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A CLASS OF HOMOMORPHISMS OF
PRE-HJELMSLEV GROUPS

FRIEDER KNUPPEL

Introduction. E. Salow [8] introduced the concept of pre-Hjelmslev
groups, a generalization of F. Bachmann’s Hjelmslev groups [1] which
leads to a more natural theory of homomorphisms and permits a simpler
construction of algebraic models. Basically, both types of groups are the
groups of motions of a metric plane, the so-called group plane. In such a
plane there is a unique perpendicular through any point to any line and
the product of three collinear points (three copunctal lines) is a point (a
line). Our first section contains the precise definitions and some basic
facts.

The homomorphic image of a pre-Hjelmslev group can be more
complicated than the pre-image. For instance, there may always be a
unique line through two distinct points of the pre-image but not of the
image. We study regular homomorphisms of pre-Hjelmslev groups, i.e.,
homomorphisms with the following property: If two lines intersect at
exactly one point, their images will also have precisely one point in
common.

Let Q denote a proper subset of the point set of a pre-Hjelmslev group
satisfying an enrichment axiom called (W). We call Q complete if the
following holds: Suppose two lines have a unique intersection C and both
of them are incident with points of Q. Then C € Q. Our main result is the
following:

THEOREM. There is a regular homomorphism of the pre-Hjelmslev group
such that Q consists of the pre-image points of a point if and only if Q is
complete.

The special cases that Q consists of the fixed points of a rotation or that
Q is the set of the neighbors of some point have been dealt with in [9] and
[4].

In a forthcoming paper we study pre-Hjelmslev groups over commuta-
tive rings and establish a one-to-one correspondence between the
non-trivial ideals of the ring and the kernels of regular homomorphisms of
the pre-Hjelmslev group.
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1. Pre-Hjelmslev groups.

The basic assumption. The triplet (G, S, P) consists of a group G = {a,
B,...}and twosets S = {a,b,...} and P = {4, B, ...} of involutions
in G such that (i) S and P are invariant under inner automorphisms of G
and § N P = @, (ii) S generates G, and (iii) § # P € §* = {ab}.

We assign to such a triplet a geometric structure, the group plane. Its
points (lines) are the elements of P (of S). The point A and the line b are
incident, A|b or blA, if Ab is an involution. The lines a and b are orthogonal
if ab € P; notation: alb.

Every @« € G induces a motion, i.e., an automorphism of the group
plane, given by X — X*, x > x%for X € Pand x € S.Ifa € P U 8§, this
motion is a reflection in a. We do not always distinguish between the
element « and the motion induced by a. Thus the set

F(a): = {X € P:X" = X}

of “the fixed points of & is that of those of the induced motion.
A pre-Hjelmslev group is a triplet (G, S, P) satisfying the basic
assumption and the following axioms:

(A1) Given A, b, there is a ¢ such that A4, blc.
(A2) 4, blc, d implies ¢ = d.

(A3) A, B, C|d implies ABC € P.

(A4) a, b, c|d implies abc € S.

By (Al) and (A2), there is a unique perpendicular (4, b) through any
point A to any line b. (A3) and (A4) are the “Three-reflections axioms”.
We shall frequently use the following enrichment axiom:

(W) There are lines q, b, ¢, d with alb and ¢|d such that any two of them
intersect in exactly one point.

We next collect some elementary results on pre-Hjelmslev groups. If no
reference is given, the proof in [2] for Hjelmslev groups remains valid for
(G, S, P).

1.1. (i) A|b if and only if A® = 4.

(i1) If Alb, ¢ and blc then A = bec. If Alb then Ab € S and Ab =
(A, b).

(iii) If A, B, C|d then ABC € P and ABC|d.

(iv) If a, b, c|D then abc € S and abc|D.

(v) If a, b, c|d then abc € S and abcld.

1.2. Let Aa = Bb = ¢C. Then (A, a) = (B, b) = (C, ¢).

Occasionally we need the following consequence of 1.2.

1.2'. AbC € S if and only if (4, b) |C.
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Namely, the assumption ¢: = AbC € S implies Ab = ¢C, hence
(4, b) = (C, ¢)|C.
Conversely, let (4, b) |C. Then
B: = b(A,b) € P and A, B, C|(4, b).
1.1 (iii) implies D: = ABC € P and D| (A4, b). Therefore by 1.1 (i)
D(A, b) = d, where d: = (D, (4, b)). Hence AbC = d € §S.
An element a = Aa is a glide reflection with the axis [a]: = (4, a). If a
& S, then F(a) = 0.
1.3. The group G is the disjoint union of the subgroup S**": = s?u st

...and its coset $°%: = S U §3 .. ... Let a € S and F(a) # 0. Then a
is a rotation. If A € F(a) and ulA then a = uv for some v with v|A.

REPRESENTATION THEOREM. Let A € P. Every a € S®" has a unique
decomposition a = BC where B is a rotation with A € F(B) and C € P.
Every a € S°Y has a unique decomposition a = bC where blA and C €
P.

1.4. The point C is a mid-point of A and B if A€ = B. Two points have
not more than one mid-point. Let « € G. By 1.3, 4 and A® have a
mid-point.

1.5. For any group H, let Z(H) denote its center. Then

Z(Seven) — {a e seven. F(a) = P}.

1.6. For every a define P, = {4:4a}.

Let a, blc. Let Ala, g and B|b, g. Then the mapping C t— CAB is a bijection
of P, N Pgonto P, N Py In particular, P, 0 Py = {4} if and only if P, N

P, = {B}.
a N
4 C
g
N\ b
B \_~ CAB
Figure 1

1.6’. COROLLARY. Let a, b|c. Let bld. Then a and d have at most one point
in common.

