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UNICITY THEOREMS FOR
MEROMORPHIC OR ENTIRE FUNCTIONS II

HoNG-XUN Y1

In 1976, Gross posed the question “can one find two (or possibly even one) finite
sets S; (7 = 1, 2) such that any two entire functions f and g satisfying E¢(S;) =
E,(S;) for j = 1,2 must be identical?”, where E;(S;) stands for the inverse
image of S; under f. In this paper, we show that there exists a finite set S with
11 elements such that for any two non-constant meromorphic functions f and g
the conditions Ef(S) = E4(S) and Ej({oo}) = E4({oo}) imply f = g. Asa
special case this also answers the question posed by Gross.

1. INTRODUCTION

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. It is assumed that the reader is familiar with the notation of Nevanlinna
Theory (see, for example, [3]). We use E to denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. For any nonconstant

meromorphic function f, we denote by S(r, f) any quantity satisfying
S(ry f)=0o(T(r, f)) (r > o0, 7 ¢ E).

For any set S and any meromorphic function f let

Ei(S)= |J{z | f(2) —a =0},
a€ES
where each zero of f —a with multiplicity m is repeated m times in E¢(S).

In 1976, Gross proved [1] that there exist three finite sets S; (j =1, 2, 3) such
that any two entire functions f and g satisfying E(S;) = E,4(S;) for j =1, 2, 3 must
be identical. In the same paper Gross posed the following question (see [1, Question
6]): Can one find two (or possibly even one) finite sets S; (j =1, 2) such that any two
non-constant entire functions f and g satisfying E¢(S;) = E4(S;) for 7 = 1, 2 must
be identical?

The present author proved the following result which is partial answer of the above

question.
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THEOREM A. (see |7, Theorem 3]). Let S; = {w | w™ —1 = 0}, S; = {a, b},
where n (> 6) is a positive integer, a and b are constants such that ab # 0, a™ #£ b™,
a®™ # 1, b>™ #1 and a™b™ # 1. Supposethat f and g are nonconstant entire functions
satisfying Ef(S;) = E4(S;) for j=1,2. Then f=g.

For the meromorphic case, the present author proved a corresponding theorem,
which is the generalisation of Theorem A.

THEOREM B. (see [7, Theorem 2|). Let S; and S, be defined as in Theorem
A, and let S5 = {co}. Suppose that f and g are nonconstant meromorphic functions
satisfying E¢(S;) = E4(S;) for j =1,2,3. Then f=g.

The set S such that for any two nonconstant entire functions f and g the condition
E;(S) = E4(S) implies f = g is called a unique range set (URS in brief) of entire
functions (see [2]). In 1982, Gross and Yang proved the following result.

THEOREM C. (see [2, Theorem 3]). The set S = {w | e*” +w =0} is a URS of
entire functions.

Note that the set S = {w | e¥ + w = 0} contains an infinite number of elements
and so Theorem C does not answer the question posed by Gross.

In this paper we give a positive answer to Gross’ question. In fact, we prove more
generally the following theorem.

THEOREM 1. Let S = {w | w® + aw™ ™ + b = 0}, where n and m are two
positive integers such that n and m have no common factors and n 2> 2m + 5, a and
b are two nonzero constants such that the algebric equation w™ + aw™ ™ + b = 0 has
no multiple roots. Then the set S is a URS of entire functions.

By Theorem 1, we immediately obtain the following corollary.

COROLLARY 1. Let S = {w|w"+aw®+b = 0}, where a and b are two non-zero
constants such that b # —6%(a/7)". Then the set § is a URS of entire functions with
7 elements.

For meromorphic functions, we have the following result, which is an extension of
Theorem 1.

THEOREM 2. Let § = {w | w”+aw"™ ™+b = 0}, where n and m are two positive
integers such that m > 2, n 2 2m + 7 with n and m having no common factors, a
and b are two nonzero constants such that the algebric equation w™ + aw™ ™ +b =10
has no multiple roots. Suppose that f and g are nonconstant meromorphic functions
satisfying E;(S) = E4(S) and Ef({oo}) = E4({cc}). Then f =g.

By Theorem 2, we immediately obtain the following corollary.

COROLLARY 2. Let S = {w | w''+aw®+b = 0}, where a and b are two non-zero
constants such that b # —229°(a/11)"'. Then for any two nonconstant meromorphic
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functions f and g, the conditions Ef(S) = E4(S) and Eg({oo}) = Eg({c0}) imply
f=g.

2. SOME LEMMAS

The following lemmas will be needed in the proof of our theorems.

