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A CLASS OF HOMOMORPHISMS OF 
PRE-HJELMSLEV GROUPS 

FRIEDER KNUPPEL 

Introduction. E. Salow [8] introduced the concept of pre-Hjelmslev 
groups, a generalization of F. Bachmann's Hjelmslev groups [1] which 
leads to a more natural theory of homomorphisms and permits a simpler 
construction of algebraic models. Basically, both types of groups are the 
groups of motions of a metric plane, the so-called group plane. In such a 
plane there is a unique perpendicular through any point to any line and 
the product of three collinear points (three copunctal lines) is a point (a 
line). Our first section contains the precise definitions and some basic 
facts. 

The homomorphic image of a pre-Hjelmslev group can be more 
complicated than the pre-image. For instance, there may always be a 
unique line through two distinct points of the pre-image but not of the 
image. We study regular homomorphisms of pre-Hjelmslev groups, i.e., 
homomorphisms with the following property: If two lines intersect at 
exactly one point, their images will also have precisely one point in 
common. 

Let Q denote a proper subset of the point set of a pre-Hjelmslev group 
satisfying an enrichment axiom called (W). We call Q complete if the 
following holds: Suppose two lines have a unique intersection C and both 
of them are incident with points of Q. Then C e g . Our main result is the 
following: 

THEOREM. There is a regular homomorphism of the pre-Hjelmslev group 
such that Q consists of the pre-image points of a point if and only if Q is 
complete. 

The special cases that Q consists of the fixed points of a rotation or that 
Q is the set of the neighbors of some point have been dealt with in [9] and 
[4]. 

In a forthcoming paper we study pre-Hjelmslev groups over commuta­
tive rings and establish a one-to-one correspondence between the 
non-trivial ideals of the ring and the kernels of regular homomorphisms of 
the pre-Hjelmslev group. 
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1. Pre-Hjelmslev groups. 

The basic assumption. The triplet (G, S, P) consists of a group G = (a, 
/ ? , . . . } and two sets S = {a, b, . . .} and P = {A, P, . . . } of involutions 
in G such that (i) S and P are invariant under inner automorphisms of G 
and S n P = 0, (ii) 5 generates G, and (iii) 0 ^ P ç S2 = {ab}. 

We assign to such a triplet a geometric structure, the group plane. Its 
points (lines) are the elements of P (of S). The point A and the line b are 
incident, A\b or ô|̂ 4, if v4/? is an involution. The lines a and b are orthogonal 
if <zZ> G P; notation: a|Z>. 

Every a G G induces a motion, i.e., an automorphism of the group 
plane, given by X h-> JT, x h-> xa for X G P and x G 5. If a G P U S, this 
motion is a reflection in a. We do not always distinguish between the 
element a and the motion induced by a. Thus the set 

¥(a): = {X G P.X* = X} 

of "the fixed points of a" is that of those of the induced motion. 
A pre-Hjelmslev group is a triplet (G, S, P) satisfying the basic 

assumption and the following axioms: 

(Al) Given A, b, there is a c such that ^4, b\c. 
(A2) ,4, Z?|c, */ implies c = d. 
(A3) y4, P, C\d implies .4PC G P. 
(A4) a, b, c\d implies abc G S. 

By (Al) and (A2), there is a unique perpendicular (A, b) through any 
point A to any line b. (A3) and (A4) are the "Three-reflections axioms". 

We shall frequently use the following enrichment axiom: 

(W) There are lines a, by c, d with a\b and c\d such that any two of them 
intersect in exactly one point. 

We next collect some elementary results on pre-Hjelmslev groups. If no 
reference is given, the proof in [2] for Hjelmslev groups remains valid for 
(G, S, P). 

1.1. (i) A\b if and only if Ab = A. 
(ii) If A\b, c and b\c then A = be. If A\b then Ab G S and Ab = 

(A, b). 
(iii) If A, B, C\d then ABC G P and ABC\d. 
(iv) If a, b, c\D then abc G S and abc\D. 
(v) If a, b, c\d then abc G S and abc\d. 

1.2. Let Aa - Bb = cC. Then {A, a) = (P, b) = (C, c). 

Occasionally we need the following consequence of 1.2. 

1.2'. AbC G S if and only if (A, b) \C. 
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Namely, the assumption c: = AbC G S implies Ab = cC, hence 

(A, b) = (C, c) |C. 

Conversely, let (v4, b) \C. Then 

5 : = b(A, b) G P and 4 , B, C|(^, fe). 

1.1 (iii) implies D: = .4PC G P and £>| (A 6). Therefore by 1.1 (ii) 

D(A, b) = d, where </: = (D, (A, b) ). Hence AbC = d G S. 

An element a = Aa is a g//de reflection with the fliw [a]: = (A, a). If a 
<£ S, then F(a) = 0. 

1.3. The group G is the disjoint union of the subgroup Sevcn: = S2 U S4 

...and its coset Sodd: = S U S3 Let a G 5e v e n and F (a) * 0. Then a 
is a rotation. If A G F(a) and u\A then a = uv for some v with v\A. 

REPRESENTATION THEOREM. Let A G P. Every a G Seven has a unique 
decomposition a = fiC where /? is a rotation with A G F(/J) and C G P. 
Every a G Sodà has a unique decomposition a = bC where b\A and C G 
P. 

1.4. The point C is a mid-point of v4 and B \i Ac = B. Two points have 
not more than one mid-point. Let a G G. By 1.3, A and >4a have a 
mid-point. 

1.5. For any group H, let Z(i7) denote its center. Then 

Z(5even) = {a G Seven: F(a) = P). 

1.6. For every a define Pa = {A:A\a}. 

Let a, b\c. Let A\a, g and B\b, g. Then the mapping C H^ CAB is a bijection 
ofPa n Fg onto Fh n Fg. In particular, Fa n ?g = {A} if and only if?h n 

Figure 1 

1.6'. COROLLARY. Let a, b\c. Let b\d. Then a and d have at most one point 
in common. 

