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Particle segregation in dense flowing size-disperse granular mixtures is driven by gravity
and shear, but predicting the associated segregation force due to both effects has remained
an unresolved challenge. Here, a model of the combined gravity- and kinematics-induced
segregation force on a single intruder particle is integrated with a model of the
concentration dependence of the gravity-induced segregation force. The result is a general
model of the net particle segregation force in flowing size-bidisperse granular mixtures.
Using discrete element method simulations for comparison, the model correctly predicts
the segregation force for a variety of mixture concentrations and flow conditions in both
idealized and natural shear flows.
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1. Introduction

Particle segregation in flowing granular materials has significant implications for flow
mobility, rheology and mixing, a fact reflected in the extensive attention given to
this topic in granular flow mechanics, geophysical flows and chemical engineering
processes (Ottino & Khakhar 2000; Ottino & Lueptow 2008; Frey & Church 2009;
Cúñez, Patel & Glade 2024; Kamrin et al. 2024). Recent advances in continuum
advection–diffusion–segregation models allow successful prediction of segregation in
canonical granular flow configurations (Gray 2018; Umbanhowar, Lueptow & Ottino 2019;
Thornton 2021), although this approach requires building generalized constitutive relations
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for segregation. Nevertheless, the basics are straightforward: segregation in dense granular
flows is driven by gravity and shear (Fan & Hill 2011a; Jing et al. 2021; Liu, Singh &
Henann 2023).

Gravity-induced segregation is generated by percolation of small particles through voids
between large particles (Savage & Lun 1988) and buoyancy effects whereby heavier
particles sink relative to lighter particles (Xiao et al. 2016). Shear-induced segregation
can be driven by enhanced percolation due to kinetic sieving (shear opens voids beneath
small particles), a mechanism whose description draws inspiration from the kinetic theory
of dense gases (Jenkins & Mancini 1987; Savage & Lun 1988; Jenkins & Yoon 2002;
Larcher & Jenkins 2015; Berzi, Jenkins & Richard 2020), as well as migration of particles
along shear gradients (Fan & Hill 2011a). These mechanisms can cooperate or compete
depending on the forces driving the flow, leading to complex and sometimes seemingly
contradictory phenomena (Guillard, Forterre & Pouliquen 2016; Jing et al. 2021). For
example, while large particles typically rise to the top of gravity-driven free-surface
granular flows (Staron & Phillips 2014), there are also conditions for which large particles
instead sink to the bottom of the flow (Thomas 2000; Félix & Thomas 2004) or migrate
to high-shear-rate regions (Fan & Hill 2011a). There can be a benefit to these effects:
size segregation and density segregation can be used strategically to offset one another to
avoid segregation altogether (Alonso, Satoh & Miyanami 1991; Duan et al. 2021, 2023).
Although these strategies and observations have advanced our knowledge, much remains
to be understood about segregation in granular flows, particularly with regard to the driving
forces at the particle scale.

Recent detailed characterization of the driving and resisting forces of segregation on
individual particles or collections of particles in granular flows has informed an emerging
bottom-up framework for segregation flux modelling (Rousseau et al. 2021; Tripathi et al.
2021; Duan et al. 2022; Sahu et al. 2023; Yennemadi & Khakhar 2023). The essential
idea is to first ascertain the segregation driving force, Fseg, and the resistive drag force,
Fdrag, at the particle level (Guillard et al. 2016; van der Vaart et al. 2018; Jing et al. 2020,
2021, 2022; Liu & Müller 2021) and then derive the stress gradients between particle
species at the continuum level based on homogenization (Rousseau et al. 2021; Duan et al.
2022). This approach can form the basis for further derivations of the segregation flux
in a mixture theory framework (Gray & Thornton 2005; Rousseau et al. 2021). In this
process, the key step is determining the functional forms of Fseg and Fdrag, as discussed
extensively in recent literature. Briefly, at the single-intruder limit, Fseg consists of a
gravity-induced, buoyancy-like term and a shear-gradient-induced term (Guillard et al.
2016; van der Vaart et al. 2018; Jing et al. 2021; Liu & Müller 2021), whereas Fdrag can be
characterized by a Stokes-like drag (Tripathi & Khakhar 2011; Jing et al. 2022). However,
a complete description of how Fseg and Fdrag depend on particle concentration remains to
be developed (Bancroft & Johnson 2021; Duan et al. 2022). Here we focus on Fseg and
its dependence on particle concentration in flows where both buoyancy and shear-gradient
effects may be present.

The segregation force is defined as the net force on a particle in the segregation
direction resulting from interactions with other flowing particles, which, when combined
with other forces acting on the particle (such as its weight), drives segregation (Guillard
et al. 2016; Jing et al. 2021). Despite its simple definition, measuring Fseg directly is
challenging in physical experiments due to the small magnitude of Fseg relative to the
force fluctuations in rapidly flowing granular materials. Alternatively, although discrete
element method (DEM) or other particle dynamics simulation methods can provide
detailed force information on any particle in a granular mixture, direct calculation of
the net contact force on freely segregating particles fails to accurately characterize Fseg
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because a quasi-equilibrium state often occurs in which the measured net contact force
(i.e. a combination of segregation and drag forces) is balanced by the particle weight.
Furthermore, it is difficult to differentiate between segregation forces and drag forces at
the particle level. For example, Staron (2018) examined two-dimensional simulations with
both single free intruders and bidisperse granular mixtures. In both cases, the ‘lift force’
acting on the larger grains is not measurable because the mean vertical force exerted on the
larger grains exactly balances their weight and is the sum of both the segregation force and
the drag force, which cannot be split a priori. Similarly, Tunuguntla, Weinhart & Thornton
(2016) computed the species-specific contact stresses for bidisperse mixtures in inclined
chute flow and found that the gradient of the species-specific contact stress is effectively
balanced by the gravitational force such that no measurable momentum exchange between
the two species can be found for a freely segregating mixture.

