(δ2
0) = 5

3 [∆00]Q − 2[(a)]Q − 2[(b)]Q,

j∗(δ2
1) = − 1

12([(a)]Q + [(b)]Q),

j∗(λδ0) = 1
6 [∆00]Q,

j∗(λδ1) = 1
12([(a)]Q + [(b)]Q),

j∗(λδ2) = −λψ

= 1
60(−[∆00]Q − 7[(a)]Q − 12[(c)]Q − 24[(d)]Q),

j∗(κ2
1) = (1

5δ0 + 7
5δ1 + ψ)2

= 1
120(17[∆00]Q + 127[(a)]Q + 37[(b)]Q + 120[(c)]Q + 840[(d)]Q),

j∗(κ2) = λ(λ+ δ1) + ψ2

= 1
120(3[∆00]Q + 25[(a)]Q + 11[(b)]Q + 24[(c)]Q + 168[(d)]Q),

j∗(δ1,g−2) = −δ1ψ

= − 1
12 [(a)]Q − 2[(d)]Q,
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j∗(δ0,g−2) = −δ0ψ

= −1
6 [∆00]Q − [(a)]Q − 2[(c)]Q,

j∗(ω(2)) = −ψ2

= − 1
120([∆00]Q + 13[(a)]Q − [(b)]Q + 24[(c)]Q + 168[(d)]Q).

For this, see relations in [Fab88, Ch. 3, § 1] and [Mum83, §§ 8–10]. We have used the fact that
on Mg,1 one has

κi = κi|Mg
+ ψi

(see [AC96, 1.10]).
All the other classes have zero pull-back. Finally, j∗(M1

2k,k) is supported at most on the
locus (c). Indeed, general elements in the loci ∆00, (a), (b) and (d) do not admit any linear series
g1
k with adjusted Brill–Noether number less than −1 (see also [Edi93, Lemma 5.1]). Since the

restriction of M1
2k,k to j(M2,1) is supported in codimension two, then j(M2,1\(c)) = 0. Hence,

looking at the coefficients of [∆00]Q, [(a)]Q, [(b)]Q and [(d)]Q in j∗(M1
2k,k), we obtain the following

relations:

Aδ00 + 5
3Aδ20 + 1

6Aλδ0 −
1
60Aλδ2 + 17

120Aκ2
1

+ 1
40Aκ2 − 1

6Aδ0,g−2 − 1
120Aω(2) = 0,

Aδ01 − 2Aδ20 −
1
12Aδ21 + 1

12Aλδ1 −
7
60Aλδ2 + 127

120Aκ2
1

+ 5
24Aκ2 − 1

12Aδ1,g−2 −Aδ0,g−2 − 13
120Aω(2) = 0,

Aδ0,g−1 − 2Aδ20 −
1
12Aδ21 + 1

12Aλδ1 + 37
120Aκ2

1
+ 11

120Aκ2 + 1
120Aω(2) = 0,

Aδ1,1 − 2
5Aλδ2 + 7Aκ2

1
+ 7

5Aκ2 − 2Aδ1,g−2 − 7
5Aω(2) = 0.

The coefficients A shown in Theorem 7 satisfy these relations.

9. Further relations

In this section we will show how to get further relations for the coefficients A that can be used
to produce more tests for our result.

9.1 The coefficients of κ2
1 and κ2

One can compute the class of M1
2k,k in the open M2k by the methods described by Faber

in [Fab99]. Let Ck2k be the k-fold fiber product of the universal curve over M2k and let
πi : Ck2k→C2k be the map forgetting all but the ith point, for i= 1, . . . , k. We define the following
tautological classes on Ck2k: Ki is the class of π∗i (ω), where ω is the relative dualizing sheaf of the
map C2k→M2k, and ∆i,j is the class of the locus of curves with k points (C, x1, . . . , xk) such
that xi = xj , for 1 6 i, j 6 k.

Let E be the pull-back to Ck2k of the Hodge bundle of rank 2k and let Fk be the bundle on
Ck2k of rank k whose fiber over (C, x1, . . . , xk) is

H0(C, KC/KC(−x1 · · · − xk)).

We consider the locus X in Ck2k where the evaluation map

ϕk : E→ Fk
has rank at most k − 1. Equivalently, X parameterizes curves with k points (C, x1, . . . , xk) such
that H0(C, KC(−x1 · · · − xk)) > k + 1 or, in other terms, H0(C, x1 + · · ·+ xk) > 2. By Porteous
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formula, the class of X is

[X] =


e1 e2 e3 · · · ek+1

1 e1 e2 · · · ek

0 1 e1
. . .

...
...