1.7. ( [8], Lemma 1). Let a, b\c; A\a, g and B\b, g. Then F(ag) = {A} if 
and only if F (bg) = {B}. 

Applying 1.7 three times, we obtain 
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1.7'. COROLLARY. Let A\a, b\ B\c, d\ a\c and b\d. Then F(ab) = {A} if 
and only if Y{cd) = {B}. 

Figure 2 

1.8. Let a be a rotation', g G S. Then ag G S if and only if 

¥(a) n ?g ¥> 0. 

In particular, let F(«) = {A}. Then ag ^ S if and only ifA\g. 

1.9. Suppose (G, S, P) satisfies (W). (i) Le/ û|ft. 77zeft //zere are lines c, J 
swc/z z7ztf/ ab = cd\a, b, c, d and not two of these lines intersect elsewhere. 
(ii) The lines a and b have a unique intersection if and only if\¥(ab) | = 1. In 
particular, let ab = cd. If a, b have a unique intersection then so will c, d. 

1.10. The pre-Hjelmslev group (H, T, Q) is a pre-Hjelmslev subgroup of 
the pre-Hjelmslev group (G, S, P) if H is a subgroup of G, T Q S, Q Q P. 
We then write (H, T, Q) ^ (G, S, P). 

Let (H, T, Q) ë (G, S, P). Then T = S n H and Q = P D H. Let a, b 
G T,C G g. 77ze« a|è (77zé>« Û|C) /« (i/, T, g ) if and only if a\b (a\C) in (G, 

/Vro/ Since r e v e n ç Seven and 7 o d d ç Sodd, we have 

S n H Q Todd and P n H Q reven . 

L e t û G 5 n / / . Choose A ^ Q. Then by 1.3, a = bC for some 6 G T, C 
G g such that bA is an involution. Thus a G T b y l . l (ii). Next, let 5 G 
P PI i/. By 1.3 there are g, A G T and C G g such that gA and /L4 are 
involutions and B = ghC. Here gh and C are uniquely determined. As B 
= \ - B, this yields B = C ^ Q. The remaining assertions are obvious. 

1.11. For any set Q Q P let S(Q) consist of those lines in S which meet 
points of Q. 

Let (H, T, Q) â (G, S, P). Thus T Q S(Q). Suppose (i) If B G P and A, 
AB G Q, f/iew 5 G g, (ii) S(Ô) Ç T(thus S(g) = T). 77H?W (7/, T, g ) w 
called a spot of (G, S, P). In this case, 

H = N c (6) : = [a G G i a ^ g a Ç Q}. 
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Proof. As (//, T, Q) satisfies the basic assumption, we have H Q NG(Q). 
Conversely, let a e N c ( g ) . Choose A e Q. By 1.3 there are /? e G and 
C G P such that a = /?C. Here /? is a product of lines through A. Hence 
/?<=/ / , by (ii). As a G Nc(<2), we have 

^« = ^ c = ^ c
 G g. 

Thus C G g ç H9 by (i), and a = f3C Œ H. 

The final propositions of this section aim at Hjelmslev groups (without 
a "pre"). They will not be used in the sequel. 

The pre-Hjelmslev group (G, S, P) is a Hjelmslev group if 

P = {ab:a, b e 5 and a/? is an involution}. 

1.12. (cf. [9], 2.8). Let (G, S, P) be a pre-Hjelmslev group; ab = ba\ A\a. 
Then (A, b)b\a. In particular, any two commuting lines in a pre-Hjelmslev 
group have a point in common. 

Proof. Let (A, b) = c. Thus 

A\c, ca and be, b • ca = (6cf G P. 

Thus c = c", by (A2), and hence bc\a, b. 

1.13. Le/ A G P. 77ieA2 the pre-Hjelmslev group (G, S, P) /\y « Hjelmslev 
group if and only ifD(A): = {bc:b, c\A} contains only one involution. 

Proof. By (1.1) (ii), ,4 is the only involution in D(A) if (G, 5, P) is a 
Hjelmslev group. Conversely, suppose A is the only involution in D(A). 
We first show that this remains true if A is replaced by any point B. We 
may assume that A, B\g for some g. Let fi e D(P), /}2 = 1. By 1.1 (iv), fig 
is a line c through B. Since /?2 = c2 = 1, c and g commute. By 1.12, C: = 
(A, c)c\g. Hence (A, c) = Cc and g commute. Thus, by our assumption, 
either (A, c) = g or (A, c) = Ag. Hence (A2) yields that either Ce = g and 
P = C = B, o r g = c a n d £ = 1. 

Next, let a, b ^ S and #/> = £0 ^ 1. By 1.12, there is a point C|<z, Z>. As 
D(C) contains only one involution, viz. C, we obtain ab = C G P. 

We mention without a proof 

1.14. (cf. [9], Lemma 2). Suppose the pre-Hjelmslev group (G, S\ P) 
satisfies Z(£even) = 1 and has the following property: 

(Z) 7/ tf|Z? tf«<i tf/?|c //zeft c has a unique intersection with a or b. 
Then (G, S, P) is a Hjelmslev group. 
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2. Complete point sets. 

2.1. Let n = (<P, J^ I) denote any incidence structure. The set Q Q 2P'\s 
complete (in II) if it satisfies the following condition: If two lines both 
meet Q and have a unique intersection, then that point belongs to Q. A 
substructure of II is called complete (in II) if its point set is complete in II. 
The sets <P and 0 are complete; the intersection of complete sets is 
complete. 

Examples, (a) Suppose through any two distinct points of II there is 
always a unique line. If there are three non-collinear points, the complete 
sets in II are ^ , 0, and the one-point sets. 

(b) Suppose the homomorphism <p maps II into an incidence structure 
IT = (^', J?*, / ) , and any pair of lines intersecting uniquely in II is 
mapped by <p onto a pair of lines intersecting uniquely in IT. Then C<p~] is 
complete in IT for every C G &'. 

In the remainder of this section, (G, S, P) denotes a pre-Hjelmslev 
group satisfying (W). 