To solve this problem, a ‘virtual force meter’ was proposed by Guillard et al. (2016)
and rapidly adapted to a variety of flows (Guillard et al. 2016; van der Vaart et al. 2018;
Jing et al. 2020, 2021; Liu & Müller 2021). This approach uses DEM simulations to
consider the single-intruder limit (i.e. where the volume concentration of species i in a
bidisperse granular mixture approaches zero, ci → 0) in a ‘bed’ of flowing particles, which
are typically smaller than the intruder. The single spherical intruder particle is attached
to a virtual spring that acts only in the segregation direction, typically the z direction,
which is perpendicular to the flow in the x direction. The spring constrains the intruder
to remain at an average equilibrium z position, but does not restrict its other degrees of
freedom. Most importantly, the mean spring extension provides the spring force from
which the segregation force Fseg for a given set of simulation conditions can be found
after accounting for the particle weight (or other forces).

Using the virtual spring approach, we developed a model (Jing et al. 2021) for Fseg on a
single intruder particle of species i, denoted Fi,0 ≡ Fseg|ci→0, which has been validated in
various free-surface and wall-confined granular flows at steady state where the acceleration
term is negligible and the flow is assumed incompressible. This single-intruder segregation
force model has two terms, one related to gravity and the other related to flow kinematics:

Fi,0 = −f g(R)
∂p
∂z

Vi + f k(R)
p
γ̇

∂γ̇

∂z
Vi, (1.1)

where superscripts g and k indicate gravity- and kinematics-related mechanisms,
respectively, the dimensionless functions f g(R) and f k(R) depend on the intruder-to-bed-
particle size ratio R (expressions are provided later in equation (3.1)), Vi is the intruder
volume, p is the pressure, γ̇ is the local shear rate and ρ is the density of both the intruder
and the bed particles. Here, ‘pressure’ and vertical ‘normal stress’ are interchangeable
(p ≡ σzz) under the assumptions that granular flows at steady state are incompressible
and the deviatoric stress aligns with the strain rate tensor (Kim & Kamrin 2023). In
dimensionless form, (1.1) can be expressed as

F̂i,0 = F̂g
i,0 + F̂k

i,0, (1.2a)

where the hat diacritic ( ˆ ) denotes dimensionless forces scaled for reference by particle
weight, mig0, in Earth gravity, g0 = 9.81 m s−2. Accordingly, the normalized gravity- and
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kinematics-induced segregation forces on a lone intruder particle are

F̂g
i,0 = −f g(R)

∂p
∂z

1
ρg0

, (1.2b)

F̂k
i,0 = f k(R)

∂γ̇

∂z
p

γ̇ρg0
. (1.2c)

Note that although here we use g0 for normalization, our models work for arbitrary
values of gravitational acceleration (including g = 0) as shown previously (Jing et al.
2020, 2021). The intruder segregation force model (1.2) is a semi-empirical fit to the
simulation data, with the first term solely associated with gravity and the second term
dependent on the bulk shear rate and its gradient. The shear-rate-gradient term F̂k

i,0 has a
singularity in the shear rate at γ̇ = 0. This singularity also exists in the viscosity defined
at the continuum level and represented as η = τ/γ̇ , where τ is the shear stress. However,
when incorporating this segregation force model (1.2) into the force/momentum balance
along with interspecies drag, the singularities are eliminated as γ̇ → 0, since F̂k

i,0 and
drag dominate, and both scale as 1/γ̇ . We have previously shown (Jing et al. 2021) that
if a local rheology is assumed, (1.2a) is equivalent to an earlier model of similar form in
which the shear stress gradient is used instead of the shear rate gradient (Guillard et al.
2016). Although other intruder segregation force models exist, including ones related to
Saffman lift (van der Vaart et al. 2018), kinetic theory (Liu & Müller 2021) and granular
temperature gradients (Fan & Hill 2011b; Hill & Tan 2014), (1.2) is the only model to
be thoroughly validated over a range of three-dimensional flow configurations including
confined wall-driven flows and free-surface gravity-driven flows. While the kinetic theory
of granular flow (Jenkins & Mancini 1987) offers insights into the relationship between
the granular temperature and the segregation force, it is difficult to use as a first-principles
approach to modelling the segregation force in the dense flow regime.

The single-intruder limit for the segregation force, Fi,0 = Fseg|ci→0, is now relatively
well studied, but Fi = Fseg|ci∈(0,1) on a single particle in a mixture of particles with
an arbitrary value of ci between 0 and 1 is much less understood, although linear and
quadratic dependencies of Fi on ci have been previously assumed (Rousseau et al.
2021; Tripathi et al. 2021). To explore the segregation force at finite concentrations, we
extended the virtual spring approach for a single intruder particle (Guillard et al. 2016)
to size-bidisperse mixtures of arbitrary species concentration (Duan et al. 2022) in order
to characterize the dependence of the gravity-induced portion of the segregation force,
Fg

i , on ci in a controlled horizontal uniform-shear flow (i.e. ∂γ̇ /∂z = 0). An example of
the concentration dependence of Fg

i at large-to-small particle size ratio R = dl/ds = 2
is shown in figure 1 for a DEM simulation of plane shear flow (as described in § 2).
Consistent with previous results (Duan et al. 2022), data points for F̂g

i = Fg
i,0/mig0

approach the single-intruder limit, F̂g
i,0, as ci → 0. For large particles, F̂g

l,0 > 1 as ci → 0,
indicating that the upward segregation force exceeds the particle weight, resulting in a
tendency for a large particle to rise; for small particles, F̂g

s,0 < 1 as ci → 0, indicating that
the upward segregation force is less than the particle weight, resulting in a tendency for a
small particle to sink. At ci = 1, F̂g

i,0 = 1 for both large and small particles, indicating that
the segregation force equals the particle weight such that no segregation occurs as required
for the monodisperse case.

