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Abstract. The nuclear Thomas-Fermi model which is based on nuclear matter calculations has been 
successfully applied to the study of the bulk properties of nuclei. It is ideally suited for extrapolation 
into the region of very neutron-rich and of superheavy nuclei. It is therefore a valuable approach for 
r-process calculations as well as for the study of neutron star matter at subnuclear densities. 

Many physical situations require the knowledge of the properties of nuclei located far 
away from the region of stability. The standard semi-empirical mass formulae give a 
good fit to the known nuclei, but their extrapolation into the neutron-rich and super­
heavy region is subject to considerable uncertainty. This is due to the fact that only 
the coefficients of the four leading terms can be reliably fitted by a least squares 
procedure. In the neutron-rich regions, mass formula terms which are negligible in the 
vicinity of the beta stability valley, and therefore ill determined, can significantly 
influence estimates of nuclear properties. It is therefore of interest to have an alternate 
simple way to get a grasp on these nuclei without having to do, for instance, a full 
Brueckner-Hartree-Fock calculation. 

The idea of reproducing the bulk properties of nuclei, i.e., their binding energies, 
radii and surface thicknesses, by means of a statistical or Thomas-Fermi approach, 
goes back to the earlier days of nuclear physics. The earlier approaches were semi-
phenomenological in the sense that a whole set of parameters had to be fitted to give 
agreement with experiment. The present idea is to make maximum use of the results 
of realistic nuclear matter calculations, i.e. the binding energy of a homogeneous 
mixture of neutrons and protons as a function of neutron excess and of density. This 
allows us to reduce the number of free parameters to just one. 

The Thomas-Fermi approach is based on a theorem by Hohenberg and Kohn (1964) 
which states that for a many-body system the energy is a functional of the density alone 
and that the ground state density distribution is the one which minimizes this func­
tional at constant number of particles. When the density is slowly varying, the func­
tional may be expanded in terms of the gradients of the density. The exact form of the 
functional is of course unknown. According to Brueckner and collaborators (see, 
e.g., Brueckner et al. (1971) and references therein; Barkat et al. (1972)), we therefore 
approximate the energy of a nucleus by the statistical expression 
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The first term e is a function of the densities and represents the energy per unit volume 
of homogeneous nuclear matter of neutron density gn and proton density QP. We have 
used for e the nuclear matter results of Brueckner et al. (1968b), together with a recent 
neutron gas calculation by Buchler and Ingber (1971). The second and third terms are 
the direct and exchange Coulomb energies, where the Coulomb potential <P(r) is of 
course a functional of QP. Finally, the last term represents the gradient correction which 
takes into account the change in correlation energy due to the density inhomogeneity. 
Here Q = Qn + gp represents the total nucleon density. As shown by Bethe (1968), the 
quantity rj is simply related to the 'long range' part of the nuclear force and should be 
only weakly dependent on density. In view of the uncertainty involved in calculating 
n, we have chosen to treat it as a constant determined by a fit to the nuclear binding 
energies over the range of known nuclei. The constant rj is the only phenomenological 
parameter of the Thomas-Fermi model and its fitted value is in good agreement with 
Bethe's theoretical estimate. 

The problem now consists in minimizing the quantity 

E [.Qn, QP1 - K j QB (r) ( d r ) 3 - A„ j Q p ( r ) ( d r ) 3 , (2) 

where the Lagrange parameters kn and Ap are the neutron and proton chemical poten­
tials, respectively, and are chosen so that 

j Qn(r)(dr)3 = N, and, j 6p(r) ( d r ) 3 = Z . (3) 

This minimization leads to a system of non-linear equations of the form 
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with the condition that the densities g(r) have a continuous derivative everywhere. 
As a boundary condition, we require that dQ/dr\r=R=09 where R represents the 
point where the density vanishes. 

The density profiles for a series of nuclei are shown in Figure 1. The 1 6 0 nucleus is 
seen to consist mostly of surface; its central density never reaches the saturation densi­
ty of nuclear matter (0.2 f m " 3 ) . The heavier nuclei exhibit a dip at the center and a 
bulge in the outer regions due to the Coulomb repulsion between the protons. The 
protons also provoke a somewhat smaller bulge in the neutron density because of 
the symmetry energy. 