. . . . . . . . . e2

0 · · · 0 1 e1


where the classes ei are the Chern classes of Fk − E. The total Chern class of Fk − E is

(1 +K1)(1 +K2 −∆1,2) · · · (1 +Kk −∆1,k · · · −∆k−1,k)(1− λ1 + λ2 − λ3 + · · ·+ λ2k).

Intersecting the class of X with ∆1,2 we obtain a class that pushes forward via π := π1π2 · · · πk
to the class of M1

2k,k with multiplicity (k − 2)!(6k − 2). We refer the reader to [Fab99, § 4] for
formulae for computing the push-forward π∗.

For instance, when k = 3 one constructs a degeneracy locus X on the 3-fold fiber product of
the universal curve over M6. The class of X is

[X] = e4
1 − 3e2

1e2 + e2
2 + 2e1e3 − e4

where the classes ei are determined by the following total Chern class

(1 +K1)(1 +K2 −∆1,2)(1 +K3 −∆1,3 −∆2,3)(1− λ1 + λ2 − λ3 + · · ·+ λ6).

Upon intersecting the class of X with ∆1,2 and using the following identities

∆1,3∆2,3 = ∆1,2∆1,3,

∆2
1,2 =−K1∆1,2, ∆2

1,3 =−K1∆1,3, ∆2
2,3 =−K2∆2,3,

K2∆1,2 =K1∆1,2K3, ∆1,3 =K1∆1,3, K3∆2,3 =K2∆2,3,

one obtains

[X] ·∆1,2 = K4
3∆1,2 − 3K3

3∆2
1,2 + 7K2

3∆3
1,2 − 15K3∆4

1,2 + 31∆5
1,2

+ 72∆1,2∆4
2,3 + 172∆1,3∆4

2,3 −K3
3∆1,2λ1 + 3K2

3∆2
1,2λ1

− 7K3∆3
1,2λ1 + 15∆4

1,2λ1 + 23∆1,2∆3
2,3λ1 + 41∆1,3∆3

2,3λ1

+ K2
3∆1,2λ

2
1 − 3K3∆2

1,2λ
2
1 + 7∆3

1,2λ
2
1 + 6∆1,2∆2

2,3λ
2
1

+ 8∆1,3∆2
2,3λ

2
1 −K3∆1,2λ

3
1 + 3∆2

1,2λ
3
1 + ∆1,2∆2,3λ

3
1

+ ∆1,3∆2,3λ
3
1 + ∆1,2λ

4
1 −K2

3∆1,2λ2 + 3K3∆2
1,2λ2 − 7∆3

1,2λ2

− 6∆1,2∆2
2,3λ2 − 8∆1,3∆2

2,3λ2 + 2K3∆1,2λ1λ2 − 6∆2
1,2λ1λ2

− 2∆1,2∆2,3λ1λ2 − 2∆1,3∆2,3λ1λ2 − 3∆1,2λ
2
1λ2 + ∆1,2λ

2
2

− K3∆1,2λ3 + 3∆2
1,2λ3 + ∆1,2∆2,3λ3 + ∆1,3∆2,3λ3

+ 2∆1,2λ1λ3 −∆1,2λ4.

Computing the push-forward to M6 of the above class, one has

[M1
6,3]Q = 1

16((18κ0 − 244)κ2 + 7κ2
1 + (64− 10κ0)κ1λ1

+ (3κ2
0 − 14κ0)λ2

1 + (14κ0 − 3κ2
0)λ2).
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Note that κ0 = 2g − 2 = 10, 12λ1 = κ1 and 2λ2 = λ2
1, hence we recover

[M1
6,3]Q = 41

144κ
2
1 − 4κ2.

Remark 8. As a corollary one obtains the class of the Maroni locus inM6. The trigonal locus in
M2k has a divisor known as the Maroni locus (see [Mar46, MS86]). While the general trigonal
curve of even genus admits an embedding in P1 × P1 or in P2 blown up in one point, the
trigonal curves admitting an embedding to other kinds of ruled surfaces constitute a subvariety
of codimension one inside the trigonal locus.

The class of the Maroni locus in the Picard group of the trigonal locus in M2k has been
studied in [Sta00]. For k = 3, one has that the class of the Maroni locus is 8λ ∈ PicQ(M1

6,3).
Knowing the class of the trigonal locus in M6, one has that the class of the Maroni locus in
M6 is

8λ( 41
144κ

2
1 − 4κ2).

9.2 More test surfaces

One could also consider more test surfaces. For instance one can easily adapt the test surfaces
of type (ε) and (κ) from [Fab90b, § 3]. They are all disjoint from the locus M1

2k,k and produce
relations compatible with the ones we have shown.

