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UNICITY THEOREMS FOR
MEROMORPHIC OR ENTIRE FUNCTIONS II

HONG-XUN Yi

In 1976, Gross posed the question "can one find two (or possibly even one) finite
sets Sj (j = 1, 2) such that any two entire functions / and g satisfying Ef(Sj) =
Eg(Sj) for j = 1,2 must be identical?", where Ef(Sj) stands for the inverse
image of Sj under / . In this paper, we show that there exists a finite set 5 with
11 elements such that for any two non-constant meromorphic functions / and g
the conditions Ef(S) - Eg(S) and £/({oo}) = Eg{{oo}) imply f = g. As a
special case this also answers the question posed by Gross.

1. INTRODUCTION

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. It is assumed that the reader is familiar with the notation of Nevanlinna
Theory (see, for example, [3]). We use E to denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. For any nonconstant
meromorphic function / , we denote by S(r, / ) any quantity satisfying

S(r, f) = o(T(r, / )) (r - oo, r $ E).

For any set 5 and any meromorphic function / let

Ef(S)=[J{Z\f(z)-a = 0},
oes

where each zero of / — a with multiplicity m is repeated m times in Ef(S).
In 1976, Gross proved [1] that there exist three finite sets Sj (j — 1, 2, 3) such

that any two entire functions / and g satisfying Ef(Sj) = Eg(Sj) for j = 1, 2, 3 must
be identical. In the same paper Gross posed the following question (see [1, Question
6]): Can one find two (or possibly even one) finite sets Sj (j = 1, 2) such that any two
non-constant entire functions / and g satisfying Ef(Sj) = Eg(Sj) for _;' = 1, 2 must
be identical?

The present author proved the following result which is partial answer of the above
question.
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THEOREM A. (see [7, Theorem 3]). Let Si = {w \ wn - 1 = 0}, S2 = {a, b},
where n (> 6) is a positive integer, a and b are constants such that ah ^ 0, an ^ bn,
a2n 7̂  1, b2n ^ 1 and anbn ^ 1. Suppose that f and g are nonconstant entire functions
satisfying Ef(Sj) = Eg(Sj) for j = 1, 2. Then f =g.

For the meromorphic case, the present author proved a corresponding theorem,
which is the generalisation of Theorem A.

THEOREM B. (see [7, Theorem 2]). Let Si and 52 be defined as in Theorem
A, and let S3 — {00}. Suppose that f and g are nonconstant meromorphic functions
satisfying Ef(Sj) - Eg(Sj) for j = 1, 2, 3. Tien f = g.

The set S such that for any two nonconstant entire functions / and g the condition
Ef(S) = Eg(S) implies / = g is called a unique range set (URS in brief) of entire
functions (see [2]). In 1982, Gross and Yang proved the following result.

THEOREM C. (see [2, Theorem 3]). Tie set S = {w \ ew + w = 0} is a VRS of
entire functions.

Note that the set 5 = {w | ew + w = 0} contains an infinite number of elements
and so Theorem C does not answer the question posed by Gross.

In this paper we give a positive answer to Gross' question. In fact, we prove more
generally the following theorem.

THEOREM 1. Let S = {w \ wn + awn~m + 6 = 0}, wiere n and m are two
positive integers such that n and m have no common factors and n ^ 2m + 5, a and
b are two nonzero constants such that the algebric equation wn + awn~m + b = 0 ias
no multiple roots. Then the set S is a URS of entire functions.

By Theorem 1, we immediately obtain the following corollary.

COROLLARY 1. Let S — {w \ w7 +aw6 +b = 0}, wiere a and b are two non-zero
constants such that b ^ —66(a/7) . Tien t ie set S is a URS of entire functions with
7 elements.

For meromorphic functions, we have the following result, which is an extension of
Theorem 1.

THEOREM 2 . Let S = {w \ wn+awn~m+b = 0}, wiere n and rn are two positive
integers such that m ^ 2, n ^ 2m + 7 with n and m having no common factors, a
and b are two nonzero constants such that the algebric equation wn + awn~m + b — 0
ias no multiple roots. Suppose that f and g are nonconstant meromorphic functions
satisfying Ef(S) = Eg{S) and Ef({oo}) = Eg({oo}). Then f = g.