1.7. ([8], Lemma 1). Let a, b|c; Ala, g and Bl|b, g. Then F(ag) = {A} if
and only if F(bg) = {B}.

Applying 1.7 three times, we obtain
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1.7". COROLLARY. Let Ala, b; Blc, d; alc and bld. Then F(ab) = {4} if
and only if F(cd) = {B}.

.
a
A B
b
Q
Figure 2

1.8. Let « be a rotation; g € S. Then ag € S if and only if
F(a) N P, # 0.
In particular, let F(a) = {A}. Then ag € S if and only if Alg.

1.9. Suppose (G, S, P) satisfies (W). (i) Let alb. Then there are lines ¢, d
such that ab = cdla, b, ¢, d and not two of these lines intersect elsewhere.
(ii) The lines a and b have a unique intersection if and only if |F(ab) | = 1. In
particular, let ab = cd. If a, b have a unique intersection then so will ¢, d.

1.10. The pre-Hjelmslev group (H, T, Q) is a pre-Hjelmslev subgroup of
the pre-Hjelmslev group (G, S, P) if H is a subgroup of G, T € S, Q € P.
We then write (H, T, Q) = (G, S, P).

Let (H,T,Q) = (G, S,P). Then T =S N Hand Q = P N H. Let a, b

e T, C € Q. Then alb (Then a|C) in (H, T, Q) if and only if alb (a|C) in (G,
S, P).

Proof. Since TV C S and 7044 ¢ §°4d we have
SNHCTY and PN HC T

Leta € S N H. Choose A € Q. Then by 1.3, a = bC for some b € T, C
€ Q such that b4 is an involution. Thus ¢ € T by 1.1 (i1). Next, let B €
P N H. By 1.3 there are g, h € T and C € Q such that g4 and hA4 are
involutions and B = ghC. Here gh and C are uniquely determined. As B
= 1 B, this yields B = C € Q. The remaining assertions are obvious.

1.11. For any set Q € P let S(Q) consist of those lines in S which meet
points of Q.

Let (H, T, Q) = (G, S, P). Thus T S S(Q). Suppose (i) If B € P and A,
AB € Q, then B € Q, (ii) S(Q) C T (thus S(Q) = T). Then (H, T, Q) is
called a spot of (G, S, P). In this case,

H = Ng(Q): = {a € G:a 'Qa € Q).
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Proof. As (H, T, Q) satisfies the basic assumption, we have H € Ng(Q).
Conversely, let « € Ng(Q). Choose A € Q. By 1.3 there are § € G and
C € P such that « = BC. Here B is a product of lines through 4. Hence
B € H, by (ii). As @ € N;(Q), we have

A% = APC = 4C € 0.
Thus C € Q € H, by (i), and « = BC € H.

The final propositions of this section aim at Hjelmslev groups (without
a “pre”). They will not be used in the sequel.
The pre-Hjelmslev group (G, S, P) is a Hjelmslev group if

P = {ab:a, b € S and ab is an involution}.

1.12. (cf. [9], 2.8). Let (G, S, P) be a pre-Hjelmslev group; ab = ba; Ala.
Then (A, b)bla. In particular, any two commuting lines in a pre-Hjelmslev
group have a point in common.

Proof. Let (4, b) = c. Thus
Ale, ¢* and be, b ¢* = (bc)* € P.
Thus ¢ = ¢“, by (A2), and hence bcla, b.

1.13. Let A € P. Then the pre-Hjelmslev group (G, S, P) is a Hjelmslev
group if and only if D(A): = {bc:b, c|A} contains only one involution.

Proof. By (1.1) (ii), 4 is the only involution in D(4) if (G, S, P) is a
Hjelmslev group. Conversely, suppose A is the only involution in D(A4).
We first show that this remains true if 4 is replaced by any point B. We
may assume that 4, B|g for some g. Let 8 € D(B), 7 = 1. By 1.1 (iv). Bg
is a line ¢ through B. Since 8% = ¢* = 1, ¢ and g commute. By 1.12, C: =
(4, c¢)clg. Hence (4, ¢) = Cc and g commute. Thus, by our assumption,
either (4, ¢) = gor (4, ¢) = Ag. Hence (A42) yields that either Cc = g and
B=C=B,org=candfB = 1.

Next, let a, b € S and ab = ba # 1. By 1.12, there is a point Cla, b. As
D(C) contains only one involution, viz. C, we obtain ab = C € P.

We mention without a proof
1.14. (cf. [9], Lemma 2). Suppose the pre-Hjelmslev group (G, S. P)
satisfies Z(S™) = 1 and has the following property:

(Z) If alb and ab|c then ¢ has a unique intersection with a or b.
Then (G, S, P) is a Hjelmslev group.
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2. Complete point sets.

2.1. Let IT = (£, % I) denote any incidence structure. The set 0 € Pis
complete (in II) if it satisfies the following condition: If two lines both
meet Q and have a unique intersection, then that point belongs to Q. A
substructure of I1 is called complete (in I1) if its point set is complete in II.
The sets & and @ are complete; the intersection of complete sets is
complete.

Examples. (a) Suppose through any two distinct points of II there is
always a unique line. If there are three non-collinear points, the complete
sets in IT are &, @, and the one-point sets.

(b) Suppose the homomorphism ¢ maps II into an incidence structure
I = (&, &, I), and any pair of lines intersecting uniquely in II is
mapped by ¢ onto a pair of lines intersecting uniquely in IT”. Then Ce ™' is
complete in II for every C € £

In the remainder of this section, (G, S, P) denotes a pre-Hjelmslev
group satisfying (W).