2.2. Let a G S2; Q: = ¥(a) ¥= 0. Hence a is a rotation. It is well known 
that Q is complete and that (NG(g) , S(Q), Q) is a spot; cf. [2, page 111 
Section 9.4, Folgerung 7, and page 78, 6.3]. We wish to prove the 
following: 

THEOREM. Let Q Q P be complete in (G, S, P). Then (N c (g ) , S(Q), Q) 
is a spot of (G, S, P). 

Proof. The set Q being complete, we have 

Q = {ab:a, b G S(Q) and ab G P). 

We wish to show 

(A3*) If B, C, D G Q\ A, B9 C, D\g and AB = Ci) then A G g. 

At first we prove (A3*) under the additional assumption 

( + ) \F(gh) | = \F(ghD) | = 1 for some h\C. 

Let J = Dg. Thus |F(</A) | = 1, say F(dh) = {£}. By 1.8, d = (</A)/r G 
5 implies £| /L Thus E\d, h. By ( + ), |F(g/z) | = 1 and g, /z|C. Hence by 1.9 
(ii), the intersections of h with d and g are unique. Q being complete, this 
yields, in particular, E G Q. Let Z>: = Bg and m: = (£, b). As #, £ G <2 
and £|ra, the completeness of Q also implies &m G g. Finally, let /c = mdh 
and 7 = CTz. Then 

^ = ££>c = bdC = bdhj = ômfcy. 
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Figure 3 

Hence, by 1.2, (A,j) = (bm, k). The lines h and (A,j) have the common 
perpendicular j . Also h and g have a unique intersection. By 1.6, the 
intersection A of g and (/I, y) is also unique. Since g is complete, this 
yields A e Q. 

Figure 4 

Now we prove (A3*) without assuming additional assumptions. Let Z?, 
C,D e Q;A,B,C, D\g and ,4£ = CD. By 1.9, (i) and (ii), there is a line g' 
through C such that 

F(gg') = F(Cgg') = {C}. 

Let b = (B, g'), d = (D, g'), 5 ' = Z>g', />' = dg\ Thus Cg', 6, dig'; B\b, g; 
£>|d, g. As F(Cg'g) = {C}, 1.7 implies F(bg) = {B} and F(rfg) - {£>}. 
The completeness of Q yields £', C, Z)' e g . Let ,4' = CZ)'^. Thus ,4'|g'; 
cf. 1.1 (iv). The special case of (A3*), which has already been proved, now 
yields A' e Q. We have 

A(Bb) = CDb = CDd- db = CDdC • C D ^ = (Dd)cA\ 

Therefore by 1.2, (A, Bb) \Af. Applying 1.7 once more, we obtain 

F((A,Bb)g) = {A}. 
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As Q is complete, (A, Bb) \Af and A\ B Œ Q finally yield A G Q. 
LetAŒQ and g G S(g). Then 5 : - (A, g)g G 0 and, by (A3*), 

A* = BAB G Q. 

Hence Q is invariant under inner automorphisms of the group (S(Q) ). 
The same will apply to S(Q). T h u s ^ = (<S(g) >, S(g), g ) satisfies the 
basic assumption; cf. Section 1. Obviously, the axioms (Al), (A2) and (A4) 
are satisfied, while (A3) follows from (A3*). Hence 3tif is a pre-Hjelmslev 
subgroup of (G, S, P). 

Obviously, ^satisfies the second assumption of 1.11. We verify the first 
one: 

(*) If B G P and A, AB G g, then B G Q. 

For the present, let us assume g\A, B for some line g. By 1.9 (i), there are 
lines h, j through B such that B = hj and that no two of the lines g, h, j 
intersect elsewhere. By 1.9 (ii), 

F(gh) = F(gj) = {B}. 

Let C = AB. Then 

Ah = ABJ = d\(A9h)9(C,j). 

Hence by 1.7, F( (A, h)(C, h) ) = {Ah}. AsA,C ^ Q and Q is complete, 
this yields Ah G Q. Thus g, £ G S(g) . By 1.7, 

F(ghB) = {B} = F(g/z). 

A g B C 

Figure 5 

Therefore, 

F(g-g*) = F((g/02) = {£}; 

cf. [2], Section 9, Lemma 1. Thus g and £ intersect only at B. As Q is 
complete, we obtain B G Q. 

Now we are ready to prove (*). Let B G P and A, AB G g. 
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B 
h 

B 

• 

j 

(A,h)h 

C=AB (CJ)j Ah = C> 

Figure 6 

Choose h,j such that B = hj. Let C = AB. As before, we obtain 

F((A,h)(C,j)) = {Ah} = {C} 

and thus ,4* e Q. As ^ = ^ -*>* = 6Cj)j, we can apply the special case 
of (*) which is proved above, and derive (A, h)h, (CJ)j G Q. Thus B G Q, 
by the completeness of Q. 

Finally by 1.11, S ( 0 = NG(Q). 

2.3. Le/ Q and R be complete sets in (G, 5, P). Suppose 6 ¥= Pg H Q Q R 
for some g. Then Q Q R. 

Proof. Let A G P^ n Q. By 1.9 (i), there is a line h ^ g through A such 
that F(gA) = F(Agh) = {A}. Let X G iV The sets g and R being 
complete, we have 

X G g « (X, g)g G g and X G £ *=> (X, g)g G P . 

Hence PA n g Q p . 
Next, let 7 e g. Then 

(y, g)g G Pg n g ç R and (y, /z)A G Ph n g ç p . 

By 1.7, y is the unique intersection of (Y, g) and (Y, h). As R is complete, 
this yields Y G R. 

2.3'. COROLLARY. Le/ g and R denote complete sets in (G, S, P). Suppose 
0 ¥= Pg H g = Pg n P / o r some g. 77z^ Q = R. 

3. Homomorphisms and coverings. Most of the results of this Section, 
collected for the readers' convenience, are known; cf. [2; 4; 5; 9]. 

In this Section, (G, S, P) denotes an arbitrary pre-Hjelmslev group. 

