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Abstract

An innovative and simple method for attaining broadband frequency reconfigurable antenna
structure is presented using low-cost materials and a compact design. The frequency reconfi-
gurability is attained by the “OFF” and “ON” mechanisms of three PIN diodes. Many per-
formance observations are carried out such as reflectance coefficient, bandwidth (BW),
resonance frequency, electric field, feed position variation, and gain among different config-
urations. The suitability of the presented work for the different applications lies in the X fre-
quency band. The resonating frequency for all switch OFF modes is achieved at 13.2 GHz and
one switch ON mode at 10.7 GHz. The proposed design yields the frequency tunability behav-
ior over the broadband of 2.5 GHz. The design yields the directivity of 5.58 dB, the minimum
reflectance coefficient of −17.27 dB, and a total gain of 3.87 dB. This design offers an electric
field of 46 558 v/m, a BW of 340MHz, and a normalized directivity of 87° using low-cost sub-
strates. The results of the presented design were also fabricated and related to simulated
results. Performance observation of the proposed work with previously published research
work is also included. The presented design provides the solution of the low-cost, compact,
reconfigurable antennas, which can be used for next-generation communication systems.

Introduction

Antenna design has come a long way; previously, simple antennas were designed with high
gain or high bandwidth (BW), but now antennas have improved. They have high gain, high
BW, small size, etc. [1–4]. Antenna design has been improved to accommodate more applica-
tions in a single antenna. One of the essential features required nowadays is reconfiguration
[5]. Frequency reconfiguration is significant nowadays in antenna design to be applicable in
the military and other applications. Radiation and polarization tuning are also essential in
radar applications [6]. This requirement has created the need for an antenna having high gain
and reconfiguration capability. This requirement can be met by incorporating metamaterials
and PIN diode switches.

Metamaterials have unique properties that do not lie in natural materials. These unique
properties are the negative effect of permeability and permittivity. Antenna performance is
enhanced due to the metamaterial property. The metamaterial concept is added to the stand-
ard patch by etching strip lines in the ground plane, which improves the gain and BW [7].
Metamaterial antennas with its unique properties are also applicable for 5G applications
[8]. The superstrate can be applied with different materials to improve gain, BW, and direc-
tivity. The superstrate with a split-ring resonator improves the BW and gain [9]. The design
with metamaterials is applicable in LTE/WiMax/Bluetooth [10–12]. Microstrip patch antenna
(MPA) design with liquid metamaterials enhances radiation [13, 14]. The antenna’s radiation
is improved with a truncated corner MPA loaded with metamaterials. Antenna loaded with
metamaterials is applicable in Doppler radar with improved antenna parameters [15].
Split-ring resonators and the complementary split-ring resonator are used for making the
metamaterial component. Therefore, the antenna operates on multifrequency bands with
high BW.
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The reconfiguration is significant and can be attained by apply-
ing a switch to a patch antenna. The PIN diodes [16] and
RF-MEMS [17] can be used as a switch. Frequency reconfiguration
can be achieved using metamaterials and PIN diode switches [18,
19]. Superstrate and metamaterial are incorporated into the MPA
to enhance the gain and achieve vast frequency operation [20].
Pattern reconfiguration can also be possible to achieve using
switching in an MPA. This reconfiguration in radiation patterns
is applicable in vehicular applications [21]. The defected ground
structure reconfigures the antenna frequency [22]. The slot antenna
is tuned for frequency and pattern characteristics. The wideband
response is also achieved by reconfiguring this slot antenna using
a PIN diode [23]. MIMO slot antennas can also be frequency
reconfigured using the same concept [24]. Varactor diodes can
also be used for achieving frequency tunability [25]. Antenna
design needs reconfiguration, high gain, and high BW.

Antennas with high gain, BW, and tunability are the require-
ment of today’s world. We propose an antenna having high
gain, high BW, and frequency reconfiguration with switching
“ON” and “OFF” three PIN diodes. The reconfiguration is
achieved by varying the switching of different diodes. The reson-
ance frequency of all switch OFF designs was attained at 13.2
GHz, which helps target the point to point communication appli-
cation. The second diode with ON configuration resonating at
10.7 GHz is suitable for the satellite downlink communication.
The two diodes with ON condition resonating at 11.3 GHz are
suitable for the armature radio telescope application. The fourth
switching configuration provides the resonance at 11.5 GHz,
which helps atmospheric wave attenuation [26, 27].