A semi-empirical model (Duan et al. 2022) can be used to express the
concentration-dependent gravity-induced segregation force on particles of species i, Fg

i ,

in terms of the gravity-induced segregation force on a single intruder particle, Fg
i,0, and
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0.5

ci

0

1F̂i
g

2

1.0

Small

Large

Figure 1. Example of gravity-induced segregation force scaled by particle weight F̂g
i = Fg

i /mig0 versus
species concentration ci for large and small particles with size ratio R = dl/ds = 2 in uniform shear flow
(F̂k

i = 0) with γ̇ = 100 s−1. Error bars show the standard deviation of depth-averaged F̂g
i from DEM

simulations (Duan et al. 2022). Filled circles at ci = 0 and curves are predictions of intruder force model
(1.2b) and mixture force model (1.3), respectively.

the small and large particles concentrations, cs and cl, respectively, such that for a large
particle

F̂g
l = 1 + (F̂g

l,0 − 1) tanh

(
1 − F̂g

s,0

F̂g
l,0 − 1

cs

cl

)
, (1.3a)

where F̂g
l,0 and F̂g

s,0 are the gravity-induced dimensionless segregation forces on a small or
large intruder particle, respectively, and cs + cl = 1. The analogous equation for a small
particle is

F̂g
s = 1 − (F̂g

l,0 − 1)
cl

cs
tanh

(
1 − F̂g

s,0

F̂g
l,0 − 1

cs

cl

)
. (1.3b)

Equation (1.3) fits the data in figure 1 quite well. The empirically determined (1.3)
saturates at the extremes of the domain, as is the case here where F̂g

i approaches the
single-intruder limit as ci → 0 and approaches the monodisperse limit of 1 as ci → 1.
Note that the asymmetry between segregation forces for large and small particles leads to
different expressions for the two species. Furthermore, the two equations in (1.3) depend
only on the segregation force on small and large intruder particles, F̂g

s,0 and F̂g
l,0, and the

concentration of small and large particles, cs and cl. No knowledge of the segregation
force for 0 < ci ≤ 1 is needed. Moreover, the hyperbolic tangent dependence of the
large particle segregation force (1.3a) satisfies the theoretical constraints, namely that
limcl→0 tanh (cs/cl) = 1 and limcl→1 tanh (cs/cl) = 0 such that F̂g

l = F̂g
l,0 at cl = 0 and

F̂g
l = 1 at cl = 1. Likewise for a small particle, (1.3b) satisfies F̂g

s = F̂g
s,0 at cs = 0 (since

tanh(A) ≈ A for A → 0) and F̂g
s = 1 at cs = 1. These equations also meet the requirement

that the total segregation force across both species for the entire system sums to the total
particle weight under the assumption of negligible acceleration, which can be expressed
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as (Duan et al. 2022)

clF̂
g
l + csF̂g

s = 1. (1.4)

With the concentration-dependent expression for the gravity-driven segregation force
(1.3) specified, the challenge at this point, and the focus of this paper, is extending the
finite concentration framework to include the single-intruder limit kinematics-related term
in (1.2c). To this end, we build upon the models portrayed in (1.2) and (1.3) to extend
this approach to the total segregation force, Fi, on a particle due to both gravity-induced
and kinematics-induced effects for arbitrary concentration size-bidisperse mixtures. We
then validate the predictions of the full model with comparisons with DEM results from
a variety of canonical granular flows. The ultimate goal is a segregation force model
encompassing the full range of flow and particle conditions that can be broadly applied
to a wide variety of situations.

2. Method

An in-house DEM code running on CUDA-enabled NVIDIA GPUs simulates
size-bidisperse particle mixtures with species-specific volume concentration ci, diameter
di and density ρi = 1 g cm−3 (i = l, s for large or small particles, respectively). Mixtures
are sheared in the streamwise (x) direction. Boundary conditions are periodic in x and y
with length L = 35dl and width W = 10dl, respectively. The height is H = 25dl to 50dl
(varied as needed) in the z direction, which is normal to the flow direction. Gravity may
be aligned with the z direction, as shown in figure 2, at an angle θ with respect to z for
inclined chute flow, or parallel to the flow aligned with x for vertical chute flow. In some
cases, gravity is set to zero. The standard linear spring–dashpot model (Cundall & Strack
1979) is used to resolve particle–particle and particle–wall contacts of spherical particles
using a friction coefficient of μ = 0.5, a restitution coefficient of 0.9 and a binary collision
time of 0.15 ms. We have confirmed that our results are relatively insensitive to these
values except for very low friction coefficients (μ � 0.2) (Duan et al. 2020; Jing et al.
2020), where a decreasing friction coefficient reduces size-induced segregation fluxes
(Jing, Kwok & Leung 2017). Here, we focus on cases where segregation flux is nearly
independent of μ for μ � 0.3 (Duan et al. 2020), noting that friction coefficients reported
in the literature for granular flow simulations typically fall between 0.3 and 0.6 (Girolami
et al. 2012). Large (dl = 4 mm) and small (ds varied to adjust the size ratio, R = dl/ds)
particle species have a ±10 % uniform size distribution to minimize layering (Staron &
Phillips 2014) (increasing the size variation to ±20 % does not alter the results). From
26 000 to 150 000 particles are included in each simulation depending on the value of R.
The local inertial number, I, ranges from 0 to 0.4 away from boundaries depending on
the flow conditions. While certain flows may exhibit a quasi-static regime (I < 10−3), our
modelling approach is intended for application in the inertial regime.

The modified virtual spring approach used to measure Fi in finite concentration uniform
shear flows (Duan et al. 2022) must be further modified for flows with shear rate gradients
since, as (1.2c) indicates, the kinematic term can be depth dependent through the pressure
(depending on g), the shear rate gradient, or both. For the method used previously to
measure Fi (Duan et al. 2022) in uniform shear flow, a spring-like vertical restoring force
proportional to the relative displacement of the vertical centres of mass of the two initially
mixed species is applied uniformly to all particles of each species at each simulation time
step. From this restoring force, the average value of Fi for each species is determined based
on the average vertical displacement and the applied spring constant. Not only does this
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P0

g
u(z)

U = u(H )

Fi

z4

z3 z2z1

z̄i = Σzi/Ni

Fres,i = –k(z̄i – z̄j)/Ni
mig

y

x

z

Figure 2. Large (4 mm, blue) and small (2 mm, red) particles (cl = cs = 0.5) in a generic shear flow
partitioned into 2.5dl-thick layers (shading). Within each layer, a vertical spring-like restoring force
measurement approach quantifies the average local segregation force across all particles of a particular species
(small or large) in that layer.

allow the measurement of Fi, but it also simultaneously suppresses segregation throughout
the flow domain, which otherwise would change the local species concentration.