2.2. Leta € S% Q: = F(a) # 0. Hence a is a rotation. It is well known
that Q is complete and that (Ng(Q), S(Q), Q) is a spot; cf. [2, page 111
Section 9.4, Folgerung 7, and page 78, 6.3]. We wish to prove the
following:

THEOREM. Let Q € P be complete in (G, S, P). Then (Ng(Q), S(Q), Q)
is a spot of (G, S, P).

Proof. The set Q being complete, we have
Q = {ab:a, b € S(Q) and ab € P}.
We wish to show
(A3*) If B,C,D € Q; A, B, C, D|gand AB = CD then 4 € Q.
At first we prove (A3*) under the additional assumption
(+) |F(gh)| = |F(ghD)| = 1 for some h|C.

Let d = Dg. Thus |[F(dh)| = 1, say F(dh) = {E}. By 1.8,d = (dh)h €
S implies Elh. Thus E|d, h. By (+), |[F(gh) | = 1 and g, h|C. Hence by 1.9
(ii), the intersections of 4 with d and g are unique. Q being complete, this
yields, in particular, £ € Q. Let b: = Bgand m: = (E, b). AsB, E € Q
and b|m, the completeness of Q also implies bm € Q. Finally, let k = mdh
and j = Ch. Then

A = BDC = bdC = bdhj = bmkj.
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A
g .
Ty b
m
B 0
C Cs
m
h k
D d E
Figure 3

Hence, by 1.2, (4, j) = (bm, k). The lines /& and (4, j) have the common
perpendicular j. Also h and g have a unique intersection. By 1.6, the
intersection A of g and (4, j) is also unique. Since Q is complete, this
yields 4 € Q.

Figure 4

Now we prove (A3*) without assuming additional assumptions. Let B,
C,D € Q;A4,B,C,Dlgand AB = CD. By 1.9, (i) and (ii), there is a line g’
through C such that

F(gg) = F(Cgg) = {C}.

Letb = (B, g),d = (D, g), B = bg', D' = dg. Thus Cg¢’, b, d|g’; Blb, g;
Dl|d, g. As F(Cg'g) = {C}, 1.7 implies F(bg) = {B} and F(dg) = {D}.
The completeness of Q yields B, C, D’ € Q. Let A’ = CD’B’. Thus 4’|g’;
cf. 1.1 (iv). The special case of (A3*), which has already been proved, now
yields A” € Q. We have

A(Bb) = CDb = CDd - db = CDAC - CD'B’' = (Dd)‘A’.
Therefore by 1.2, (4, Bb) |4’. Applying 1.7 once more, we obtain
F((4, Bb)g) = {4}.
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As Q is complete, (4, Bb) |4’ and A’, B € Q finally yield 4 € Q.
Let A € Q and g € S(Q). Then B: = (4, g)g € Q and, by (A3*),

A% = BAB € Q.

Hence Q is invariant under inner automorphisms of the group (S(Q) ).
The same will apply to S(Q). Thus # = ((S(Q) ), S(Q), Q) satisfies the
basic assumption; cf. Section 1. Obviously, the axioms (A1), (A2) and (A4)
are satisfied, while (A3) follows from (A3*). Hence 5#is a pre-Hjelmslev
subgroup of (G, S, P).

Obviously, s#satisfies the second assumption of 1.11. We verify the first
one:

(*) If B€ Pand A, A® € Q, then B € Q.

For the present, let us assume g|4, B for some line g. By 1.9 (i), there are
lines A, j through B such that B = hj and that no two of the lines g, A, j
intersect elsewhere. By 1.9 (ii),

F(gh) = F(gj) = {B}.
Let C = A% Then
A" = A% = J| (A, h), (C, )).

Hence by 1.7, F((4, h)(C, h)) = {A"}. As A, C € Q and Q is complete,
this yields 4" € Q. Thus g, g € S(Q). By 1.7,

F(ghB) = {B} = F(gh).

Ah=c

Figure 5
Therefore,
F(g- g') = F((gh)’) = {B};

cf. [2], Section 9, Lemma 1. Thus g and g" intersect only at B. As Q is
complete, we obtain B € Q.
Now we are ready to prove (*). Let B € P and 4, A% € Q.
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B (A,h)h

Cc=4% (Cj)j A'=C’
Figure 6
Choose h, j such that B = hj. Let C = A% As before, we obtain
F((4, h(C.))) = (4"} = (C}

and thus A" € Q. As 4" = A“UM" — (CIV we can apply the special case
of (*) which is proved above, and derive (4, h)h, (C,j)j € Q. Thus B € Q,
by the completeness of Q.

Finally by 1.11, S(Q) = Ng(Q).

2.3. Let Q and R be complete sets in (G, S, P). Suppose® # P, N O € R
for some g. Then Q € R.

Proof.Let A € P, N Q. By 1.9 (i), there is a line & # g through A such
that F(gh) = F(Agh) = {A}. Let X € P,. The sets Q and R being
complete, we have

Xeo(X,g)ge Q and X € R (X,2)g € R

Hence P, N Q € R.
Next, let Y € Q. Then

(Y.g)§ € P, N QSR and (Y,h)h € P, N Q C R

By 1.7, Y is the unique intersection of (Y, g) and (Y, /). As R is complete,
this yields Y € R.

2.3’. CorROLLARY. Let Q and R denote complete sets in (G, S, P). Suppose
# + P, N Q =P, N R for some g Then Q = R.

3. Homomorphisms and coverings. Most of the results of this Section,
collected for the readers’ convenience, are known; cf. [2; 4; 5; 9].
In this Section, (G, S, P) denotes an arbitrary pre-Hjelmslev group.