Moreover, the new design’s findings are compared to those of
past published designs to demonstrate its progress. Finally, the
design is built and tested, and the simulation results are used to ver-
ify its correctness. The antenna design in detail is discussed in
Section “Design and modeling.” The results of the fabricated proto-
type and simulation model are discussed in Section “Simulation and
fabricated design results.” Finally, “Conclusion” section contains the
author’s closing observations and recommendations.

Design and modeling

Figure 1 presents the three-dimensional view of the planned
antenna structure. The substrate layer is designed using a low-
profile material (FR-4). The dielectric constant is 4.4 for FR-4
material [19]. Three PIN diodes were used for the charge distribu-
tion among different sections in the patch region, leading to
reconfigurability. Table 1 shows the four switching modes. Due
to the switching mechanism, the tunability of the frequency can
be attained. In the first mode, all the PIN diodes are in the
OFF condition. The second mode has one diode in the ON
state and the rest of the two switching diodes in the OFF condi-
tion. The third mode has PIN diode-1 and PIN diode-2 in ON the
condition, and PIN diode-3 in the OFF condition. Finally, the
fourth model has all the PIN diodes in one condition.

Figure 2 reveals the designed view of the proposed structure.
Figure 2(a) presents the top view of the simple cropped patch
without the PIN diodes. The top view of the patch with the
three connected PIN diodes is shown in Fig. 2(b). The lateral
view is observed in Fig. 2(c). Figure 2(d) shows an anechoic
chamber. It is used for directivity measurement.

The top view of the MPA is shown in Fig. 3(a). Figure 3(b)
shows the lateral view of the presented structure. The copper
material is used in the patch of antenna and ground layer; both

have a thickness of 0.35 mm. In this design, the size of the copper
layer is 1 oz; 1 oz corresponds to 14 mils (0.3 mm). The size of the
ground and substrate are 14 mm × 14mm. The dimension of the
patch is 12 mm × 12mm. The patch area is cropped for attaching
the PIN diode, which changes the energy distribution, resulting in
frequency reconfigurability. Two gaps in the cropped area are 1
mm. The dimension of the inner area of the rectangle patch is
2 mm. After cropping, the inner area is 4 mm. After cropping
the outer area, the dimensions are 8 mm.

The dimensions of the proposed antenna structure are calcu-
lated using equations (1)–(11) [20]. The resonance frequency of
Split ring resonator (SRR) can be calculated using equation (1).
Here, L represents the inductance and C represents the
capacitance:

f = 1

2p
����
LCs

√ (1)

The effective relative permittivity of a metamaterial antenna is
calculated as below:

1eff (f ) = 1r − 1r − 1es

1+ G( f /fd)
2 (2)

The coefficients are calculated as per the following equations
[18,28]:

fd = Zc

2m0h1
(3)

Table 1. Switching states of the three PIN diodes for achieving frequency
reconfigurability

Switching modes PIN
diode-1

PIN
diode-2

PIN
diode-3

First mode (all diode
OFF)

OFF OFF OFF

Second mode (one
diode ON)

ON OFF OFF

Third mode (two diode
ON)

ON ON OFF

Fourth mode (all diode
ON)

ON ON ON

Fig. 1. Three-dimensional representation of the planned frequency reconfigurable
patch antenna system. The bottom layer is made of FR-4 material. The breadth of
the substrate material is 1.5 mm. The ground and patch layer are made of copper.
The height of both these layers is 0.35 mm.
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G = 0.6+ 0.0009Zc (5)

1es = 1r + 1
2

+ 1r − 1
2

( )
1+ 10

t
w1

( )[ ]−a1b1

(6)

The coefficients F1, a1, b1, and relative electrostatic permittivity
(εes) are calculated as follows:

F1 = 6+ (2p− 6) exp − 30.666
t
w1

( )[ ]0.7528
(7)

Fig. 3. (a) Design structure’s top level schematic diagram. (b) The side view of the
design. The coaxial feed mechanism is used for the energies of the patch. All dimen-
sions are represented in mm.