3.1. Let y be a homomorphism of G such that 1 £ S<p U Pep. TTzws (G<p, Sq>, 
Pep) is well defined. Assume, in addition, that there is not more than one 
orthogonal line in (G<p, Sip, Pep) through any point to any line. Then <p is a 
homomorphism of(G, S, P) , i.e., (G<p, S<p, P<p) is a pre-Hjelmslev group. 
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Proof. Obviously, (G<p, Sy, Py) satisfies (Al) and (A2). We first verify 

(*) Let A G P, b e S and Ay\by. Then 

Ay = ( (A, b)b)y and by = (A(A, b) )y. 

Let g - (A, b). Then 

V4«JP, g<jp| (Ag)q>, b<p. 

The normal of g through A being unique, we obtain (Ag)y = è<p and (*). 
Choosing a = Ag and 5 = Z?g, we obtain from (*) that a\A\ B\b\ Ay = P<p; 
a<p = b<p. Thus the properties (A3) and (A4) of (G<p, Sy7 Py) follow from 
the corresponding ones of (G, S, P). 

We write TV < G if TV is a normal subgroup of G. 

3.2. Let N < G satisfy 
(NO*) N n S = Û,and 
(NI*) 7 / 5 , C|g and PCP G M fAéw PC e N. 
Then N Q Seven. 

Proof Suppose a e TV n Sodd. By 1.3, a = cP where c G ^ a n d ^ e P . 
Let g: = (5, c). Then £c*£ = aga e TV. Hence by (Nl*), Beg e TV and 
therefore g = a • Peg G TV, contradicting (NO*). 

3.3. Let TV < G a«d let y.G —> G/TV denote the canonical homomorphism. 
Then y is a homomorphism of (G, S, P) // tfftd o/?/y if 

(NO) N n S = & = N n P, and 
(Nl) 7 /P , C\g andABCA e TV, f/zen BC <= TV. 

(Note that (NO) and (Nl) are stronger than (NO*) and (Nl*).) 

Proof. Obviously, (NO) is satisfied if (Gy, Sy, Py) is a pre-Hjelmslev 
group. Then also (Nl) is true, because ABCA e N implies Ay8*? = AyC(p, 
hence By = Cy by 1.4. Conversely, assume (NO) and (Nl). Let Ay, gy\by. 
On account of 3.1 it is sufficient to prove that by = (A, g)y. As Ay\by, TV 
contains 

(bAf = AA{A>b)b A. 

Hence by (Nl), 

A • (A, b) • b e TV. 

This proves 3.1(*). As gy\by, there is a point B <E P such that 

gtp ' by — By. 

On account of 3.1(*), we may assume B\g. Since 

A^&fp = A*By = Aby = Ay, 

(Nl) yields (A, g)gB e TV Thus 
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(A9g)<p = Bygcp = bq>. 

3.4. A set & of spots of (G, S, P) (cf. 1.11) is a covering of (G, 5, P) if 
every point of P belongs to exactly one of the spots in J^ Such a covering J^ 
induces an equivalence relation ~ in P. The group of J^is equal to 

JT(&)\ = {a e 5e v e n : ,4" - A for every >4 G />}. 

A homogeneous covering ^"satisfies 

(h) Let A ~ B. Suppose a\A, g and b\B, g. Then ab e Jf{&). 

Let &denote a homogeneous covering of(G, S, P). Then AB e JT(fF) if 
and only if A ~ B. 

Proof Let AB e Jf(&). Then A ~AAB = AB. Thus the spot containing 
A also contains B; cf. 1.11. Conversely, let 4̂ ~ B. Choose a\A and b\B, a. 
A, B and ab are points belonging to the same spot. Hence Aa- b, a • bB e 
J W , by (h). Thus 

,45 - ^(ûi) - (Û6)5 G J ^ ) -

3.5. Tfte covering 3£is homogeneous if and only if it satisfies 

(hi) Suppose A, B, C, Z)|g; ;45 - CD; 4 - 5. 77*^ C ~ D; and 
(hi) Let a\A, g and b\B, g. Then 

A ~ B ^> ag ~ bg => A ~ (A, b)b. 

Proof LetJ^be homogeneous. Then (hi) follows immediately from 3.4. 
Next assume a\A, g and b\B, g. We apply (h). If A ~ B, then 

ag • bg = ab e ^VÇF) and ag ~ bg. 

If ag ~ eg, then ab e J^(S^); hence 

yl — v4a^ = ^ = A^A^b 

and therefore^! — (̂ 4, 6)6; cf. 1.11. 
Conversely, assume (hi) and (h2). Let A ~ B; a\A, g; b\By g. We have to 

show that ab e JfifF), i.e., X°b ~ X for every X G P. By 1.1 (v), 

c: = (X, g)ab e S and c|g. 

Furthermore 

(*> g)g ' eg = ag- bg. 

As eg — 6g by (h2), (hi) implies (X, g)g — eg. By (h2), X — (X, c)c. We 
have 

yab __ v(I,g)ûi) __ vc _ y(X,c)c. 

hence 

(X, c)c • Xah = X • (X, c)c. 
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Also 

(x, c)c, x, rh\ (x, c). 
Thus (hi) yields Xah ~ X. 

3.6. Let if be a homomorphism of(G, S, P). For any A e P let 

QA: = {B e P:BV = A<p}. 

Then 

fy = {(KG(QA\S(QA),QA):A G P} 

is a homogeneous covering of (G, S, P) such that 

kernel? Q J\T(^). 

Equality holds if and only if Z(S<peven) = 1. 

Proof. Obvious ly ,^ is a covering of (G, S, P); cf. 1.11. (hi) is satisfied 
because <p is a homomorphism. (h2) follows from the uniqueness of 
perpendiculars in (G<p, S<p, P<p) and because orthogonal lines have a unique 
intersection. Thus J ^ is homogeneous. Finally 

JT{&y) = {a e Sewcn:Aaq> = <̂p for all ^ G P } 

= {a e Giacp G Z(S<peven) }; 

cf. 1.5. 