3.1. Let ¢ be a homomorphism of G such that 1 & S¢ U Pe. Thus (Ge, Se,
Pe¢) is well defined. Assume, in addition, that there is not more than one
orthogonal line in (Go, S, Pe) through any point to any line. Then ¢ is a
homomorphism of (G, S, P). i.e., (Go. S¢, Pg) is a pre-Hjelmslev group.
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Proof. Obviously, (G, S¢, Pg) satisfies (A1) and (A2). We first verify
(*) Let A € P, b € S and A¢|bg. Then
Ag = ((4,b)b)e and bg = (4(4, b) )e.
Let g = (4, b). Then

Ag, g9l (A8)e, be.

The normal of g through 4 being unique, we obtain (4g)e = be and (*).
Choosing a = Ag and B = bg, we obtain from (*) that a|4; B|b; Ap = Bg;
ap = be. Thus the properties (A3) and (A4) of (G¢, S¢, Pg) follow from
the corresponding ones of (G, S, P).

We write N < G if N is a normal subgroup of G.

3.2. Let N < G satisfy

(NO¥Y NN S =0, and

(N1*) If B, C|g and BB € N, then BC € N.
Then N C S¢V°",

Proof. Suppose « € N N §°44 By 1.3, « = cB where ¢ € Sand B € P.
Let g: = (B, ¢). Then BB = a®a € N. Hence by (N1*), Bcg € N and
therefore g = a - Bcg € N, contradicting (NO*).

3.3. Let N QG and let 9:G — G/ N denote the canonical homomorphism.
Then ¢ is a homomorphism of (G, S, P) if and only if

(NONNS=06=Nn P, and

(N1) If B, C|g and AB4 € N, then BC € N.

(Note that (NO) and (N1) are stronger than (NO*) and (N1%).)

Proof. Obviously, (NO) is satisfied if (G, S¢, Pg) is a pre-Hjelmslev
group. Then also (N1) is true, because ABCA € N implies A¢P% = 449,
hence By = Cg by 1.4. Conversely, assume (NO) and (N1). Let A¢, gglbe.
On account of 3.1 it is sufficient to prove that by = (4, g)¢. As Aglby, N
contains

(bA)? = AAADL . 4.
Hence by (N1),
A-(4,b)-bEN.
This proves 3.1(*). As go¢|be, there is a point B € P such that
gy - by = Be.
On account of 3.1(*), we may assume B|g. Since
ARG — 8By — APq = Aq,

(N1) yields (4, g)gB € N Thus
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(A, g)9 = Boge = be.

3.4. A set Fof spots of (G, S, P) (cf. 1.11) is a covering of (G, S, P) if
every point of P belongs to exactly one of the spots in % Such a covering #
induces an equivalence relation ~ in P. The group of #is equal to

NMF): = {a € SV AY ~ A for every 4 € P}.
A homogeneous covering % satisfies
(h) Let A ~ B. Suppose alA, g and b|B, g. Then ab € N (F).

Let % denote a homogeneous covering of (G, S, P). Then AB € N (F) if
and only if A ~ B.

Proof. Let AB € N(F). Then A ~ A*% = 4. Thus the spot containing
A also contains B; cf. 1.11. Conversely, let A ~ B. Choose a|A4 and b|B, a.
A, B and ab are points belonging to the same spot. Hence Aa- b,a- bB €
NF), by (h). Thus

AB = A(ab) - (ab)B € N(F).

3.5. The covering Fis homogeneous if and only if it satisfies

(h1) Suppose A, B, C, D|g; AB = CD; A ~ B. Then C ~ D; and

(h2) Let al4, g and b|B, g. Then

A~B=ag~bg=A~ (A, b)b.

Proof. Let #be homogeneous. Then (h1) follows immediately from 3.4.
Next assume al4, g and b|B, g. We apply (h). If 4 ~ B, then

ag - bg = ab € /(#) and ag ~ bg.
If ag ~ bg, then ab € A(F); hence
A ~ Aub _ Ab _ A(A,b)b

and therefore A ~ (A, b)b; cf. 1.11.
Conversely, assume (h1) and (h2). Let 4 ~ B; al4, g; b|B, g. We have to
show that ab € H(F), i.e., X*» ~ X for every X € P. By 1.1 (v),

c: =(X,g)ab € S and clg.
Furthermore
(X, 8)g cg = ag- bg.

As ag ~ bg by (h2), (hl) implies (X, g)g ~ cg. By (h2), X ~ (X, ¢)c. We
have

xeb = x(Xgab _ xe _ y(Xok,
hence

(X, ¢)e- X = X - (X, ¢)c.
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Also
(X, o)e, X, X*| (X, c).
Thus (h1) yields X ~ X.
3.6. Let ¢ be a homomorphism of (G, S, P). For any A € P let
Q4: = {B € P:Bp = Ag¢}.
Then
Fo: = { (NG(Q4), S(Qu), Q)4 € P}
is a homogeneous covering of (G, S, P) such that
kernele & N(Fy).
Equality holds if and only if Z(S¢®¥") = 1.

Proof. Obviously, Fe 1s a covering of (G, S, P); cf. 1.11. (hl) is satisfied
because ¢ is a homomorphism. (h2) follows from the uniqueness of
perpendiculars in (G, S¢, Pg) and because orthogonal lines have a unique
intersection. Thus %, is homogeneous. Finally

N(F) = {a € S A% = Ag forall 4 € P}
= {a € Giagp € Z(S¢™*") };
cf. 1.5.

3.7. Let Fbe a homogeneous covering of (G, S, P); |#| # 1. Then /(F)
<G and ¢:G — G/ N(F) induces a homomorphism of (G, S, P) such that &
= Fg; ¢f. 3.6. Moreover, Z(S¢™") = 1.