In the variation of this approach used here for depth-varying segregation forces, the flow
domain is partitioned into layers normal to the segregation direction that are 2.5dl (1 cm)
thick (alternating shaded and unshaded regions in the H = 25dl-deep bed in figure 2).
Particles are labelled according to the vertical layer in which they are initially located and
then remain part of that layer’s group regardless of their subsequent vertical displacement.
At each time step a layer-specific vertical restoring force is uniformly applied to each
particle of species i associated with the layer, Fres,i = −k(z̄i − z̄j)/Ni, where the centre
of mass of species i is z̄i = ∑Ni

p∈i zp/N, subscript j indicates the other species and Ni and
N are the number of particles of species i and the total number of particles associated
with the layer, respectively. In each layer, the applied vertical restoring forces balance,
i.e. Fres,iNi + Fres,jNj = 0, and the bulk flow behaviour (e.g. shear flow, bulk pressure)
is unaltered. The spring constant is typically k = 100 N m−1, although results are not
sensitive to k (Jing et al. 2021; Duan et al. 2022). As shown in the free body diagram
for a large particle in the lower right of figure 2, the segregation force, Fi, is determined
from the magnitude of the restoring force after accounting for the weight of the particle
due to gravity, g0, or the component of gravity in the z direction, gz = g0 cos θ . Individual
particles otherwise move freely in the streamwise and spanwise directions.

The advantages of the restoring force measurement approach lie in its ability to
suppress overall particle segregation and characterize depth-varying segregation forces
while simultaneously allowing individual particles to move freely. The effectiveness of
the restoring force in suppressing segregation is demonstrated in a previous study (Duan
et al. 2022), where segregation results for uniform shear flows are compared at different
times in scenarios with and without the added restoring force. The restoring force approach
is further validated by converting the measured segregation force into a constant additional
body force equivalent to a fixed density difference between species. The absence of
segregation observed under these conditions confirms that the segregation force measured
using the restoring force approach is indeed representative of the segregation force in the
absence of virtual springs.
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Controlled f low

z y

x

Natural f low

P0P0

U

U U

UUU

u(z)

g0 g = 0 g = 0
g = 0g0

g0 g0
g0

θ

U

P0P0

(e) (g) (h)(b)(a) (c) (d ) ( f )

Figure 3. Schematics of flow configurations studied here (streamwise length shown is one-fifth the simulated
length) with periodic streamwise (x) and spanwise ( y) boundaries and vertical wall boundaries as indicated (no
friction/rough, fixed vertical position/pressure P0, streamwise stationary/moving). Controlled shear flows with
prescribed (a) linear velocity profile with gravity; (b) exponential velocity profile without gravity; (c) parabolic
velocity profile without gravity; and (d) exponential velocity profile with gravity. Natural flows: (e) wall-driven
without gravity; ( f ) wall-driven with gravity; (g) vertical chute with gravity; and (h) inclined chute with gravity.
Walls with hash marks do not move vertically.

For all simulation conditions, collisional diffusion results in some particles dispersing
outside their initial layer, which may corrupt the segregation force measurement when
the segregation force varies with depth. Additionally, species-dependent differences in
diffusion rates can potentially affect the force balance measurement approach for particles
close to boundaries. Consider, for example, a uniform flow with ∂p/∂z = 0 and ∂γ̇ /∂z = 0
such that there are no segregation forces. If large particles assigned to a wall-adjacent
layer diffuse away from the wall more rapidly than small particles in the same layer, the
resulting increase in the centre of mass position difference between the two species will
produce an associated restoring force. To quantify the potential effects of diffusion on
the measured segregation forces, results for particles assigned to layers based on their
initial vertical positions are compared with results where the layer assignment occurs
at the start of the measurement averaging interval, which varies from 3 to 30 s after
shear onset for the various flow conditions. The latter approach ensures that diffusion
over a relatively short averaging interval (2 s) is insignificant. The overall differences in
these two approaches are less than 5 % in all cases, indicating that particle diffusion has
minimal impact on the restoring force measurement approach even near the boundaries.
Nevertheless, to minimize the potential effects of diffusion on force measurement, we
initially assign particles to the vertical layers at shear onset to prevent segregation and
then reassign particles to their current layers at the start of the measurement averaging
interval.

The force measurement approach illustrated in figure 2 is applied to a variety of flow
configurations, including controlled shear flows and natural uncontrolled flows, each of
which is shown schematically in figure 3. For the controlled shear flows (figure 3a–d), a
stabilizing algorithm (explained below) enforces a prescribed velocity profile between the
two geometrically smooth, frictionless horizontal walls. By imposing a specific velocity
profile, we control the shear rate and shear rate gradient, which, according to (1.2c), play
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direct roles in determining F̂i,0. The presence of gravity, figure 3(a,d), results in a pressure
gradient in z, which also influences F̂i,0 by virtue of both (1.2b) and (1.2c).

Three controlled-velocity profiles are investigated: u = Uz/H (linear), U ek(z/H−1)

(exponential) and 4U(z/H − z2/H2) (parabolic). The linear velocity profile corresponds
to ideal uniform shear flow driven by a moving wall (figure 3a). A confining overburden
pressure, P0, is applied to the upper wall, which is free to move vertically, and g is in
the z direction. This flow configuration matches the flow field that provided the basis for
the dependence of the gravity-induced segregation force on the mixture concentration,
(1.3), and there is no kinematics-induced segregation, since ∂γ̇ /∂z = 0. The exponential
velocity profile is an idealization of free-surface flow down a heap (Fan et al. 2013),
except with an upper bounding wall and without gravity (figure 3b) in order to focus
on kinematics-induced segregation. Likewise, the parabolic velocity profile (figure 3c),
which is an idealization of vertical chute flow, has only kinematics-induced segregation.
Since gravity does not contribute to the segregation force in a vertical chute, we set g = 0
so the segregation force is a consequence of only the imposed parabolic velocity. We
also consider a second version of an exponential velocity profile, except with a confining
pressure, P0, and a gravitational field in z (figure 3d) to examine combined gravity-induced
and kinematics-induced segregation.