3.7. Let ^be a homogeneous covering of(G, S, P) ; \^\ ¥= 1. 77zew ^T(#") 
< G tffld cp.G —» GMTifF} induces a homomorphism of(G, S, P) such that ^ 
= J^ ; c/ 3.6. Moreover, Z(S<peven) = 1-

Proof. Let — denote the equivalence relation in P induced by J^ We first 
show 

(*) Let A ~ B. Then ylc ~ Bc for every c. 

Define a: = (A, c), 6: = (P, c), C: = (P, Û)Û. By 1.11, A ~ P — C. 

P c 

Cc 

Figure 7 

Since AC = CCAC\ (hi) therefore yields Ac ~ Cc. Applying (h2) twice, we 
deduce from B ~ C first bc ~ ac and then Bc ~ (Pc, a)a = Cc. This yields 
(*). 

Let a e TV: = ^T(^"). Let c G S; fi: = <xc; X G P. Then by the 
definition of N, X0" ~ Xe and by (*), 
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xP = wy ~ (Xey = x. 

Thus N < G. 
Supposed G N n P. Then XA ~ Xand thus ,4 - Xfor all X G P; thus 

|iH = 1. As N Q Seven, this yields the condition (NO) of 3.3. 
Next, let B, C\g and ABCA G TV. Put b: = (^, g), c: = 6£C, and Z>: = 

(A, c)c. Then 

_/45C^ = AbcA = ACA = ADA G N. 

This implies by 3.4 and 1.11 (i) that ,4 — AD ~ Z). As 6|v4, g and c|A g, the 
homogeneity of ^yields BC = be G N. Thus TV also satisfies (Nl), and <p is 
a homomorphism of (G, 5, P)\ cf. 3.3. 

By 3.4, A ~ B\i and only if ,45 G TV, i.e., (y45)«p = 1 or Aq> = Bip. By 
3.6, this is equivalent to A and 5 belonging to the same spot of J y Thus J^ 
= J^,. The last statement now follows immediately from 3.6. 

3.8. The sections 3.6, 3.7 and 3.4 yield the following result: 

The mapping 

&\-* AT{&) 

is a bijection of the set of the homogeneous coverings 3£of (G, S, P) with \^\ 
^ 1 onto the set of the kernels of those homomorphisms <p of(C, S, P) which 
satisfy Z(SVeven) = 1. If3^is such a covering, then AB G Jf(&) if and only if 
A and B belong to the same spot of &. 

3.9. A homomorphism of (G, S, P) is regular if the images of lines with 
unique intersections also have unique intersections. 

A covering is complete if each of its spots is complete. 

The homomorphism <p of (G, S, P) is regular if and only if the induced 
covering &y is complete', cf. 3.6. 

Proof. Suppose <p is regular. Let A and B belong to the same spot of J^,. 
Let a\A\ b\B and suppose C is the unique intersection of a, b. Then 

A<p = By and Cqp|«<p, by. 

Hence, y being regular, C<p = A<p = B<p. 
Conversely, let J ^ be complete. Let a, b\C. Suppose a<p and b<p have 

more than one point in common, say a<p, by\Cy, D<p where C<p =£D<p. The 
points A: = (D, a)a and B: = (D, b)b satisfy A<p = Dy = By. Thus A, D, 
B belong to the same spot F of J ^ while C does not belong to F. Since F is 
complete, the intersection of a and b is not unique. 
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3.10. The mapping 3£"M> JV{^) is a bijection of the set of the complete 
homogeneous coverings &'of(G, S, P) with \F\ =£ 1 onto that of the kernels of 
the regular homomorphisms <p of (G, S, P) which satisfy Z(5<jpeven) = 1. 

The proof follows immediately from 3.8 and 3.9. 

3.11. If & is a homogeneous covering of (G, S, P) and A, B G P, the 
following statements are equivalent: 

(i) A~B-
(ii) AB ~ Jn^)\ 

(iii) C ~ CAB for some point C. 

On account of 3.4, it is sufficient to deduce (i) from (iii). We may 
assume \^\ =£ 1. By 3.7, JV*^F) is the kernel of a homomorphism <p of (G, S, 
P) such that & = J^ . Hence (iii) and 3.4 imply 

(C<p)A<v = (Cv)*v. 

Applying 1.4 to (G<p, SV> P<p), we obtain A<p = P<p, i.e., (i). 

3.12. Let \P\ ¥= 1. 77*e «orm«/ subgroups TV of G with TV Q Z(Seven) are 
precisely the kernels TV of the homomorphisms of (G, S, P) which satisfy 
N n P2 = l. 

/V00/. If TV ç Z(Seven), then AB ^ N implies 

^ = ,4 = ^ * = ,4*. 

Hence ylP = 1, by 1.4. Obviously, TV satisfies the conditions (NO) and 
(Nl) of 3.3. Conversely, suppose TV is the kernel of a homomorphism of (G, 
S, P) and satisfies TV n P2 = 1. Let a G TV. Then 

^ M = a ~ V G TV O P2 = 1 for any A G P. 

Thus F(a) - P and, by 1.5, a G Z(Seven). 

4. Semi-translations and transports. Let (G, S, P) again denote any 
pre-Hjelmslev group. 

4.1. In [9, Section 7] E. Salow introduced semi-translations TAB though 
only for pairs A, B joined by lines. Through our Lemma 4.2 we will be able 
to drop this restriction and give a definition of TA B similar to that of 
semi-rotations in [6]. This will enable us to generalize Salow's beautiful 
results; cf. 4.3. 

Let co G P2. The semi-translation T^ is a pair of mappings of P and S 
into themselves: If X G P and y G S, let XTU be the mid-point of X and 
Xe and let jT^ = [yu]; cf. 1.4 and 1.2. 

Note that X{XT«) = X" and ATAB = B. 
If yl, B\g for some g, the point XTAB can readily be constructed: Let c\ 

= (X, g). By 1.1 (iii), cAB = g(gc • AB) is the line through the point gc • 
AB on g perpendicular to g. Let d = (X, cAB). Then 
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XAB = (Xdc)AB = XdcAB 

Thus XTAB = d - cAB is the intersection of d with cAB. 