9.3 The relations for g = 5

As an example, let us consider the case g = 5. We know that the tautological ring of M5 is
generated by λ, that is, there is a non-trivial relation among κ2

1 and κ2 (see [Fab99]). The square
matrix Q5 from § 7 expressing the restriction of the generating classes inM5 to the test surfaces
(S1)–(S18) (we have to exclude the relation from (S10) which is defined only for g > 6), has
rank 19, showing that the class κ2

1 (or the class κ2) and the 18 boundary classes in codimension
two in M5 are independent.

10. The hyperelliptic locus in M4

The class of the hyperelliptic locus in M4 has been computed in [FP05, Proposition 5]. In this
section we will recover the formula by the means of the techniques used so far.

The class will be expressed as a linear combination of the 14 generators for R2(M4)
from [Fab90b]: κ2, λ2, λδ0, λδ1, λδ2, δ2

0 , δ0δ1, δ2
1 , δ1δ2, δ2

2 , δ00, γ1, δ01a and δ1,1. Remember
that there exists one unique relation among these classes, namely

60κ2 − 810λ2 + 156λδ0 + 252λδ1 − 3δ2
0 − 24δ0δ1 + 24δ2

1 − 9δ00 + 7δ01a − 12γ1 − 84δ1,1 = 0,

hence R2(M4) has rank 13. Write [M1
4,2]Q as

[M1
4,2]Q = Aκ2κ2 +Aλ2λ2 +Aλδ0λδ0 +Aλδ1λδ1 +Aλδ2λδ2 +Aδ20δ

2
0 +Aδ0δ1δ0δ1

+ Aδ21δ
2
1 +Aδ1δ2δ1δ2 +Aδ22δ

2
2 +Aδ00δ00 +Aγ1γ1 +Aδ01a

δ01a +Aδ1,1δ1,1.

Let us construct 13 independent relations among the coefficients A.
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The surfaces (S1), (S3), (S5), (S6), (S8), (S12)–(S18) from § 6 give respectively the following
12 independent relations

8Aδ22 = 36,
4Aδ22 − 2Aδ1δ2 = 12,

−4Aλδ1 − 48Aδ0δ1 + 8Aδ21 − 48Aδ01a
= 0,

Aλδ2 −Aδ1δ2 = 0,
2Aλ2 + 24Aλδ0 − 2Aλδ1 + 288Aδ20 − 24Aδ0δ1 + 2Aδ21 + 144Aδ00 +Aδ1,1 = 0,

−4Aλδ1 + 3Aλδ2 − 48Aδ0δ1 + 8Aδ21 − 3Aδ1δ2 − 12Aδ01a
+ 3Aδ1,1 = 0,

8Aδ20 − 4Aδ0δ1 + 2Aδ21 − 2Aδ1δ2 + 2Aδ22 + 4Aδ0,0 +Aδ1,1 = 4,
−4Aλδ0 − 96Aδ20 + 4Aδ0δ1 − 48Aδ00 −Aδ1,1 − 12Aδ01a

= 0,
48Aδ20 − 4Aδ21 + 4Aκ2 = 0,

16Aδ21 − 2Aδ22 + 2Aκ2 + 6Aδ1,1 = 30,
−2Aλδ0 +Aλδ1 − 44Aδ20 + 12Aδ0δ1 −Aδ21 +Aκ2 − 12Aδ00 + 12Aδ01a

+Aγ1 = 0,
Aδ1δ2 −Aλδ2 +Aδ22 +Aκ2 + 12Aδ01a

+ 12Aγ1 = 0.

Next we look at the pull-back to M2,1. The pull-back of the classes κ2, λδ0, λδ1, λδ2, δ2
0 , δ2

1 ,
δ00, γ1 = θ1, δ01a = δ0,g−1 and δ1,1 have been computed in § 8. Moreover,

j∗(λ2) = 1
60([∆00]Q + [(a)]Q + [(b)]Q),

j∗(δ0δ1) = [(a)]Q + [(b)]Q,
j∗(δ1δ2) = −δ1ψ

= − 1
12 [(a)]Q − 2[(d)]Q,

j∗(δ2
2) = ψ2

= 1
120([∆00]Q + 13[(a)]Q − [(b)]Q + 24[(c)]Q + 168[(d)]Q).

Considering the coefficient of [∆00]Q yields the following relation

Aδ00 + 5
3Aδ20 + 1

6Aλδ0 −
1
60Aλδ2 + 1

40Aκ2 + 1
60Aλ2 + 1

120Aδ22 = 0.

All in all we get 13 independent relations, and the class of M1
4,2 follows

2[M1
4,2]Q = 27κ2 − 339λ2 + 64λδ0 + 90λδ1 + 6λδ2 − δ2

0 − 8δ0δ1

+ 15δ2
1 + 6δ1δ2 + 9δ2

2 − 4δ00 − 6γ1 + 3δ01a − 36δ1,1.
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