In controlled shear flows (figure 3a–d), a specified velocity profile, u(z), is achieved
by applying a small streamwise stabilizing force kv[u(z) − up(zp)] to each particle at
each DEM simulation time step to maintain the desired velocity profile, where up and
zp are the instantaneous particle velocity and position, respectively, and kv is a gain
parameter (Lerner, Düring & Wyart 2012; Clark et al. 2018; Fry et al. 2018; Jing et al.
2020, 2021, 2022). For the two controlled-pressure cases with gravity-induced pressure
gradients, figure 3(a,d), and based on a recent analysis (Jing et al. 2022), we vary kv from
0.01 kg s−1 at the top of the bed to 0.03 kg s−1 at the bottom to account for the gravitational
pressure gradient while avoiding altering the granular flow rheology and ensuring the
desired velocity profile. For the two fixed-volume cases with g = 0 and uniform pressure
(figure 3b,c), the velocity profile is enforced with a constant kv = 0.02 kg s−1, no
overburden pressure is applied and the distance between the two walls, H, is fixed. Varying
kv between 0.0001 and 0.1 indicates that kv ≥ 0.01 kg s−1 is necessary to maintain the
imposed velocity profile. Although the walls do not drive the flow, the upper wall moves
with velocity u(H) = U for cases in figure 3(a,b,d) and the lower wall is fixed, u(0) = 0.
Note that in the cases with exponential velocity profiles, figure 3(b,d), the imposed velocity
u does not go to zero at the lower wall, i.e. u(z = 0) ≈ 0.1U /= 0. Because the imposed
velocity is relatively small near the lower wall and the wall is frictionless and smooth, the
finite wall slip does not affect the results.

To confirm that the imposed velocity fields do not unnaturally alter the results, we
also consider four cases where the velocity field is not directly controlled, as shown in
figure 3(e–h). The flow kinematics of these uncontrolled ‘natural flows’ are driven entirely
by the combined effects of gravity and boundary conditions. The walls are rough in all
cases, formed from a 2.5dl-thick layer of bonded large and small particles that move
collectively. For the wall-driven flows, figure 3(e, f ), an overburden pressure P0 is imposed
on the upper wall, which is otherwise free to move vertically, and which fluctuates by no
more than ±0.05 % after an initial rapid dilatation of the particles at flow onset. Gravity
results in a pressure gradient in z for the case in figure 3( f ). In both cases, the upper
wall moves at velocity u(H) = U in the x direction and the lower wall at u(0) = −U in
the −x direction. With gravity, figure 3( f ), the flow velocity changes rapidly with depth
near the upper wall and slowly with depth near the bottom wall, while without gravity,
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figure 3(e), the velocity profile varies linearly with depth as expected. Both cases show
little to no slip at either wall. The vertical chute flow, shown in figure 3(g), is driven
by gravity aligned parallel to the rough bounding walls, resulting in a generally uniform
velocity at the centre of the channel that goes to zero at the walls. In this case, there is no
pressure gradient in z to drive segregation, so any segregation in z is driven by shear alone.
Finally, the inclined chute flow has no upper wall (free boundary) so that particles flow due
to a streamwise component of gravity, as shown in figure 3(h). Here the pressure gradient
in the segregation direction is g0 cos θ , where θ is the inclination angle of the base (lower
wall) relative to g.

3. Segregation force model

To predict the segregation force Fi at arbitrary non-zero concentrations, it is useful to know
the segregation force at zero concentration, Fi,0. The challenge in predicting Fi,0 resides
in the dependence of f g and f k on the intruder-to-bed particle size ratio R in the intruder
force model (1.2). Jing et al. (2021) provide empirical fits of f g and f k that are derived
from numerous controlled-shear-flow DEM simulations:

f g(R) =
[

1 − cg
1 exp

(
− R

Rg
1

)][
1 + cg

2 exp
(

− R
Rg

2

)]
, (3.1a)

f k(R) = f k
∞

[
tanh

(
R − 1

Rk
1

)][
1 + ck

2 exp
(

− R

Rk
2

)]
, (3.1b)

where Rg
1 = 0.92, Rg

2 = 2.94, cg
1 = 1.43, cg

2 = 3.55, f k∞ = 0.19, Rk
1 = 0.59, Rk

2 = 5.48 and
ck

2 = 3.63 are fitting parameters for a variety of flow conditions. Note that f k and f g do
not depend systematically on I in the dense granular flow regime (Jing et al. 2021). In
applying these functions over a range of concentrations, we need to consider both large
and small particles as the intruder in the corresponding intruder-to-bed particle size ratios
of dl/ds and ds/dl. Here we restrict our attention to size ratios of 1.5, 2, and 3 ( f g = 2.254
and f k = 0.493 for R = 1.5, and f g = 1.176 and f k = −0.410 for R = 1/1.5; f g = 2.343
and f k = 0.625 for R = 2, and f g = 0.677 and f k = −0.565 for R = 1/2; f g = 2.154 and
f k = 0.588 for R = 3, and f g = 0.019 and f k = −0.680 for R = 1/3).

Since (1.3) was developed for situations where gravity is normal to the flow direction
(gz = g0), the inclined chute configuration studied here makes it necessary to account for
gravity acting at an angle θ with respect to z. Replacing g0 with gz = g0 cos θ , (1.3) are
rewritten as

F̂g
l = cos θ + (F̂g

l,0 − cos θ)tanh

(
cos θ − F̂g

s,0

F̂g
l,0 − cos θ

cs

cl

)
, (3.2a)

F̂g
s = cos θ − (F̂g

l,0 − cos θ)
cl

cs
tanh

(
cos θ − F̂g

s,0

F̂g
l,0 − cos θ

cs

cl

)
. (3.2b)

Here, we propose and then confirm that the total segregation force at an arbitrary mixture
concentration and including both the gravity-induced term and the kinematics-induced
term can be represented in terms of the same hyperbolic tangent relationship.
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Replacing F̂g
i with F̂i = F̂g

i + F̂k
i in (3.2a) and (3.2b) yields

F̂l = cos θ + (F̂l,0 − cos θ) tanh

(
cos θ − F̂s,0

F̂l,0 − cos θ

cs

cl

)
(3.3a)

and

F̂s = cos θ − (F̂l,0 − cos θ)
cl

cs
tanh

(
cos θ − F̂s,0

F̂l,0 − cos θ

cs

cl

)
. (3.3b)

Analogous to (1.4), the total concentration-weighted segregation force across both species
sums to the total particle weight in the segregation direction, which can be expressed as

clF̂l + csF̂s = cos θ. (3.4)

Thus, the complete model for the concentration-dependent particle segregation force in
flows of size-bidisperse mixtures with pressure and shear rate gradients is specified by
(1.2), (3.1) and (3.3).