Fig. 2. Designed model of the planned reconfigurable MPA. (a) The top view of the
patch without attaching the PIN diodes. (b) The top view of the three PIN diode
attached antenna structure. (c) The lateral view of the prototype with three PIN
diodes. (d) Directivity finding using an anechoic chamber.

Fig. 4. Equivalent model of PIN diode: (a) the lumped R–L–C model for the HFSS tool, (b) ON state model, (c) OFF state of the model, and (d) PIN diode biasing
circuit.
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b1 = 0.564
1r − 0.9
1r + 3.0

( )0.053

(9)

The S-parameters are required to analyze reflectance responses
for the antenna structure in the gigahertz frequency range. The
impedance and refractive index are required to calculate the

transmittance (S21) and reflectance (S11) [29]:

z =
����������������
(1+ S211)− S221
(1− S211)− S221

√
(10)

n = 1
kd

cos−1 1
2S21

(1− S211 + S221)

[ ]
(11)

where n represents the refractive ratio, d represents the layer thick-
ness, and z represents the wave impedance [30].

The switch OFF and ON mechanism of the presented architec-
ture reflects frequency reconfigurability by switching the ON/OFF
direction. The PIN diode is used as an RF switch. Figure 4 pre-
sents the equivalent electric circuit model of the PIN diode for
the HFSS tool. Figure 4(a) presents two segments of a patch con-
nected by the component R–L–C. The ON condition is presented
in Fig. 4(b). In the ON configuration, resistor (Rs) and inductor
(Ls) are connected in the series. The OFF condition is presented
in Fig. 4(c); it is a series combination of resistor (Rp) and

Table 2. Frequency tunability examination for different switching conditions

Frequency tunable band Maximum tunability band (GHz)

1 2.5 GHz (13.2–10.7)

Fig. 5. Reflectance coefficient plots for the three PIN diodes, switch-ON and OFF modes: (a) all switch OFF mode configuration, (b) one switch ON mode config-
uration, (c) two switches ON mode configurations, and (d) three switches ON configuration.

Table 3. Tabular illustration of switching modes, reflection response, frequency of resonance, BW, gain and the electric field for the performance analysis

Sr. no. Switching modes
Reflection response

(dB) Frequency of resonance (GHz) BW (GHz) Electric field Total gain (dB)

1 Mode-1 (all diode OFF) −11.27 13.2 0.25 1.50 × 104 3.38

2 Mode-2 (one diode ON) −17.27
−11.20

10.7
12.5

0.25
0.17

2.12 × 104 2.03

3 Mode-3 (two diode ON) −16.75 11.3 0.34 4.65 × 104 3.87

4 Mode-4 (all diode ON) −13.18 11.5 0.29 1.69 × 104 0.9
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capacitor (Cp). The equivalent of both is connected with the
inductor (Ls). The HPND 4005 model of PIN diode is used in
the presented design. Planar beam lead PIN diode HPND-4005
has a high lead strength and excellent electrical performance.
The PIN diode provides the resistance of 4.7Ω and the smaller
capacitance value of 0.017 pf. The biasing circuit is presented in
Fig. 4(d). Furthermore, this PIN diode is very rugged. For simpli-
city, the antenna’s reconfigurability was examined in terms of
resistance, using the idea that the PIN diode functions as an
open circuit for high resistor values and as a closed circuit for
low resistor values [30] (Table 2).

Fig. 7. Directivity plot for four modes. (a) All switch-OFF mode represents the highest directivity of 4.46 dB. (b) One switch ON mode represents the highest direc-
tivity of 5.58 dB. (c) Two switches ON modes represent the highest directivity of 4.08 dB. (d) All switch ON mode represents the highest directivity of 4.22 dB.