Proof. Let ~ denote the equivalence relation in P induced by % We first
show

(¥) Let A ~ B. Then A¢ ~ B¢ for every c.
Define a: = (4,¢),b: = (B,¢), C: = (B,a)a. By 1.11, 4 ~ B ~ C.

Bb B¢

4 Ch _h dc A€

Figure 7

Since AC = C°A¢, (hl) therefore yields A ~ C°. Applying (h2) twice, we
deduce from B ~ C first bc ~ ac and then B¢ ~ (B, a)a = C¢. This yields
(*).

Let a € N: = M(F). Let c € S; B: = o, X € P. Then by the
definition of N, X** ~ X¢ and by (%),
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XP = (X ~ (X)) = X.

Thus N < G.

Suppose 4 € N N P.Then X! ~ X and thus 4 ~ X for all X € P; thus
|Z| = 1. As N € S§°°", this yields the condition (NO) of 3.3.

Next, let B, Clg and AB€4 € N. Putb: = (4, g), ¢: = bBC, and D: =
(A, ¢)c. Then

ABCY = A4 = A4 = AP4 € N.

This implies by 3.4 and 1.11 (i) that A ~ A” ~ D. As b|4, g and ¢|D, g, the
homogeneity of #yields BC = bc € N. Thus N also satisfies (N1), and ¢ is
a homomorphism of (G, S, P); cf. 3.3.

By34,4 ~Bifandonlyif AB € N, e, (AB)p = 1 or Ap = Be. By
3.6, this is equivalent to 4 and B belonging to the same spot of %, Thus #
= Fg- The last statement now follows immediately from 3.6.

3.8. The sections 3.6, 3.7 and 3.4 yield the following result:
The mapping
F = M(F)

is a bijection of the set of the homogeneous coverings % of (G, S, P) with |7 |
# 1 onto the set of the kernels of those homomorphisms ¢ of (G, S, P) which
satisfy Z(S¢®¥™) = 1. If Fis such a covering, then AB € N(F) if and only if
A and B belong to the same spot of F.

3.9. A homomorphism of (G, S, P) is regular if the images of lines with
unique intersections also have unique intersections.
A covering is complete if each of its spots is complete.

The homomorphism ¢ of (G, S, P) is regular if and only if the induced
covering Fg is complete; c¢f. 3.6.

Proof. Suppose ¢ is regular. Let 4 and B belong to the same spot of .
Let al4: b|B and suppose C is the unique intersection of a, b. Then

A¢ = Bg and Coqlag, be.

Hence, ¢ being regular, C¢ = A9 = Be.

Conversely, let %, be complete. Let a. b|C. Suppose ag and bg have
more than one point in common, say ag, bg|Ce, De where Ce # Dg. The
points A: = (D, a)a and B: = (D, b)b satisfy Ap = D¢ = Be. Thus 4, D,
B belong to the same spot F of %, while C does not belong to F. Since F is
complete. the intersection of a and b is not unique.
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3.10. The mapping F '+ N(F) is a bijection of the set of the complete
homogeneous coverings Fof (G, S, P) with |#| # 1 onto that of the kernels of
the regular homomorphisms ¢ of (G, S, P) which satisfy Z(S¢*'") = 1.

The proof follows immediately from 3.8 and 3.9.

3.11. If # is a homogeneous covering of (G, S, P) and A, B € P, the
Jfollowing statements are equivalent:
()4 ~ B;
(il) AB ~ N (F);
(iiiy C ~ C*B for some point C.

On account of 3.4, it is sufficient to deduce (i) from (ii1). We may
assume |#| # 1. By 3.7, /(%) is the kernel of a homomorphism ¢ of (G, S,
P) such that # = ;. Hence (ii1) and 3.4 imply

(Co)'® = (Cp)™®.
Applying 1.4 to (Ge, S¢, Pg), we obtain Ag = Be, i.e., (1).

3.12. Let |P| # 1. The normal subgroups N of G with N S Z(S®*°") are
precisely the kernels N of the homomorphisms of (G, S, P) which satisfy
NnP =1

Proof. If N € Z(S®"), then AB € N implies
At =4 = AP = 4P,

Hence AB = 1, by 1.4. Obviously, N satisfies the conditions (NO) and
(N1) of 3.3. Conversely, suppose N is the kernel of a homomorphism of (G,
S, P) and satisfies N N P?> = 1. Let « € N. Then

AA =a 'la* e NN PP=1 foranyd € P.
Thus F(a) = P and, by 1.5, a € Z(S").

4. Semi-translations and transports. Let (G, S, P) again denote any
pre-Hjelmslev group.

4.1. In [9, Section 7] E. Salow introduced semi-translations I' ;5 though
only for pairs 4, B joined by lines. Through our Lemma 4.2 we will be able
to drop this restriction and give a definition of I'4 g similar to that of
semi-rotations in [6]. This will enable us to generalize Salow’s beautiful
results; cf. 4.3.

Let w € P% The semi-translation T, is a pair of mappings of P and S
into themselves: If X € Pand y € S, let XT',, be the mid-point of X and
X® and let yI'y, = [yw]; cf. 1.4 and 1.2.

Note that XXTo) = X© and AT, = B.

If A, Blg for some g, the point XT',p can readily be constructed: Let c:
= (X, g). By 1.1 (iii), cAB = g(gc - AB) is the line through the point gc -
AB on g perpendicular to g. Let d = (X, cAB). Then
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XAB _ (Xa'(')AB _ Xz/'('AB‘

Thus XT'yp = d - cAB is the intersection of d with cAB.

¢AB

Figure 8

We require the following lemma.
42. Let « € P?. Then |[F(a)| = 1.