The vanishing of the density rather than an exponential drop is typical of the 
Thomas-Fermi model and is a drawback as far as the study of the tails of the distribu­
tion are concerned, and in particular the study of the neutron halo. The proton density 
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with our functional (1) vanishes with non-zero slope (for proton-rich nuclei it is the 
neutron density which vanishes with non-zero slope). This could be remedied by 
including in the energy functional a density difference gradient term of the form 
0 { V [ £ n ( r ) — Qp(r)l}2- Because of numerical difficulties, such a term has been treated 
as a correction to the energy rather than having been included in the minimization of 
the functional. Higher order terms in the gradient expansion have been omitted. The 
a postiori justification that their contribution to the energy is negligible for the 
density profiles which we have obtained. 

I 2 3 4 5 6 7 8 
r (fm) 

Fig. 1. Density profiles for various nuclei. 

The computed binding energies per particle for the known spherical nuclei are in 
good agreement, to within 0.1 MeV (except for 1 6 0 for which the discrepancy is 
~ 0 . 5 MeV) with the liquid drop mass formula of Myers and Swiatecki. (Since our 
Thomas-Fermi model is a semi-classical approach which cannot reproduce shell 
effects, our results should not be compared to the actual binding energies of nuclei 
but to their 'liquid drop ' part.) The proton radii turn out to be somewhat (a few per­
cent) smaller and the surface diffuseness somewhat (5-10%) larger than the electron 
scattering experiments seem to indicate (Brueckner et al, 1968a). The overall agree­
ment, however, is remarkable considering that we have only one parameter in our 
theory. 

Binding energy contours are shown in Figure 4 of Brueckner et al (1971). In the 
region of known isotopes ( Z < 9 0 , N<>\6Q) including the transuraniums, the agree­
ment is quite good. Deviations between the liquid drop model predictions and the 
Thomas-Fermi results are quite significant for neutron-rich and superheavy nuclei. 
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Deformed nuclei have also been studied by Brueckner et al. (1970) with the restric­
tion to ellipsoidal shapes. The density profiles exhibit a uniform surface diffuseness, 
as expected. For small deformations the binding energies are quite close to those of the 
liquid droplet models. 

With this success of the Thomas-Fermi model at hand, we feel confident in extra­
polating to the region of unknown nuclei. I will go on to describe two different applica­
t ions: first, the possibility of producing superheavy nuclei in an r-process; and second, 
the nature of clusters of nucleons in neutron star matter. 

In order to investigate the possible synthesis of superheavy elements during astro-
physical processes, Brueckner et al. (1972) have recently incorporated the nuclear 
Thomas-Fermi binding energies in an r-process code by Seeger and Schramm. Their 
preliminary results show that, with the introduction of these Thomas-Fermi masses, 
significant changes occur in the results of r-process calculations. Most important, 
all indicate a strongly decreased probability for superheavy abundances relative to 
calculations based on the 'Myers-Swiatecki' mass formula. In the medium-heavy to 
superheavy element region, the r-process path with the energy density input is about 
3 nucleon numbers closer to beta stability than the path corresponding to conventional 
mass formulas. This causes a pronounced shift in the isotopes of maximum abundance 
(the 'center line' in the r-process path). With the exception of the N= 184 closed shell, 
the isotope of maximum abundance for a given Z is about 5-10 neutrons poorer than 
those calculated with the Myers-Swiatecki mass formula. When the r-process is 
terminated due to fission, there are fewer neutron-rich nuclei available to beta decay 
into the superheavy region, so that the overall yield of superheavies is decreased. 

At present, there is a controversy about the realistic value of the parameter /c, which 
is the ratio of the surface symmetry coefficient to the regular surface energy coefficient. 
Calculations were therefore performed for both the value of Myers and Swiatecki, 
K — 1.79, and a larger value of K = 2.84. The differences in the results for the two values 
of K are as follows: whereas with /c= 1.79 one could hope for superheavy element 
production in the r-process, one cannot imagine this with *c = 2.84. For this large value 
of K the barriers are just too small to allow any high Z, neutron-rich nuclei to survive. 
Even for the small K value, the abundances were smaller than those computed by 
Schramm and Fowler (1971). At the same temperature and density, the r-process 
cycle time is more than double, and the abundances of most of the isotopes of the 
element 112 are reduced by more than four orders of magnitude. However, it is 
possible to almost equal the superheavy abundances of Schramm and Fowler by 
increasing the neutron flux four orders of magnitude and decreasing the temperature 
by 10%. 