Fig. 6. Reflectance plot for three switching conditions over the frequency range of
10–14 GHz. All switch OFF mode represents the reflectance of −11.27 dB at the 3.2
GHz frequency with a BW of 250 MHz. One switch ON mode shows the first reflectance
of −17.27 dB at the 10.7 GHz frequency with a BW of 250 MHz and the second reflect-
ance of −11.2 dB at the 12.5 GHz frequency with a BW of 170 MHz. Two switches ON
mode represent the reflectance of −16.75 dB at 11.3 GHz frequency with a BW of 340
MHz. Finally, all switch ON mode shows the reflectance of −13.18 dB at 11.5 GHz fre-
quency with a BW of 290 MHz.

Fig. 8. (a) Directivity plot for mode-1 (switch-off mode), mode-2 (one switch ON
mode), mode-3 (two switches ON mode), and mode-4 (all switch ON mode) are
respectively 4.46, 5.58, 4.08, and 4.22 dB over −180° to +180°. (b) The −3 dB down
directivity for mode-1 (switch OFF mode), mode-2 (one switch ON mode), mode-3
(two switches ON mode), and mode-4 (all switch ON mode) are respectively 56°,
55°, 85°, and 87°.
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Simulation and fabricated design results

The graphical representation of reflectance response for the simu-
lated and measured results for the switch ON and OFF configur-
ation is presented in Fig. 5. There is some tolerance in both the
results due to the limitation in the fabrication process. The
large soldering area modified the path of charge propagation in
the structure, affecting the design’s characteristic impedance.
The excessive path will also increase the effective length of the
inductance. The capacitance is contingent on the gap between
the two conducting regions. The gap between the two conducting
regions decreases, affecting that region’s capacitance [31]. Due to
the variation in the capacitance and inductance, the resonance
frequency is also affected – the resonance frequency change in
the simulated and fabricated reflectance responses is shown in
Fig. 5. The efficiency and thermal loss is affected due to the

soldering. The thermal loss has been affected up to 0.3 dB. The
effect in the high Q antenna for the high current has a more neg-
ligible effect on the thermal loss. The resistance loss of ∼0.25Ω is
estimated [32].

All switch OFF mode shows the reflectance response of
−11.27 dB for the resonance of 13.2 GHz with the BW of 250
MHz as illustrated in Fig. 5(a). One switch ON mode signifies
the first S11 of −17.27 dB achieved at the resonating frequency
of 10.7 GHz along with the BW of 250 MHz, and the second
S11 of −11.2 dB achieved at the resonating frequency of 12.5
GHz with the BW of 170MHz, as illustrated in Fig. 5(b). Two
switches ON mode represent the reflectance response of −16.75
dB achieved at the resonating frequency of 11.3 GHz with the
BW of 340 GHz as illustrated in Fig. 5(c). All switch ON mode
signifies the S11 of −13.18 dB achieved at the resonating frequency
of 11.5 GHz with the BW of 290MHz as illustrated in Fig. 5(d).

Fig. 9. Reflectance coefficient analysis using Fermi plot for the different feed positions under the switch ON and OFF configurations. Variation of feed position in the
X and Y directions is carried out for 1–11mm over the 10–13 GHz frequency range.
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Table 3 presents the data in the tabular form for plot represented
in (Fig. 6).

The one switch-ON mode yields the reflectance coefficient at
10.7 GHz, and all switch-ON mode provides the reflectance coef-
ficient at 13.2 GHz. These represent that the maximum frequency
tunability is 2.5 GHz. The radiation pattern behavior is analyzed
based upon the directivity. Figure 7 illustrates the measured and
simulated directivity plot of the switch OFF and ON modes
over −180° to +180°. The directivity of mode-1 (all switch OFF
mode), mode-2 (one switch ON mode), mode-3 (two switches
ON mode), and mode-4 (all switch ON mode) is 4.46, 5.58,
4.08 and 4.22 dB, respectively. Good directivity is shown in all
the mode configurations. Figure 8(a) shows the measured and
simulated directivity plot. The normalized directivity for
mode-1 (all switch OFF mode), mode-2 (one switch ON
mode), mode-3 (two switches ON mode), and mode-4 (all switch
ON mode) is respectively 56° (−26° to +30°), 55° (−30° to +25°),
85° (−15° to +70°), and 87° (−12° to +75°) as shown in Fig. 8(b).