X 

TJ 

cAB 
B 

Figure 8 

We require the following lemma. 

4.2. Let a GE P\ Then |F(a) | ^ 1. 

Proof. Let a = ,4£C and E e F(a). Let a\A. Put Z>: = (5, a), e: 
(E, a). Thus 

A'\ = 6v4e = ba - A • ae\a. 

Finally, let ft': = JM>, a': = (,4', //) and e'\ = (E, a'). Thus 

C: = b'A'e'\a' and aC = AB = Abbf = eA'b' = ee'C. 

Applying 1.3 to aC, we obtain a = ee''. By 1.7, 

1 = |FO'Z/) | = \F(aa') |. 

Hence by 1.7', |F(é?é?') I = 1. 

4.3. THEOREM. Le* T: = TAB. Then 
(i) T is injective both on P and on S. 

(ii) C\g <=> CT\gT, for all C and g. 
(iii) IfF(gh) = {C}, /to?/i F(gT • AD = {CT}. 

/Voo/. To (i). T:P -* P is injective: Let £ = CT = DT. Then C £ = C4* 
and DE = Lr48. Thus C, D ^ ¥(ABE) and hence C = A by 4.2. 
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The injectivity of T on S will be dealt with later. Before proving (ii) we 
show 

(*) For any C let y = AB • CT. Then F(y) = {C}. 

On account of 4.2 we need only show that C e F(y). By 1.3, there are 8 
e S2 and D €= P such that AB = 8D and C e F(S). As C c r = C4* = 
CSD, this implies D - CT and thus S = y. 

To (ii). Let D = CT. As y = v4£Z>, (*) and 1.8 yield 

C\g «* yg e S ^ £g.4i? = ( y g ) ^ e 5. 

By 1.3, there are e\D and E such that g^4i? = eE. Thus 

g r = [ ^ ] = (E, e) 

and the assertion (ii) is equivalent to: 

DeE e S <^ (E, e) \D. 

But this follows readily from 1.2'. 
To (iii). Let D: = CT; y: = ABD. Thus by (*), F(y) - {C}. As F(g/z) = 

{C}, 1.8 implies C|g, h. Hence, again by 1.8, 

g' : = gy G 5 and A': = hy <= S. 

Thus 

Y = gg' = ^ ' a n d g'^' = g'g ' gn ' nn' = (gh)y-

This yields 

F(g'h') = F(ghy = {O} = {C} and C|g', A'. 

As gT = [gAB] = [g'D] = (D, gf) and AT = (D, h'), 1.7' now yields 
(iii). 

Finally, TiS —» 5* is injective: Let g r = hT, i.e., 

[gAB] = [hAB] = [BAh]. 

The product of two glide reflections with the same axis being the product 
of two points, we obtain 

gh = gAB • BAh = XY 

or Xg = Yh for some X, Y\ and, by 1.2, there is a liney'lg, h. Let C: = gj 
and D: = hj. Then by (iii), 

{CT} = F(gTjT) = F(/*r -7T) = {DT}. 

As T is injective on P, this implies C = D and thus g = h. 

4.4. Given to G P2, define the transport TW through 

Or, = {C:Cr t t-i e 0 } for every g c />. 
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As rw i need not be surjective, Qr^ can be void for some co, g. If A G g, 
then B G QTAB because BTBA = A. 

Let St'denote a homogeneous covering of(G, S, P). Then QATAB
 =

 QBJ0? 

any two points A, B\ here Qx = {Y G P:Y ~ X}\ cf. 3.4. 

Proof. By our definition, 

QAUB = {C:CTBA ~ A} = [C:CM = CBA for some M ~ A}. 

Let C G QATAB. By 3.4, Mv4 G ^ ( ^ ) . Thus C - CMA = CB ~ 5; cf. 
1.11. In particular, C G QB. Conversely, let C — B. Then by 3.4, C# G 
^T(J^) and thus C5 = CCB -CUM denotes the mid-point of C and C ^ , 
then CMA = CB ~ C. Hence M — A by 3.11. 

4.5. Let rAB be a transport in apre-Hjelmslev group which satisfies (W). If 
the set g is complete, so is QrAB. 

Proof Let C, D G g r ^ ; C|C; d\D\ suppose c and d have the unique 
intersection E. We have to show E G QTAB. Write T = YBA. By 1.9 (ii), 
F(o/) = {E}. Hence by 4.3 (iii), 

F(cT • dT) = {ET}. 

Thus cT and dT intersect precisely at ET. As CT, DT G g, and CT|cT and 
DT\dT by 4.3 (ii), and since g is complete, this yields ET G g and thus £ 
e QTAB-

4.5'. THEOREM. Let^be a homogeneous covering of a pre-Hjelmslev group 
satisfying (W). If one spot of^Fis complete, then SPis complete', cf. 3.9. 

The proof follows immediately from 4.4 and 4.5. 

4.6. Let Q be a complete point set in a pre-Hjelmslev group satisfying (W). 
If* e g3 , then F(a) c g . 

Proo/. Let a = yl5C where A, B, C G g. Let £ G F(a). We repeat the 
construction in the proof of 4.2. As a = ee' and aC = ee'C, we obtain C 
= C . Since ^4, P, C lie in the complete set g, the points ab, a'b' and A' 
belong to g. By 2.2, g is the point set of a pre-Hjelmslev subgroup. As ae 
= A • ab • A' and #V = A' • a'// • C , these products of three points on a 
and a', respectively, must also belong to g. Since \F(eer) | = |F(a) | = 1, 
this yields £ G g. 

4.7. Le/ Q be a complete point set in a pre-Hjelmslev group satisfying (W); 
^ , B G g. 77KTI g r ^ = g. 

P/™/. Let C5/l = CD\ i.e., £> = CTBA. Suppose C G gT/J/?; thus D G g 
and P.4Z> G g3 . Hence by 4.6, C = C5/1D G g. Conversely let C G g. As 
.4, P, C G g and g is the point set of a spot, we obtain CD = CBA G g 
and thus D G g; cf. 2.2 and 1.11 (i). 
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5. Embedding a complete point set into a homogeneous covering. In this 
section, (G, S, P) denotes a pre-Hjelmslev group satisfying (W). 