Finally, we remark that the segregation force can be recast as a species-specific partial
pressure (normal stress) within a continuum model framework (Duan et al. 2022):

∂pi

∂z
= −niFi = −ρφg0ciF̂i, (3.5)

where ni is the number density of species i and φ is the solid volume fraction. For uniform
shear flow with constant segregation force, (3.5) can be written as pi = ciF̂ip, where
p is the bulk pressure. Details of the derivation from the full momentum balance are
provided in the supplementary material. Note that the segregation force is independent
of other terms in the momentum balance, such as interspecies drag or forces related to
diffusion/remixing.

4. Results

4.1. Controlled shear flows
To test the concentration-dependent particle-level segregation force model described
above, i.e. (1.2), (3.1) and (3.3), we first examine the controlled shear flows illustrated in
figure 3(a–d), as these artificial velocity profiles allow us to consider the gravity-induced
and kinematics-induced contributions both separately and in combination. We can
then evaluate the accuracy of the mixture segregation force model predictions derived
from (3.3a) and (3.3b) by comparing them with DEM measurements in various flow
configurations. For the controlled shear flows we use two size ratios, R = 2 and R = 3,
and an equal volume mixture of large and small particles (cl = cs = 0.5), although other
species volume concentrations are considered in § 4.2.

Flow field details of the four controlled shear flows are shown in figure 4 for R = 2.
Results are similar for R = 3 (see supplementary material). The imposed and measured
streamwise velocity profiles are shown in figure 4(a). The effectiveness of the control
scheme for the velocity is evident in the close match between the DEM data points and the
curves representing the target velocity profile. Figure 4(b,c) shows the dimensionless shear
rate and shear rate gradient, both of which contribute to the kinematics-induced portion of
the segregation force in (1.2b). The DEM results (data points), based on finite differences
for the z gradients (central difference for the interior data points and single-sided difference
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Figure 4. Scaled flow field profiles for controlled shear flows with different velocity profiles and R = 2.
Here dl = 4 mm, ds = 2 mm, ρl = ρs = 1 g cm−3, H ≈ 0.2 m = 50dl and U = 20 m s−1. Gravity g = g0 =
9.81 m s−2 in the negative z direction for columns (i) and (iv), and g = 0 in columns (ii) and (iii). Values for
P0 are P0 = 0.5ρφg0H for the applied overburden pressure (columns (i) and (iv)), P0 = 0.61ρφg0H for the
exponential profile (column (ii)) and P0 = 0.73ρφg0H for the parabolic profile (column (iii)). In (e), cl is in
colour and φ is black.
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for the edge data points), match the curves from the derivatives of the imposed velocity
profiles except near the walls (z/H = 0 and z/H = 1). In the near-wall region, the DEM
results deviate slightly from the imposed velocity profile, barely evident in figure 4(a), but
amplified by the higher derivatives associated with the shear rate and shear rate gradient in
figure 4(b,c). The velocity profiles in figure 4(a) are chosen so that the shear rate gradients
are zero in one case (linear, column (i)) and non-zero in the other cases. The exponential
velocity profile (columns (ii) and (iv)) has a non-zero shear rate and shear rate gradient,
and both are nonlinear. For the imposed parabolic velocity profile (column (iii)), the shear
rate and shear rate gradient measured from DEM simulations match the targeted linearly
varying and constant value, respectively, only in the middle two-thirds of the channel, and
their magnitudes are much larger than the other cases.

The flows in figure 4 also differ in their pressure fields, shown in figure 4(d). It
is important to note that the pressure gradient not only plays the primary role in the
gravity-induced term of the intruder segregation force, (1.2b), but also influences the
kinematics-induced term, (1.2c). The theoretical lithostatic pressure (solid line) is p =
P0 + ρφg0(H − z), where the solid volume fraction is assumed to be a constant φ =
0.55, and the applied overburden pressure is half of the maximum lithostatic pressure,
P0 = 0.5ρφg0H. The measured DEM pressures (data points), including both the dynamic,
which is negligible, and the static components (Luding 2008), match the expected values.
For the linear and exponential velocity profiles (columns (i) and (iv)), gravity is imposed
perpendicular to the flow direction. As a result, the pressure increases linearly with depth
from the imposed overburden pressure, P0, applied at the top wall, to 3P0 at the bottom
wall due to the added weight of the flowing particles (figure 4d(i),(iv)). The resulting
pressure gradient, ∂p/∂z, is constant due to the linear pressure increase with depth.
For the two other cases (columns (ii) and (iii)), g = 0 and the flow volume is constant
because the walls are constrained to be H = 0.2 m apart. Consequently, the resulting
pressures are constant (see caption) and the pressure gradients in the z direction are zero
(figure 4d(ii),(iii)). Although g = 0 in these two cases, P0 is expressed relative to Earth’s
gravity, g0 = 9.81 m s−2, to allow comparison with the g /= 0 cases and to provide physical
context.

Figure 4(e) shows the concentration profile of large particles, cl (colour), and the solid
volume fraction profile, φ (black). In all cases, cl = 0.5 (vertical coloured line) within
the uncertainty except near the walls, where size exclusion effects become significant.
The concentration is nearly constant because segregation is suppressed by the restoring
force, as described earlier in the context of figure 2. The solid volume fraction shows only
minimal variation with depth, and remains near φ = 0.55 (vertical black line) in all cases,
which is typical for these flow conditions (Jing et al. 2020).