Proof. Let @ = ABC and E € F(a). Let a|l4. Put b: = (B, a), e: =
(E, a). Thus

A': = bAe = ba- A - aela.
Finally, let »': = Bb, a’: = (A’, ') and ¢’: = (E, a’). Thus

C': =bAe)lad and aC = AB = Abb = ed'd = ee’'C’.
Applying 1.3 to aC, we obtain a = e¢’. By 1.7,

1 = |F(a'b) | = |F(aa) |.
Hence by 1.7’, |F(ee’) | = 1.

] a A A
, e
[4
E

b ,
a

ul b [

B

C/
Figure 9

4.3. THEOREM. Let I': = I'yp. Then
(1) T is injective both on P and on S.
(it) Clg & CTlgT, for all C and g.
(iii) If F(gh) = {C}, then F(gl' - hT') = {CT}.

Proof. To (i). I':P — P is injective: Let E = CI' = DI'. Then C* = C*#
and DX = DA% Thus C, D € F(ABFE) and hence C = D, by 4.2.

https://doi.org/10.4153/CJM-1984-029-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-029-4

PRE-HJELMSLEV GROUPS 485

The injectivity of I' on S will be dealt with later. Before proving (ii) we
show

(*) Forany Clety = AB- CT. Then F(y) = {C}.

On account of 4.2 we need only show that C € F(y). By 1.3, there are §
€ S2and D € P such that AB = 8D and C € F(8). As CT = 18 =
3P this implies D = CI and thus § = v.

To (ii). Let D = CT. As y = ABD, (*) and 1.8 yield

Clg = yg € S = DgAB = (yg)'® € 5.

By 1.3, there are e|D and E such that gdB = eE. Thus
gl' = [eE] = (E, e)

and the assertion (ii) is equivalent to:
DeE € S < (E, e)|D.

But this follows readily from 1.2".
To (iii). Let D: = CT'; y: = ABD. Thus by (%), F(y) = {C}. As F(gh) =
{C}, 1.8 implies Clg, h. Hence, again by 1.8,

g:=gy €S and HK:=hy € S.
Thus
Yy =gg =hh and gh = g'g-gh- hh' = (gh)".
This yields
F(gl') = F(ghy = {C"} = {C} and Qg K.
As gI' = [gAB] = [g’'D] = (D, g) and hl' = (D, '), 1.7 now yields
(ml)?'inally, I':§S — S is injective: Let gI' = AT, ie.,
[gAB] = [hAB] = [BAh].

The product of two glide reflections with the same axis being the product
of two points, we obtain

gh = gAB - BAh = XY

or Xg = Yh for some X, Y; and, by 1.2, there is a line j|g, h. Let C: = gj
and D: = hj. Then by (iii),

{CT'} = F(gl'- jT) = F(hI' - jT)) = {DT'}.
As T is injective on P, this implies C = D and thus g = A.
4.4. Given w € P? define the transport 7, through

QOr, = {C:CT,+ € Q} forevery Q € P.
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As I, ' need not be surjective, Q1 can be void for some w, Q. If 4 € Q,
then B € Qr7,p because Bl'g, = A.

Let # denote a homogeneous covering of (G, S, P). Then Q745 = Qp for
any two points A, B; here Qy = {Y € P:Y ~ X}; ¢f. 3.4.

Proof. By our definition,
Qurap = {C:CTpy ~ A} = {C:CM = B for some M ~ 4}.

Let C € Q 45 By 3.4, MA € #(F). Thus C ~ CM1 = % ~ B; f.
1.11. In particular, C € Qpg. Conversely, let C ~ B. Then by 3.4, CB €
N(F) and thus C? = C8 ~ C. If M denotes the mid-point of C and B,
then CM4 — (P ~ C. Hence M ~ 4 by 3.11.

4.5. Let T4 be a transport in a pre-Hjelmslev group which satisfies (W). If
the set Q is complete, so is Q74p.

Proof. Let C, D € Qt4p; c|C; d|D; suppose ¢ and d have the unique
intersection E. We have to show E € Qr,p. Write I' = I'p4. By 1.9 (ii),
F(ed) = {E}. Hence by 4.3 (iii),

F(cI'- dT') = {ET}.

Thus cI" and 4T intersect precisely at ET'. As CT, D' € Q, and CT'|cI” and
DI'|dT" by 4.3 (ii), and since Q is complete, this yields ET' € Q and thus E

€ Q74p.

4.5’. THEOREM. Let Fbe a homogeneous covering of a pre-Hjelmslev group
satisfying (W). If one spot of Fis complete, then Fis complete; cf. 3.9.

The proof follows immediately from 4.4 and 4.5.

4.6. Let Q be a complete point set in a pre-Hjelmslev group satisfying (W).
If « € Q°, then F(a) C Q.

Proof. Let « = ABC where A, B, C € Q. Let E € F(a). We repeat the
construction in the proof of 4.2. As & = ee’ and aC = ee’C’, we obtain C
= (. Since 4, B, ' lie in the complete set Q, the points ab, a’b’ and A’
belong to Q. By 2.2, Q is the point set of a pre-Hjelmslev subgroup. As ae
=A-ab-A"and a’e’ = A" - a'b’ - C’, these products of three points on a
and «’, respectively, must also belong to Q. Since |F(ee¢’) | = |F(a)| = 1,
this yields £ € Q.

4.7. Let Q be a complete point set in a pre-Hjelmslev group satisfying (W),
A, B € Q. Then Q45 = Q.

Proof. Let CB4 = CP;ie, D = CTp4. Suppose C € Qryp; thus D € Q
and BAD € Q. Hence by 4.6, C = C?1P & Q. Conversely let C € Q. As
A, B, C € Q and Q is the point set of a spot, we obtain C? = C?* € 0
and thus D € Q; c.f. 2.2 and 1.11 (i).
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5. Embedding a complete point set into a homogeneous covering. In this
section, (G. S, P) denotes a pre-Hjelmslev group satisfying (W).