5.1. Let h\A, B\ D\Ah\ g = DAh; E = (5, g)g. Let D\ F |g ; D'E = DE\ 
v|5, F . Then there is a line u through A and D'. If v and g have a unique 
intersection, so will u and g. 

/ n / 
/ u/ 

/ Ah V 
/ 

/ 
2 d 

Figure 10 

Proof The elements m: = E'v and Egvh are lines since F|v and Eg, v, 
h\B. Thus 

D'rnA = DEvA = Dg • Eg • vA = Ah • Egvh • Ah 

= (Egvh)Ah e S. 

Hence by 1.2', 

u: = (D\ m) = (A, D'rnA) \A, D'. 

If v and g have a unique intersection, 1.6 yields on account of w, v\m that 
the intersection of u with g is unique too. 

5.2. Suppose g and h have a common perpendicular a. For any C let B = 
(C, h)h and E' = (C, g)g. Then there is a line v through B and Ef such 
that 

|F(vg)| = |F(vA)| = 1. 

Proof. Let c = (C, a). Then 

d: = gch e S and E'dB = ( C g)c(C A) e S 

since (C. g), c. (C. /z) |C. Thus by 1.2'. 

v: = ( F , d) = (B. E'db) | F , 5, J. 

As |F(dv) | = 1, a\d, g, A implies that 

|F(gv)| = \F(hv)\ = 1; 

cf. 1.7. 
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Figure 11 

5.3. Let A=ah,D = ag,B = (C, h)h, E = (C, g)g; E\ (C, h), g; D'E' 
-• DE. Let Q be complete; A e Q. Then D' e Q <=> D e Q. 

C 

B 
A h 

a 

J \J 

• IL_ 
D' D g E 

Figure 12 

Proof. The intersection of a and g being unique, A,D' e Q implies D e 
Q. Conversely, let A, D e Q. By 5.2, there is a line v\B, E such that F(vg) 
= {E'}. Let £": = (B, g)g and / ) " : = DE'E. By 5.1, there is a line 
v'M, Z>" such that F(v'g) = {£>"}. Finally, let D*: = DE"E. 

U D" D* D g E E E" 

Figure 13 

Apply 5.1, replacing E by E" and Ef by E. This yields a line v* \A, D* such 
that F(v*g) = {/)*}. As Q is complete, we obtain D", D* e g. Hence by 
2.2, 

£>' = DEE = Z> • ££"£> • £>£"£' = /)£*£>" e Q. 
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5.4. Let B = hu; A\h and U\u. If the complete set Q contains A, then 

QTABTBU = QTAU-

Proof. By 4.5, QTABTBU
 a n d QTAU

 a r e complete. As they contain U, it is 
therefore sufficient to prove 

P« n QTA^BU = p« n QTAU\ 

cf. 2.3'. 

C 

A h 

a 

J 

Vf 

Lj 

D 

J9 

/ ) ' D E 

Figure 14 

Let C e Pw, £: = BUC, a: = Ah, g: = (E, a), v: = (C, g), £ ' : = gv, D: = 
ag, D'\ = FEZ). Then 

fM = L%Û = UBua = C£wa = CuEa = CuEgD = Cwg£Z) 

= CuvE'ED = CMV£>'. 

Thus 

£•£//! = QCUVU = £./)' 

Hence C T M = D' and: 

C e QrAU**D' G g. 

As CUB = CCE = CE and EBA = £"^f l = £" = £#" = ED we have 

CIV^ = E and i s T ^ = 2). 

Therefore: 

C e g r ^ r ^ « £ G gr^fi « Z) e g. 

By 5.3, the last relation is also equivalent to D' <= g, i.e., to C G ( J T ^ . 

5.5. Let U, V\j. If the complete set Q contains A, then 

QTAUTUV = QTAV-
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Proof. Let B: = (AJ)j. By 4.5, Q*: = QrAB is a complete set containing 
B. Let C be any point of the line j . Then V, B, C\j implies CVB G Py and 
CCVB = CVB^ h e n c e CTyB = CVB T h e following statements are therefore 
equivalent: 

civ* = CVB G g*; 

(CF[ / ) r 5 ( / = CVU- UB G g*; 

C T ^ = CVU G g * T ^ ; 

C ^ Q*TBUTUV-

Thus by 2.3', 

cf. 4.5. By 5.4, 

(?*T£K = ÔT^K and Q*TBU = QrAU. 

This proves our assertion. 

5.6. We can now prove the 

THEOREM. Let Q be complete', A G Q. Then QrAU uv = QrAVfor any 
two points U, V. 

Proof. Choose a point P^joined by lines to £/and V. By 4.5, Q* = QrAU 

is complete and, by 5.5, 

Q*TuwTwv = Q*Tuv-

Applying 5.5 twice more, we obtain 

QTAUTUW = QTAW a n d QTAW^WV = QTAV-

Hence 

QTAUTUV = Q*TUV = Q*TUWTWV = QTAUTUWTWV 

= QTAWTWV = QTAV-

5.7. Let Q denote any complete set; M, N G Q. Then by 5.6 tf^d 4.7 

(*) ÔTMZ? = QTMN^NB = QtNBfor every B. 

Suppose now that Q is any non-void complete set. On account of (*) we 
may define 

QB'- = QTMB, 

where M G Q is arbitrary. 
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5.8. THEOREM. Let (G, 5, P) satisfy (W). Let Q Q P be non-void and 
complete. Then 

&Q- = {(UG(QBIS(QB),QB)-B e P} 

is a homogeneous covering. S^Q is complete; cf. 3.9. 

Remark. By 4.7, (NG(g) , S(g), Q) e &Q. 