With the various flow fields characterized, the intruder segregation force, F̂i,0, can
be determined and incorporated into the concentration-dependent form for the local
segregation force on a particle, F̂i. Specifically, F̂i is calculated from the corresponding
local values of γ̇ , ∂γ̇ /∂z, p and ∂p/∂z according to (1.2) with coefficients from (3.1) and
modified per (3.3) to account for the particle concentration. The values of γ̇ , ∂γ̇ /∂z, p
and ∂p/∂z can be based on either their imposed values (solid curves in figure 4) or their
measured DEM values (data points in figure 4). Hence, we plot three F̂i results for R = 2
in figure 5(a,b): a dashed black curve for F̂i based on the imposed values of ∂γ̇ /∂z, p
and ∂p/∂z; a coloured solid curve for F̂i based on the DEM measurements of ∂γ̇ /∂z,
p and ∂p/∂z; and data points for the values of F̂i based on direct force measurements
from DEM. Error bars indicate the DEM data standard deviation over the 2 s window,
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(b)

(c)

Figure 5. Segregation force profiles for large, F̂l = Fl/mlg0 (a), and small, F̂s = Fs/msg0 (b), particles at
R = 2 from the model (3.3) using the imposed velocity profile (dashed black curves) and the measured profiles
(solid coloured curves) in figure 4 as well as direct DEM measurements (symbols) from 2 s time averages after
the flow reaches steady state. Note the different horizontal axes limits in (a,b). Vertical dotted lines indicate the
value about which F̂l and F̂s balance according to (3.4). (c) Inertial number profiles, I = γ̇ d̄/

√
p/ρ (see text).

sampled at 0.01 s intervals (shown only for every fourth data point to avoid obscuring
other data). Shaded error bands represent the uncertainty in force prediction, derived
from the standard deviations of the time-averaged flow fields that propagate through the

force model, σF = F
√

2(σp/p)2 + (σcl/cl)2 + (σcs/cs)2 + (σγ̇ /γ̇ )2. Again, we express

F̂i = Fi/mig0 values relative to g0 = 9.81 m s−2, even when the imposed gravitational
field is zero to allow comparison with the non-zero gravity cases and to provide physical
context. The vertical dotted lines in figure 5(a,b) indicate the value about which F̂l and
F̂s balance according to (3.4), which is cos θ for g /= 0 and 0 for g = 0 (zero gravity
component in the segregation direction is equivalent to θ = π/2).

Figure 5 shows that, overall, the predicted segregation forces, F̂l in figure 5(a) for large
particles and F̂s in figure 5(b) for small particles, match the DEM data for all cases,
regardless of whether the prediction is based on the imposed velocity profile (dashed black
curves) or the measured profiles (solid coloured curves). The good match is unsurprising
for the uniform shear flow as this is the gravity-induced segregation case upon which the
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concentration dependence in (1.3) is based. However, the strong agreement in the other
three cases demonstrates the validity of our approach.

In detail, first consider the linear velocity profile in column (i) of figure 5. Here the
kinematics-induced segregation is zero and all segregation is due to gravity, for which
∂p/∂z is constant. Hence, the segregation forces, F̂l and F̂s, are constant with depth. More
importantly, F̂i based on the imposed values of ∂p/∂z (dashed black lines), F̂i based on
the DEM measurements of ∂p/∂z (solid coloured curves) and F̂i based on direct force
measurements (data points) match well. Due to the imposed restoring forces (see figure 2),
the initial mixed concentration profile, cl = cs = 0.5, remains uniform throughout the
domain. Also note that the concentration weighted sum of F̂l and F̂s is one. In other
words, the total segregation force across both species for the entire system sums to the
total particle weight, as indicated by (3.4). This is evident in figure 5, column (i), as F̂l and
F̂s being equidistant on either side of the dashed vertical line at F̂i = 1 for both the DEM
measurements and the model predictions.

The match between the model predictions and the DEM data for the exponential velocity
profile in column (ii) of figure 5, while imperfect, indicates that kinematics-induced
segregation can be captured by the extension of the intruder particle segregation force
in (1.2) using the concentration dependence described by (3.3). In this case, F̂l and
F̂s depend only on the kinematics-induced term in (1.2c) to which γ̇ , ∂γ̇ /∂z and p
all contribute. However, even though γ̇ and ∂γ̇ /∂z vary with depth for the exponential
profile (see figure 4b(ii),c(ii)), the product (1/γ̇ )∂γ̇ /∂z is constant, as is p. Hence, the
kinematics-induced segregation force is depth-independent. The model predictions based
on both the imposed velocity profile (dashed black line) and the measured velocity
(coloured solid curve) slightly overestimate the magnitude of F̂l and F̂s. The model’s
underestimate of the segregation forces does not appear to be related to issues with the
profiles in figure 4, for which the measured profiles for γ̇ , ∂γ̇ /∂z and p seem to follow the
imposed profiles quite closely. Nevertheless, F̂l > 0, indicating a segregation force due to
the shear that is in the positive z direction for the large particles, reflecting the tendency of
large particles to segregate toward regions of higher shear rate in dense flows (Fan & Hill
2011b; Jing et al. 2021). In contrast, F̂s < 0, which reflects the tendency of small particles
to segregate toward low-shear regions. Additionally, because g = 0 in this case, the total
segregation force sums to 0 instead of 1 (equation (3.4) becomes clF̂l + csF̂s = 0), as is
evident in figure 5(a(ii),b(ii)) and verified mathematically from the data.