LEMMA 1. (see [6]). Let f and g be two nonconstant meromorphic functions,

and let ¢, c; and c¢3 be three nonzero constants. If

c1f +c2g9 = cs,
then
/1 /1 —
T("'a f)<N(ra ?) +N(ra ;) +N(T’ f)+5(ra f)
LEMMA 2. (see [4]). Let fi, f2, ..., fn be linearly independent meromorphic

functions satisfying

Then for k=1, 2, ..., n we have

T(ry fr) < ZN('I‘, -;—J) + N(r, fx) + N(r, D) —ZN(T, i)

- N(r, %) +o(T(r)) (r¢ E),

where D denotes the Wronskian of the functions fi, f2, ..., fn and T(r) denotes the
maximumof T(r, f;),i=1,2,...,n.

LEMMA 3. (see[5]). Let f be a nonconstant meromorphic function, and let P(f)
be a polynomial in f of the form
P(.f) =a'0.fﬂ.+a'1.fﬂ'—l +---+an-1f+an’

where a9 (#0), a1, ..., an are constants. Then

T(r, P(f)) = nT(r, f) + S(», f).
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3. PROOF OF THEOREM 2

Let w;, ws, ..., w, be the roots of the equation w™ + aw™ ™ + b = 0. Since
Ef(S) = Ey4(S) and Ef({o0}) = E4({oo}), we have from Nevanlinna’s second funda-
mental theorem

n

(n—=1)T(r, g) < ZN(T,

j=1

) 1 N(r, )+ S(r, 9)

g—wj;

= SN (n ) 8 N4 5 )

=1 ]

i
< (n+1)T(r, f) + S(r, g).
Thus
M) T(r, g) < “E2T(r, £) + S(r, 9).
In the same manner as above, we have
n+1
(2) T(T') f) < n——fT(T, g)+S(1‘, f)
Again by E¢(S) = E,(S) and Ef({oo}) = E4({o0}), we obtain

fﬂ+af‘n—m+b_ A

3 =
( ) g"+ag"“'"+b

)

where h is an entire function. From Lemma 3, (1) and (3) we have

(4) T(r, eh) ST(r, ff*+af" ™ +b) +T(r, g™ +ag™ ™ + b) + O(1)
=nT(r, f) +nT(r, g)+ S(r, f)

2n?

< 22 1o, 1)+ 500, 1)
Let us put
(5) fi= =3/ ),
(6) f2 = eha
(7) fo= 30"+ a)eh
and let T'(r) denote the maximum of T(r, f;), 7 =1, 2, 3. From (3), (5), (6) and (7),
we obtain
(8) h+h+fi=1.
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From (1), (4), (5), (6) and (7) we have
(9) T(r) = O(T(r, f)) (r ¢ E).

Next, we need the following lemma.
LEMMA 4. f,, f» and fs are linearly dependent.

PROOF: Suppose that fi, fo and f; are linearly independent. Applying Lemma
2 to the functions f; (j =1, 2, 3), from (8) and (9) we have

(10)
3
T, £1) < Yo N (n £) = N (% 5 ) + N, D) = NCe, 2) = N, f)
j=1
+S(r, f),
where
h f2 fs
(11) D=(fi fi £
{' fél él

From (5), (6) and (7) we have

3 1 1 1
S 8 (ng) = omn (7)o (n )

]
1 1
—m)N{r, =) +N(r, )
*(n=m) (r’g)+ (r 9"‘+a)

By looking at the zeros of f and g, from (5), (6), (7) and (11) we see that

(13) N(r, %) > (n —m)N(r, %) - 2W(r, %) +(n —m)N(r, 5) - 2F(r, ;)

From (8) and (11) we get

2 f3
" (
2 3

(14) D=

Since f, is entire, from (7) and (14) we have

(15) N(r, D) — N(r, f2) — N(r, f3) < N(r, :;I)_N("'v fs)
= QN(T, f3) = 2W(1'1 g)= Z_ﬁ(ra ).
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From Lemma 3, (5), (10), (12), (13) and (15) we deduce
nT(r, f) < 2-1\7(1-, %) +N(r, —_f’"1+ a) + ZW(T, 5)

4N (o) + 2N 1) 4500, )
< (44 m)T(r, f) + (2 +m)T(r, 9) + S(r, )

From this and (1) we obtain

2(2
(16) nT(r, f) < (2m +6+ —(n——-_’__—%n—))T(r, )+ S(x, £).
Since n > 2m + 7, (16) is a contradiction, which proves Lemma 4. a

Next we proceed to prove Theorem 2.
By Lemma 4 we know that fi, f; and f; are linearly dependent. Then there exist
three constants ¢1, c2 and c3, at least one of which is not zero, such that