By Theorem 2, we immediately obtain the following corollary.

COROLLARY 2 . Let S — {w \ w11 -\-aw9 +b = 0}, wiere a and b are two non-zero
constants such that b2 ^ —2299(a/ll) . Tien for any two nonconstant meromorphic
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/unctions / and g, the conditions Ef(S) = Eg(S) and JS/({oo}) = Eg({oo}) imply

f=9-

2. SOME LEMMAS

The following lemmas will be needed in the proof of our theorems.

LEMMA 1 . (see [6]). Let f and g be two nonconstant meromorpbic functions,
and let c\ , c2 and C3 be three nonzero constants. If

cif + c2g = c3,

then

T(r, f) < W(r, i ) + N(V, ±\ + N(r, f) + S(r, /).

LEMMA 2 . (see [4]). Let / 1 , f2, ..., fn be hnearly independent meromorphic

functions satisfying
n

£/,=!•
. 7 = 1

Tien for k — 1, 2, . . . , n we have

) N(r> /* )+ N ( r > D ) - E N(r> fi)

(T(r)) (r <£ E),

where D denotes the WronsMan of the functions / 1 , / 2 , . . . , / „ and T(r) denotes the
maximum of T(r, fj),j = l,2,...,n.

LEMMA 3 . (see [5]). Let f be a nonconstant meromorpbic function, and let P(f)
be a polynomial in f of the form

P(f) - 00/" + a i / "" 1 + • • • + an- i / + an,

where OQ (^ 0), OI, . . . , on are constants. Then

T(r, P(f)) = nT(r, f) + 5(r, /).
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3. P R O O F OF THEOREM 2

Let IOI, tO2, • • • j wn be the roots of the equation wn + awn~m + 6 = 0. Since
Ef(S) = Eg(S) and Ef ({oo}) = Eg({oo}), we have from Nevanlinna's second funda-
mental theorem

(n - l)T(r, g)<J2N ('. ~J—) + N(r> 9) + S(r, g)

= E N (r> -r-^r)+ N{r'f) + s(r-9)

Thus

(1) T(r, g) < ̂ \ T ( T , f) + S(r, g).

In the same manner as above, we have

(2) T(r,f)<^T(r,g) + S(r,f).

Again by Ef(S) = Eg(S) and Ef({oo}) = Eg({oo}), we obtain

(3) = e
v ' gn + agn~m + b

where h is an entire function. From Lemma 3, (1) and (3) we have

(4) T(r, eh) ^ T(r, fn + afn~m + b) + T(r, gn + agn~m + b)+ 0(1)

= nT{T,f)+nT(T,g)+S(r,f)

Let us put

(6) h = e\

and let T[r) denote the maximum of T(r, / , ) , j = 1, 2, 3. From (3), (5), (6) and (7),
we obtain

(8) /i+/, + /.=l.
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From (1), (4), (5), (6) and (7) we have

(9) T(r) = O(T(r,f)) (r * E).

Next, we need the following lemma.

LEMMA 4 . fa, fa and fa are linearly dependent.

PROOF: Suppose that fa, fa and fa are linearly independent. Applying Lemma
2 to the functions fj (j = 1, 2, 3), from (8) and (9) we have

(10)

^jv(r, £ ) -N(r, ^ r, fa) ~ N(r, f3)

S(r, /) ,

where

(11)

From (5), (6) and (7) we have

D =
h h h
/{ n n
f" r-i n1

By looking at the zeros of / and g, from (5), (6), (7) and (11) we see that

m)N (r, i ) - 2AT ^ i(13) N (r, ^)>{n- m)N (r, j^j - 2N(T, y ) + (™ -

From (8) and (11) we get

(14) £> =

Since fa is entire, from (7) and (14) we have

(15) N(T, D) - N{r, fa) - N(r, fa) ^ N(r, ft1) - N(r, fa)

= 2N(r, fa) = 2N(r, g) = 2N(r, f).
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From Lemma 3, (5), (10), (12), (13) and (15) we deduce

nT(r, f) < 2

< (4 + m)T(r, /) + (2 + mJTfr, g) + S{r, / ) .

From this and (1) we obtain

(16) nT(r, / ) < (̂ 2m + 6 + ^ ^ ) T(r, / ) + S(r, f).