The other application of the Thomas-Fermi model which I will describe is the study 
of neutron star matter. By neutron star matter we mean cold, neutral, and catalyzed 
matter; cold, because the typical thermal energy of neutron stars is several orders 
smaller than the chemical potentials of the constituent particles; catalyzed, because 
we restrict ourselves to densities for which the relaxation time to complete equilibrium 
with respect to strong, electromagnetic and weak interactions is small. In other words, 
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the question we ask is the following: at a given average baryon density, what particles 
are contained in the system and how do they spatially arrange themselves in their 
ground state configuration. It is well known that at low densities ( g < 1 0 6 g e m " 3 ) 
neutron star matter consists of 5 6 F e (or 6 2 N i ) nuclei arranged in a crystalline structure 
surrounded by a sea of electrons. At a density of about 10 7 g e m " 3 , the chemical 
potential of the electrons reaches 1 MeV and it becomes energetically favorable for 
protons to beta-capture; there results a gradual neutron enrichment of the nuclei as 
the density of matter increases. Since too great an enrichment would excessively raise 
the symmetry energy, there is at first a concomitant increase in the proton number of 
the nuclei. The chemical potential of the neutrons becomes positive at a density of 
about 3.7 x 10 1 1 g c m " 3 , so that some of the neutrons become unbound and form an 
embedding sea. At a density of about 1 0 1 4 g c m " 3 the clusters disappear and the 
system becomes a homogeneous mixture of neutrons, protons, and electrons. 

In previous studies of neutron star matter in the clustered phase (cf. review 
articles by Cameron (1970), and Canuto (1973), it has been assumed that the clusters 
resemble ordinary nuclei sufficiently well that they can be described by a semi-empirical 
mass formula, or more recently by a compressible liquid droplet model with a variable 
surface coefficient to take into account the reduction of surface energy due to the 
surrounding neutron gas (Baym et al, 1971). Such an approach, however, suffers from 
the disadvantage that the results one obtains are very sensitive to the specific func­
tional dependence of the mass formula on A and Z. It also implies a dichotomy between 
a sharply defined nucleus and a surrounding gas. The Thomas-Fermi model, on the 
other hand, allows a consistent treatment of the nuclear surface by permitting the 
density profiles of the nuclei to change and to adjust smoothly to the embedding 
neutron fluid. 

We will first concern ourselves with the clustered regime. Clustering occurs because 
the protons want to make maximum use of nuclear symmetry energy. In the spirit of 
the Wigner-Seitz model, Buchler and Barkat (1971a, b) therefore assume that the 
system is composed of identical non-interacting spherical cells which are centered on 
the bulges of the proton distribution and which are electrically neutral. The energy per 
cell is then expressed in terms of the same integral Thomas-Fermi expression as previ­
ously described [Equation (1)], but supplemented by the electrons' energy. The radius 
of the cells is determined by the requirement of charge neutrality, which is the new 
constraint, instead of (3). The Coulomb lattice energy is thus automatically taken into 
account to good accuracy. The minimization of the energy functional has now to be 
performed with respect to the neutron, proton, and electron densities, and proceeds as 
previously. Some of the resulting densities as a function of distance from the center of 
the cell are shown in Figure 2. The numbers near the center denote the chemical 
potential of the neutrons (in MeV), which is a monotonically increasing function of 
the overall matter density. The numbers in parentheses denote the radius of the cell 
(in fm) which shrinks with increasing density. Note a decrease of the central densities 
and an increase in the surface diffuseness of the clusters with increasing outside 
neutron density, indicating a gradual dissolution of the clusters. In Figure 3 we show 
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Fig. 2a. Total nucleon density distributions o(r) as a function of radial distance, labelled according 
to the corresponding neutron chemical potential An. Shown in parentheses are the cell radii in fm. 

' ' f -7.60 

r (fm) 
Fig. 2b. Proton density distribution Qp(r). 
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the dependence of Z , A9 and of the density Q on the chemical potential XN of the neu­
trons. The proton number Z of the clusteis first increases from Z ~ 2 9 to a maximum 
of Z ~ 3 5 and then decreases until the clusters gradually evanesce. Our calculations 
have not been carried beyond our last computed point because our approximation of 
spherical symmetry of the cells breaks down. Concurrently with us, Bethe et al. 
(1970) and later Baym et^al (1971) have been finding much larger nuclei ( Z increasing 
to 151). This controversy has very recently been resolved; Ravenhall et al (1972), 
using a one-dimensional (planar) model for the nuclear surface together with the sim-

X n (MeV) 
Fig. 3. Proton number Z, atomic number A of the clusters, and average logio (mass density in 
g cm - 3 ) as a function of the neutron chemical potential An. The dashed line corresponds to the 
homogeneous system, showing that the transition is smooth, which contrasts the 'neutron drip' phase 

transition (An = 0) at 3.7 x 10 1 1 g cm"3. 
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pie Skyrme nucleon-nucleon interaction, also find very small nuclei ( Z ^ 3 8 ) . It is 
gratifying that a Hartree-Fock calculation (cf. paper by Negele in this volume), which 
is much more involved and time-consuming, when averaged over shell effects, gives 
results in good qualitative agreement with our Thomas-Fermi calculation. The small 
quantitative discrepancy can probably be accounted for by the use of a different nucleon-
nucleon force and different nuclear matter results on which both approaches rely. 