Proof. Let M e g. We have B <= QB for every P; also by 5.6 and 4.7, 

Qc = QTMC = QTMBTBC = QB^BC = QB for every C G QB. 

Thus {QB'B G P} is a partition of P into complete sets; cf. 4.5. By 2.2, J ^ 
is a complete covering of (G, S, P). It remains to show that J ^ is 
homogeneous. Let — denote the equivalence relation induced by &Q. We 
apply 3.5 to (hi). Let A, P, C, D\g\ AB = CD; A ~ B. Thus 

DTCA = DCA = B e QA and D e g ^ c = g c 

and hence P> — C. To (h2). Let «|>4, g; b\B, g. Put ,4': = (A, b)b9 C: = ag, 
and D: = bg. We have 

AA'D = A(A,b)g = Ag = ^ C 

Hence AYA>D = C. From 5.6, 

6/1 ' = 6TA//T = QTMDTDA' = QDTDA' = { ^ : ^ I V z ) G (>£>}. 

Hence yl — ^4r if and only if C — D. Since g^ is complete, A ~ B implies 
A ~ ,4'. 

A' 

•>4 

B « 

b 
3 C 

£> C 

Figure 15 

5.8'. We restate our result in terms of homomorphisms. 

THEOREM. Let (G, S, P) satisfy (W). Let g c P fte complete; M e g. 
77iew r/zere ex/ste a homomorphism <p o/(G, 5", P) swc/z //idtf 

6 = {P e P:Pcp = M<p} Û/IJ Z(Scpeven) = 1. 

The homomorphism <p w unique (up to isomorphism), and <p is regular; cf. 
3.9. 
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Proof. According to 5.8, &Q is a homogeneous covering having more 
than one element. Hence by 3.7 the canonical homomorphism 

induces a homomorphism of (G, S, P) with the desired properties; cf. 3.4. 
Furthermore, by 3.10, this homomorphism is regular; cf. 3.9. Now, let us 
assume that <p is a homomorphism of (G, S, P) satisfying the properties of 
the theorem. Then by 3.6 the kernel of <p is JV{^). Q is the point set of 
some spot of ^Q (cf. 5.8), and Q is also the point set of some spot of J^ ; cf. 
3.8. Therefore, ^Q and J ^ induce the same equivalence relation ^ o n ? ; 
cf. 4.4. Hence J ^ = J ^ by 1.11 (ii). Thus we have 

kernel <p = JT{&Q). 

5.9. As an elementary application of 5.8 we state a result for which we 
could not find a direct proof. 

Let A\a, h; a\g; b\g, h. If Q is complete and A, bh e Q, then (ag, h)h e 

fi. 

A 

a 

Figure 16 

Our proof uses the existence of the homogeneous cove r ing^ . Applying 
(h2) twice, we deduce from A ~ bh first ag ~ bgy then (ag, h)h ~ bh. 

In the remaining two sections we consider two special cases of our 
Theorem 5.8'. We continue to assume that (G, S, P) is a pre-Hjelmslev 
group satisfying (W). 

5.10. ( [9] ). Let a be a rotation and M e F(a) ^ P. There is a unique 
homomorphism <p of (G, S, P) such that 

F(a) = {X:X<p = M<p} and Z(Scpeven) = 1; 

<JP is regular. 

Obviously, this theorem is a consequence of 5.8', because the set F(a) is 
complete; cf. 2.2. Let QA: = {X:X<p = A<p}, for any point A. 

ADDENDUM. For every A let aA denote the rotation which satisfies A e 
F(aA) and a = aAACfor some C e P; cf. 1.3. Then QA = F(aA). 

\u^ri)n 
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Outline of the proof. The construction of <p in 5.8' and the definition of 
3FQ in 5.7 and 5.8 yield QA = QrMA, where Q\ = F(a). Hence we have to 
show QrMA = F(aA ) for every A e P. This is easy. 

Remark. Salow's proof for 5.10 is rather complicated. In [7] we give a 
short direct proof for 5.10 and the addendum, that does not use 5.8 and 
the tools developed in Sections 4 and 5. 

5.11. Points A, B are called neighbors if A, B e F (a) =£ P for some 
rotation a. The neighbor relation is reflexive and symmetric, provided that 
|P| T̂  1. The following theorem is proved in [4]. 

If the neighbor relation is transitive and \P\ ^ 1 then there is a unique 
homomorphism \p of (G, -S, P) such that Aty = B\^ if and only if A, B are 
neighbors, and Z(S^even) = 1 ; \p is regular. 

Proof. For A e P let 

QA: = {X.X is a neighbor of A }. 

(i) QA is complete. 
Let P, C G QA and b\B\ c\C such that b, c have a unique intersection D. 

Then B is a neighbor of C, i.e., P, C e F(a) ¥= P for some rotation a. 
Hence P, D e F(a) ^ P by 2.2. Thus v4, B and also 5, P> are neighbors. 
This implies D e QA. 

Now 2.2 and the transitivity of the neighbor relation yield 

(ii) FA: = ÇNG(QA\ S(QA), QA) is a spot for every A e P, 

and 

J5": = {i^:v4 e P} is a complete covering of (G, S, P); 

furthermore, |J^| ^ 1; cf. 3.4, 3.9. 
(iii) J^"is homogeneous. 
We prove property (h) of 3.4. Let A, B be neighbors, a\A, g and b\B, g. 

Then A, B e F(a) ^ P for some rotation a. Let <p denote the 
homomorphism assigned to a by 5.10. Since A<p = Pqp, g<p|tf<p, &<p, the 
uniqueness of perpendiculars in (G<p, S<p, P<p) implies ay = b<p, hence 
(̂ °6)<P = X<p for every point X. Thus, by the addendum in 5.10, 

X, Xab e= F(a^), 

where ax is a rotation satisfying a = axXY for some Y. Finally, F(ax) ¥= 
P, since otherwise^! = Aax = AaYX, hence Ax = ^47; but 1.4 implies X = 
Y and a = ax. Thus we proved A"3** e Q x for every X, i.e., a/? G 

The assertion now follows from 3.10. 
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