5.1. Let h|A, B; D|Ah; g = DAh; E = (B, g)g. Let D', E'|g; D'E’ = DE;
v|B, E'. Then there is a line u through A and D'. If v and g have a unique
intersection, so will u and g.

A h B
/
/
s’
)/ |An v
/
/
y
D’ D 8 E E
Figure 10
Proof. The elements m: = E’v and Egvh are lines since E’lv and Eg, v,
h|B. Thus
D'mA = DEvA = Dg- Eg-vA = Ah- Egvh - Ah
= (Egvhy'" € s.
Hence by 1.2/,

u: = (D', m) = (A, D’mA)|A, D'.

If v and g have a unique intersection, 1.6 yields on account of u, v|/m that
the intersection of u with g is unique too.

5.2. Suppose g and h have a common perpendicular a. For any C let B =
(C, hYh and E' = (C, g)g. Then there is a line v through B and E' such
that

|F(vg) | = [F(vh)| = 1.
Proof. Let ¢ = (C, a). Then

d: =gch € S and E'dB = (C, g)(C.h) € S
since (C. g). ¢. (C. h)|C. Thus by 1.2".

v: = (E'.d) = (B. E'db) |E'". B. d.
As |F(dv) | = 1, ald, g, h implies that

[F(gv) | = [F(hv)| = 1;
cf. 1.7.
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C
A /z B
/
a Sy
II
ll
g ‘E

Figure 11

53.Let A = ah, D = ag, B = (C, h)h, E' = (C, g)g; E|(C, h), g; D'E’
= DE. Let Q be complete; A € Q. Then D' € Q & D € Q.

C
A h B
a
=
D’ D g F E
Figure 12

Proof. The intersection of a and g being unique, A, D’ € Q implies D €
Q. Conversely, let A, D € Q. By 5.2, there is a line v|B, E’ such that F(vg)
= {F£'}. Let E”: = (B, g)g and D”: = DE”E’. By 5.1, there is a line
v'|4, D” such that F(v'g) = {D”}. Finally, let D*: = DE"E.

/C
A h B

/

I,,I,l

v !

vy i |a Cg) v
, V”:I
4 1
va i
D'D” D* D § FE E E”

Figure 13

Apply 5.1, replacing E by E” and E’ by E. This yields a line v* |4, D* such
that F(v¥*g) = {D*}. As Q is complete, we obtain D”, D* € Q. Hence by
2.2,

D' = DEE' = D- EE"D - DE"E’ = DD*D” € Q.
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5.4. Let B = hu; Alh and Ulu. If the complete set Q contains A, then

Or4p70 = QT4v-

Proof. By 4.5, Qr4p7py and Qr,4, are complete. As they contain U, it is
therefore sufficient to prove

P, 0N Qryptgy = P, 0O Qraqys

cf. 2.3,
U
u
C
a v
D’ D g E’ E
Figure 14

LetC € P, E: = BUC,a: = Ah,g: = (E,a),v: =(C,g), E': = gv,D: =
ag, D’: = E'ED. Then

UA = Uha = UBua = CEua = CuEa = CuEgD = CugED
= CuvE'ED = CuwD'.
Thus
clA . cCwD _ oD
Hence CT'y4 = D’ and:
Ce Qe D e Q.
As CVB = cF = CF and EBY = ptha — E* = E% = EP we have
CTyp = E and ETgy = D.
Therefore:
C € Qryprpgy = E € Qryp= D € Q.
By 5.3, the last relation is also equivalent to D’ € Q, i.e., to C € Oty

5.5. Let U, V|j. If the complete set Q contains A, then

Orqutyy = Qav-
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Proof. Let B: = (A, j)j. By 4.5, O*: = Qr4pis a complete set containing
B. Let C be any point of the line j. Then V, B, C|; implies CVB € P, and
CVB — CVB hence CI'yp = CVB. The following statements are therefore
equivalent:

C € Q*rpy;
CTyp = CVB € Q%
(CVvU)'yy = CVU- UB € Q%
Cl'yy = CVU € Q*rgy;
C & Q*rpytyy-
Thus by 2.3,
Q*1py = Q*1pyTuv;
cf. 4.5. By 5.4,
Q*tgy = Oryqy and Q*rpy = QOrqy.
This proves our assertion.
5.6. We can now prove the

THEOREM. Let Q be complete; A € Q. Then Q1,4 yy = QT4y for any
two points U, V.

Proof. Choose a point W joined by lines to U and V. By 4.5, Q* = Q1,4y
i1s complete and, by 5.5,

Q*tywrwy = Q*yy.
Applying 5.5 twice more, we obtain
Qrivtuw = Qraw and  Qraptyy = OT4y.

Hence

Orqutyy = Q*1ryy = Q*tuwTwy = QTauTuwTwy
= QTmqwTwy = QT4y.
5.7. Let Q denote any complete set; M, N € Q. Then by 5.6 and 4.7
(*) Qtmp = QrunTng = QTnp for every B.

Suppose now that Q is any non-void complete set. On account of (*) we
may define

Op: = QOTma,

where M € Q is arbitrary.
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5.8. THEOREM. Let (G, S, P) satisfy (W). Let Q S P be non-void and
complete. Then

Fo: = { (Ng(Qp), S(Qp), 0p):B € P}
is a homogeneous covering. F is complete; o 3.9.
Remark. By 4.7, (N¢(Q), S(Q), Q) € Hp.
Proof. Let M € Q. We have B € Qp for every B; also by 5.6 and 4.7,
Qc = Qtmc = Qtuptpc = QpTpc = Qp forevery C € Qp.