At higher densities, the clusters have dissolved and we have a homogeneous system 
of neutrons, protons, and electrons. The various physical quantities, like the energy 
per particle, the chemical potential of the protons, and the average neutron and proton 
densities join smoothly with the corresponding quantities of the homogeneous phase, 
as the calculations by Buchler and Ingber (1971) indicate. Although the exact nature of 
the phase transition is still uncertain, numerically it seems to be very smooth in con­
trast to the 'neutron drip ' transition which occurred at 3.7 x 10 1 1 g c m " 3 (An = 0). In 
addition to the neutrons, protons, and electrons, muons also appear in the system at 
a density of 2.3 x 1 0 1 4 g c m " 3 , i.e., slightly before nuclear matter density (3.4 x 1 0 1 4 g 
c m " 3 ) . The percentage of protons increased from about 2.25% at 1 0 1 4 g c m " 3 to 
5.5% at 4 x 1 0 1 4 g c m " 3 . It should be pointed out that these numbers are very sensitive 
to the symmetry energy of the nuclear matter calculations and the nucleon-nucleon 
potential used in its computation. 

Shell effects have necessarily been ignored in our statistical approach, but it is 
likely that they may produce shifts and jumps in Z. Since a direct confrontation with 
observation is not possible, the final test for the Thomas-Fermi calculation will be a 
good quantum mechanical treatment. However, even a reliable Brueckner-Hartree-
Fock calculation, because of its far greater complexity, is barely feasible at present. 

In summary, the Thomas-Fermi model is capable of reproducing the bulk properties 
of a wide range of nuclei. It has the advantage of being based on realistic nuclear 
matter calculations and, therefore, can easily be kept a jour with improvements in the 
nucleon-nucleon potential. We feel that the reliability of its predictions in r-process 
calculations and in the properties of neutron star matter by far exceeds that of con­
ventional semi-phenomenological liquid-drop formulas. 

This concludes our brief review of the nuclear Thomas-Fermi model and of some 
of its applications of astrophysical interest. 

We wish to thank the authors of Brueckner et al (1972) for letting us report their 
results prior to publication. The support of NSF, NASA and the Luxembourg 
Ministere des Affaires Culturelles is gratefully acknowledged. 
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D I S C U S S I O N 

Bethe: The decision between our theories, in my opinion, has been made by the work reported by 
Dr Negele in the first paper of this conference. At low densities, of order 10 1 2-10 1 3, Z is 40 to 50, closer 
to the original value of Baym, Bethe and Pethick than to yours. At high density, near 101 4, the value 
of Z decreases, as you have predicted, but not as strongly. 

Buchler: I would like to refer back to the graph in Negele's talk which compared the Z values for 
the different approaches. Negele's results, to me at least, seem to be in good qualitative agreement 
with ours. The discrepancy, I believe, could arise from the use of different nuclear matter calculations 
by him and by us; in particular, the arbitrary multiplication factor used by Negele to bring the nuclear 
binding energy in agreement with the currently accepted experimental value. 

Bethe: The work of Negele and Vautherin, published in the Physical Review (C5), has shown that it 
is not sufficient to describe nuclear matter by Q and V2# as you (and earlier Thomas-Fermi theories) 
have done, but that one has to add a third quantity, the kinetic-energy density 

/ = I (V<£FC)2 

k 

which is independent of the first two. They have shown how this follows from a careful consideration 
of the mixed density <?(fi, R 2 ) which is very important for nuclear matter energy. 

Buchler: As far as the second question is concerned, the Thomas-Fermi inhomogeneity correction 
to the kinetic energy, which arises purely from antisymmetrization of the wavefunction, is the well-
known Weizsacker correction 

r ( V E N ) 2 (v^P)2-| _ / * 2 _ ( v ^ 

72 M L Qn QP \~12MQ ' 

It plays essentially the same role as the term you mentioned. Its numerical effect has been found to be 
small and we feel that a 'renormalization' of our parameter n should adequately take care of it. 
We realize that the Thomas-Fermi model is a very simple model and has its limitations, but its very 
simplicity and success make it very attractive. 
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