Figure 9 illustrates the Fermi (contour) plot of reflectance
response for the different feed positions over the different PIN
diode configurations. Figure 9(a) shows the feed variation in the
X direction (1–11 mm) to identify the S11 over the 10–13 GHz
for mode-1. Three bands of S11 are detected at 10.5, 11.1, and
12.5 GHz. Figure 9(b) shows the feed variation in the Y direction
(1–11 mm) to observe the S11 over 10–13 GHz for mode-1. There
is one band of S11 detected at 13 GHz. Figure 9(c) shows the feed
variation in the X direction (1–11 mm) to observe the S11 over 10–

13 GHz for mode-2. Three bands of S11 are detected at 10.8 and
12.5 GHz. Figure 9(d) shows the feed variation in the Y direction
(1–11 mm) to observe the S11 over 10–13 GHz for mode-2. Three
bands of S11 are detected at 10.53, 12.5, and 13 GHz for mode-2.
Figure 9(e) shows the feed variation in the X direction (1–11 mm)
to observe the S11 over 10–13 GHz for mode-3. There is one band
of S11 observed at 11 GHz. Figure 9(f) shows the feed variation in
the Y direction (1–11 mm) to observe the S11 over 10–13 GHz
for mode-3. There is one band of S11 observed at 11.2 GHz.
Figure 9(g) shows the feed variation in the X direction (1–11
mm) to observe the S11 over 10–13 GHz for mode-4. There are
three bands of S11 detected at 10.25 and 13 GHz. Figure 9(h)
shows the feed variation in the Y direction (1–11 mm) to observe
the S11 over 10–13 GHz for mode-4. There is one band of S11
observed at 10.25 and 13 GHz. It is observed that reflectance
responses also shift for the varying feed position [9].

The electric field distribution for all modes is presented in
Fig. 10. Electric fields for mode-1 (switch-OFF mode), mode-2
(one switch ON mode), mode-3 (two switches ON mode), and
mode-4 (all switch ON mode) are respectively 16 993, 21 221,
46 558, and 15 051 v/m. The maximum electric field is observed
in mode-3 (two switches ON mode). The efficiency of the
structure can be observed based upon higher gain. The two-
dimensional and three-dimensional gains for the different
structures are illustrated in Fig. 11. Maximum gain for
mode-1 (switch-OFF mode), mode-2 (one switch ON mode),
mode-3 (two switches ON mode), and mode-4 (all switch

Fig. 10. Electric field for mode-1 (switch-off mode), mode-2 (one switch ON mode), mode-3 (two switches ON mode), and mode-4 (all switch ON mode) are respect-
ively 16 993, 21 221, 46 558, and 15 051 v/m.
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ON mode) are respectively 3.38, 2.03, 3.87, and 0.9 dB. Table 4
compares the proposed work’s performance to previously pub-
lished work.

Conclusion

The miniaturized and broadband frequency reconfigurable MPA
design structure is presented in this study. The frequency tunabil-
ity is attained using the three PIN diodes. The assessment of

simulation and fabrication was carried out for reliability. The
three PIN diodes are located on the patch area, and by switching
them ON and OFF, four modes are analyzed and the results are
presented. Many performance parameters are analyzed such as
reflectance coefficient, BW, resonance frequency, electric field,
feed position variation, and gain among different configurations.
The unique features attained by the proposed design structure are
the BW of 340MHz, maximum frequency reconfigurability of
2.50 GHz, maximum directivity of 5.58 dB, normalized directivity

Fig. 11. Two-dimensional and three-dimensional gain pat-
terns are presented. The maximum gain for mode-1
(switch-OFF mode), mode-2 (one switch ON mode),
mode-3 (two switches ON mode), and mode-4 (all switch
ON mode) are respectively 3.38, 2.03, 3.87, and 0.9 dB.
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of 87°, the electric field of 46 558 v/m, and the maximum gain of
3.87 dB. Performance observation of the presented work with pre-
viously published research work is also included. The presented
design is used for radar, short-range tracking, missile guidance,
and many more.

Conflict of interest. Authors declared no conflict of interest.
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