Thus {Qp:B € P} is a partition of P into complete sets; cf. 4.5. By 2.2, %,
iIs a complete covering of (G, §, P). It remains to show that %, is
homogeneous. Let ~ denote the equivalence relation induced by #,. We
apply 3.5 to (hl). Let 4, B, C, D|g; AB = CD; A ~ B. Thus

DFCA = DCA = B QA and D € QATAC = QC

and hence D ~ C. To (h2). Let al4, g; b|B, g. Put A: = (4, b)b, C: = ag,
and D: = bg. We have

AA'D _ A(A,b)g = A8 = AC.
Hence AT 4y p = C. From 5.6,

Q4 = Qtymar = OtupTpar = QpTpar = {X:XTyp € Qp}.

Hence A ~ A’ if and only if C ~ D. Since Q4 is complete, A ~ B implies
A~ A.

Figure 15
5.8’. We restate our result in terms of homomorphisms.

THEOREM. Let (G, S, P) satisfy (W). Let Q C P be complete; M € Q.
Then there exists a homomorphism ¢ of (G, S, P) such that

Q = {B € P:Byp = Mg} and Z(S¢*'") = 1.

The homomorphism ¢ is unique (up to isomorphism), and ¢ is regular; cf.
3.9.
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Proof. According to 5.8, %, is a homogeneous covering having more
than one element. Hence by 3.7 the canonical homomorphism

#:G = G/N(F)

induces a homomorphism of (G, S, P) with the desired properties; cf. 3.4.
Furthermore, by 3.10, this homomorphism is regular; cf. 3.9. Now, let us
assume that ¢ is a homomorphism of (G, S, P) satisfying the properties of
the theorem. Then by 3.6 the kernel of ¢ is #(%y). Q is the point set of
some spot of % (cf. 5.8), and Q is also the point set of some spot of F,; cf.
3.8. Therefore, %) and Fe induce the same equivalence relation ~ on P;
cf. 4.4. Hence #p = %y by 1.11 (ii). Thus we have

kernel ¢ = A(H).

5.9. As an elementary application of 5.8 we state a result for which we
could not find a direct proof.

Let Ala, h; alg; blg, h. If Q is complete and A, bh € Q, then (ag, h)h €

Q.
AnJag.h)h
a h  bh
b
agh g bg
Figure 16

Our proof uses the existence of the homogeneous covering %. Applying
(h2) twice, we deduce from 4 ~ bh first ag ~ bg, then (ag, h)h ~ bh.

In the remaining two sections we consider two special cases of our
Theorem 5.8’. We continue to assume that (G, S, P) is a pre-Hjelmslev
group satisfying (W).

5.10. ([9]). Let a be a rotation and M € F(a) # P. There is a unique
homomorphism ¢ of (G, S, P) such that

Fla) = {X: X9 = Mo} and Z(S¢*") = 1;
¢ is regular.

Obviously, this theorem is a consequence of 5.8, because the set F(a) is
complete; cf. 2.2. Let Q4: = {X:X¢ = Ag}, for any point 4.

ADDENDUM. For every A let ay denote the rotation which satisfies A €
F(ay) and a = a4AC for some C € P; ¢f. 1.3. Then Q4 = F(ay).
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Outline of the proof. The construction of ¢ in 5.8” and the definition of
Fo1n 5.7 and 5.8 yield Q4 = Q7p4, where Q: = F(a). Hence we have to
show Oty = F(ay) for every A € P. This is easy.

Remark. Salow’s proof for 5.10 is rather complicated. In [7] we give a
short direct proof for 5.10 and the addendum, that does not use 5.8 and
the tools developed in Sections 4 and 5.

5.11. Points 4, B are called neighbors if A, B € F(a) # P for some
rotation a. The neighbor relation is reflexive and symmetric, provided that
|P| # 1. The following theorem is proved in [4].

If the neighbor relation is transitive and |P| # 1 then there is a unique
homomorphism ¢ of (G, S, P) such that Ay = By if and only if A, B are
neighbors, and Z(SY'") = 1; ¢ is regular.

Proof. For A € P let
Q4: = {X:X is a neighbor of 4}.

(1) Q4 is complete.

Let B, C € Q4 and b|B; ¢|C such that b, ¢ have a unique intersection D.
Then B is a neighbor of C, i.e., B, C € F(a) # P for some rotation a.
Hence B, D € F(a) # P by 2.2. Thus 4, B and also B, D are neighbors.
This implies D € Q.

Now 2.2 and the transitivity of the neighbor relation yield

(1) Fy: = (Ng(Q4), S(Q4), Q) 1s a spot for every A € P,
and
F:. = {F4:A € P} is a complete covering of (G, S, P);

furthermore, | %#| # 1; cf. 3.4, 3.9.

(ii1) #is homogeneous.

We prove property (h) of 3.4. Let 4, B be neighbors, a4, g and b|B, g.
Then A, B € F(a) # P for some rotation a. Let ¢ denote the
homomorphism assigned to a by 5.10. Since A9 = Bey, golag, be, the
uniqueness of perpendiculars in (Ge¢, S¢, Pg) implies ap = be, hence
(X“*)¢ = X for every point X. Thus, by the addendum in 5.10,

X, X* € F(ay),

where ay is a rotation satisfying a« = ayXY for some Y. Finally, F(ay) #
P, since otherwise 4 = A% = A°YX hence AX = AY; but 1.4 implies X =
Y and @ = ay. Thus we proved X* € Qy for every X, ie., ab €
N(F).

The assertion now follows from 3.10.
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