Since n ^ 2?n + 7, (16) is a contradiction, which proves Lemma 4. D

Next we proceed to prove Theorem 2.
By Lemma 4 we know that f\ , /z and fa are linearly dependent. Then there exist

three constants ci, C2 and C3, at least one of which is not zero, such that

(17) ci/i + c2/2 + c3/s = 0.

If Ci = 0, from (17) we have c2 ^ 0, C3 ^ 0 and

73 = /2-
C3

Hence, from (6) and (7) we obtain

gn + agn-m = -bc2/cs,

which is impossible. Thus C\ ̂  0 and

(is) h = -*-h - -h-
Ci Cj

Now combining (8) and (18) we get

We discuss the following three cases.
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CASE I. Assume cx ^ c2 and ci ^ c3. From (6), (7) and (19) we have

From (20) we know that g is a entire function. By Lemma 1, Lemma 3 and (20) we

obtain

< (1 + m)T(r, g) + S(r, g),

which is impossible.

CASE II. Assume ci = c2. From (19) we have cx ^ c3 and

From (7) and (21) we get

(22) g (g + a) = e .
ci — c3

Let a\, at, . . . , am be the roots of equation wm + a — 0. From (22) we know that 00,
0, Oi, 02, . . . , om are Picard exceptional values of g, which is impossible.

CASE III. Assume ci = c3. From (19) we have ci ^ c2 and

ci - c 2

that is

(23) e" = - ^ — .
ci — c 2

From (5), (7), (8) and (23) we get

(24) _/»-"•(/- + a) + _£!—,—»(fl» + o) =
- C2 C2
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If C2 ^ 0, by Lemma 1 and Lemma 3, we have from (24),

< (2 + m)T(r, / ) + (1 + m)T(r, 5 ) + 5(r, / ) .

From this and (1) we obtain

nT(r, f)<(3 + 2m+ ^L±^TJT(T, /) + S(r, f),

which is impossible. Thus c% = 0. From (24) we deduce

(25) fn~gn = -a(fn-m - gn-m).

H f ^ g, from (25) we obtain

where H = f/g, u = exp((27ri)/n) and t; = exp ((2iri)/(n — m)). From (26) we know
that H is a nonconstant meromorphic function. Since n and m have no common
factors, we have it*' j£ vk (j = 1, 2, . . . , n — 1; k = 1, 2, . . . , n — m — 1). Suppose that
z,- is a zero of if — u3 of order p^-. From (26) we have pj ^ m ^ 2. Thus

By the second fundamental theorem, from (27) we obtain

(n - 3)T(r, H) < Vivfr, -±-j) + S(r,

which is impossible. Hence, f = g.

This completes the proof of Theorem 2.
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4. SUPPLEMENT TO THEOREM 2

It is reasonable to ask: What can be said if TO = 1 in Theorem 2? In this section,
we prove the following theorem, which is a supplement to Theorem 2.

THEOREM 3 . Let S = {w \ wn + aw*1'1 + 6 = 0} , wiere n > 8, and a and b

are two nonzero constants such that the algebraic equation wn + awn~1 + 6 = 0 has

no multiple roots. Suppose that f and g are two distinct nonconstant meromorphic

functions satisfying Ef(S) = E9(S) and £/({oo}) = Ea({oo}). Then

aHlH71-1 - 1) a ^ " " 1 - 1)
f = H ^ l " "* 9 = 2 T - - 1 '

where H is a nonconstant meromorphic function.

PROOF: Proceeding as in the proof of Theorem 2, we have

(28) r-gn = -*(r-1-gn~1)-

Noting / ^ g, from (28) we obtain

(29)

where H = f /g. From (29) we know that IT is a nonconstant meromorphic function.
Thus, from (29) we have

a J ? ^ " - 1 - 1 )
* ^ Hn-1 '

This completes the proof of Theorem 3. D

5. P R O O F OF THEOREM 1

If / ^ g, noting N(r, f) — N(r, g) = 0 and proceeding as in the proof of Theorem
2, we can obtain (26). Since g is a nonconstant entire function, from (26) we know
that u' (j = 1, 2, . . . , n — 1) are Picard exceptional values of H, which is impossible.
Thus f = g, which proves Theorem 1. D
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