(17) afi+efr+esfs =0.
If ¢; =0, from (17) we have ¢z # 0, ¢3 # 0 and
fs = —zfz-
Hence, from (6) and (7) we obtain
g" +ag™ ™™ = —bea/cs,

which is impossible. Thus ¢; # 0 and
c
(18) f=-2h~2f
€1 €1

Now combining (8) and (18) we get

We discuss the following three cases.
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CASE 1. Assume c; # ¢; and ¢ # ¢s. From (6), (7) and (19) we have

1 6_3 n—-m¢_m —-h _ 22_
(20) b(l Cl)g (9" +a)+c" =1 o

From (20) we know that g is a entire function. By Lemma 1, Lemma 3 and (20) we

obtain

nT(r, g) < F(r, m> +5(r, 9)

(1) W 2 ) 45600
< (1 +m)T(r, g) + S(r, 9),

which is impossible.

CasE I1. Assume ¢; = ¢;. From (19) we have ¢; # ¢s and

C1
21 = .
(21) frm O
From (7) and (21) we get
b
(22) g (g™ +a) = ———eh,
€1 —C3

Let a3, a3, ..., am be the roots of equation w™ + a = 0. From (22) we know that oo,
0, aj, as, ..., an are Picard exceptional values of g, which is impossible.

CasE III. Assume ¢; = c3. From (19) we have ¢; # ¢, and

fa= €y —C2
that is
(23) eh =2

C) —Ca
From (5), (7), (8) and (23) we get
—my/ em n-my_m b

(24) — (™ b a) g (g™ @) = ———,

€ —C2 €2 — ¢
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If ¢c2 #0, by Lemma 1 and Lemma 3, we have from (24),

10D <N (o ) + V(o gmgr) +FO D+ 50,0

—( 1\ - 1 —( 1
=7 7) ¥ )+ ()

+J_V_(r, . 1 )+W(r,f)+5(r, H

+a

< (24 m)T(r, f) + (1 +m)T(r, g) + S(r, ).

From this and (1) we obtain

2(1 +m)

n—1

nT(r, f) < (3 +2m + )T(r, )+ S(r £,

which is impossible. Thus ¢; = 0. From (24) we deduce
(25) fn. _ gn — _a(f'n.—m _ gn—m).
If f#£g, from (25) we obtain

m _ _G(H —v)(H-—vz) (H—v"_’"-l)
. 7T (H —u)(H—u?)...(H —un-1)

where H = f/g, u = exp((27i)/n) and v = exp ((27i)/(n — m)). From (26) we know
that H is a nonconstant meromorphic function. Since n and m have no common
factors, we have ud #v* (j=1,2,...,n-1;k=1,2,...,n—m —1). Suppose that
z;j is a zero of H — u? of order pj. From (26) we have p; > m > 2. Thus

m

— 1 1 1 1

By the second fundamental theorem, from (27) we obtain

n-1

— 1
(n-—3)T(r, H) < ZIN(T, m) + 5(1‘, H)
J=
< ’—‘;—IT(T, H) + S(r, H),
which is impossible. Hence, f =g.

This completes the proof of Theorem 2. 0
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4. SUPPLEMENT TO THEOREM 2

It is reasonable to ask: What can be said if m =1 in Theorem 2? In this section,
we prove the following theorem, which is a supplement to Theorem 2.

THEOREM 3. Let S = {w | w™ + aw™ ! + b = 0}, where n > 8, and a and b
are two nonzero constants such that the algebraic equation w™ + aw™ ! + b = 0 has

no multiple roots. Suppose that f and g are two distinct nonconstant meromorphic
functions satisfying E¢(S) = E4(S) and E¢({oc}) = Eg({c0}). Then

a.(H"'1 — 1)
Hr -1 °

aH(H™ —1)

d g=-—
H™ —1 and 9

f=

where H is a nonconstant meromorphic function.

PROOF: Proceeding as in the proof of Theorem 2, we have
(28) f'n. _gn — _a(fn—l _ gn—l)'
Noting f # g, from (28) we obtain

3 a(H™1 -1)

(29) g= o1

where H = f/g. From (29) we know that H is a nonconstant meromorphic function.
Thus, from (29) we have

f= oH(H™ ' -1)
-7 Hr -1
This completes the proof of Theorem 3. 0

5. PrRoor OF THEOREM 1

If f #g,noting N(r, f) = N(r, g) = 0 and proceeding as in the proof of Theorem
2, we can obtain (26). Since g is a nonconstant entire function, from (26) we know

that u/ (j =1,2,...,n— 1) are Picard exceptional values of H, which is impossible.
Thus f = g, which proves Theorem 1. 0
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