Predicting segregation forces for the parabolic velocity profile is more challenging,
particularly near z/H = 0.5 where the flow is quasi-static. Since the pressure gradient is
zero, the segregation force is again entirely kinematics-induced but with two complications
at z/H = 0.5. First, there is a singularity in the kinematics-induced term in (1.2c), because
γ̇ = 0, and, second, the segregation force switches sign. Both effects are evident in the
measured segregation force and the model predictions. It is therefore not surprising that
the model predictions deviate substantially from the measured segregation force around
z/H = 0.5. While the model predicts the strong curvature in the dependence of the
segregation forces on z, it again overpredicts the segregation forces compared with DEM
measurements. The exception is near the walls where the DEM measurements lie between
the model prediction determined using the imposed velocity profile (dashed black curve)
and the model prediction determined using the measured velocity profile (solid coloured
curve). Clearly, the model captures the qualitative dependence of the segregation force
on the local kinematics, although the quantitative agreement could be better. Again, since
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g = 0, clF̂l + csF̂s = 0, as is evident in figure 5(a(iii),b(iii)) and verified mathematically
from the data.

The last controlled shear flow that we consider combines gravity-induced and
kinematics-induced segregation using an exponential velocity profile with gravity (see
column (iv) of figure 5). Here the combined effects of the pressure and shear rate gradients
result in a linear dependence of F̂i on z. The upward segregation force on large particles
increases with depth, while the segregation force on small particles decreases with depth
to the point of changing from positive to negative near z/h ≈ 0.2. Nevertheless, F̂l and
F̂s are equidistant on either side of the dotted vertical line at F̂i = 1, indicating that (3.4)
is satisfied. The match between the model predictions and the DEM measurements of
the segregation force is reasonable. It is also evident that the model predictions based on
the measured velocity profile capture a portion of the impact of the lower wall on the
segregation force.

To further assess the applicability of the segregation force model proposed here, we also
plot profiles of the local inertial number, I = γ̇ d̄/

√
p/ρ where d̄ = ∑

cidi, in figure 5(c).
The large variation in I from nearly zero to 0.4 confirms the insensitivity of the segregation
force to I found in previous studies on the intruder segregation force (Jing et al. 2021);
that is, pre-factors f g(R) and f k(R) of model (3.1) do not depend systematically on I in
the dense flow regime. Note that this does not contradict the general dependence of the
segregation velocity on I, as the inter-species drag force during segregation is dependent
on I (Bancroft & Johnson 2021; Jing et al. 2022).

4.2. Varying concentration
The previous section considers only uniform mixtures of equal small and large particle
volumes (cs = cl = 0.5). However, the concentration dependence of the segregation force
based on (3.3) should be valid for any concentration, 0 ≤ cl ≤ 1 with cs = 1 − cl, and
for non-uniform spatial concentration as well. To test this, we consider the exponential
velocity profile case of figure 3(d) because it includes both gravity-induced and
kinematics-induced segregation. Model predictions for F̂i for uniform concentrations of
cl = 0.2 and cl = 0.8 at R = 2 are shown in figure 6. Whether based on imposed profiles
for γ̇ , ∂γ̇ /∂z, p and ∂p/∂z or measured profiles of these same quantities, the model
predictions generally coincide with each other as well as with the DEM results, although
the measured F̂i values for the lower-concentration species tend to be closer to zero than
the predicted values. This is likely because the segregation forces have large uncertainty
and the fitting parameters used in (3.1) have some associated uncertainty. Although it is
not evident from figure 6, the total segregation force for both cl = 0.2 and cl = 0.8 sums
to one as expected from (3.4).

Up to this point and in all cases, we start with a uniform concentration of small and large
particles in the flow domain, apply a spring-like restoring force to the particles within each
layer to maintain the fully mixed condition, and measure the local segregation force for
each particle type, as outlined in the context of figure 2. However, the same approach can
also be applied when the concentration varies with depth. Here, we consider this situation
with controlled linear and exponential velocity profiles with gravity, i.e. the flows shown
in figure 3(a,d).

Three large-particle concentration profiles are considered (with cs = 1 − cl), as shown
in figure 7(a): increasing cl with depth, decreasing cl with depth and decreasing cl in the
top half of the flow and increasing cl in the bottom half of the flow. In all three cases, the
solid volume fraction φ is nearly constant. Note that the concentration profiles in the first
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Figure 6. Segregation force profiles for F̂l = Fl/mlg0 (blue circles) and F̂s = Fs/msg0 (red triangles) with
R = 2 for the exponential velocity profile with bulk large-particle concentrations (a) cl = 0.2 and (b) cl = 0.8,
based on the imposed velocity profiles (dashed lines) and the measured profiles (solid curves) compared with
DEM measurements (symbols) averaged over 2 s in steady state. Vertical dotted lines indicate the value about
which F̂l and F̂s balance according to (3.4). Error bars indicate DEM data standard deviation. Shaded bands
represent the uncertainty of the segregation force calculated from the measured flow profiles.

two cases (figure 7a(i),(ii)) are slightly nonlinear due to packing that occurs after initially
filling the system with a linearly varying concentration of particles, and, in all cases, a
slight wall exclusion effect is evident in cl, as expected. Also, as a result of the non-trivial
dependence of cl and cs on z, it is not possible to determine the model-predicted values
of F̂i based on the imposed velocity profiles, which are shown as dashed black curves in
preceding figures.

When the concentration of large particles increases with depth (column (i)), the
predicted segregation forces match the measured forces for both the linear (figure 7b(i))
and exponential (figure 7c(i)) velocity profiles. Specifically, for the linear velocity profile
(figure 7b(i)), F̂l remains slightly above one through the entire depth, but F̂s decreases
further below one with increasing depth, particularly for small z/H. This is consistent
with the fact that the segregation velocity of a species increases as its local concentration
decreases for most segregation velocity models (Jones et al. 2018) and experimental
scalings (Trewhela, Ancey & Gray 2021) – as cl increases with depth, the segregation
velocity of small particles increases. However, the segregation force is not restricted to
have the same trend as the segregation velocity because the segregation velocity results
from the imbalance of all forces acting on a particle including the drag force, which we
do not consider here. The segregation forces are larger for the exponential velocity profile
(figure 7c(i)). For both velocity profiles, the model predictions based on the measured
concentration and flow fields match the DEM measurements of the segregation force. Note
that the measured segregation force, F̂i, has large uncertainty when ci is small due to the
small number of associated particles available for averaging at low concentrations.

When the large-particle concentration decreases with depth (column (ii)), again F̂l > 1
and F̂l increases deeper in the bed where cl is smaller, particularly for the exponential
velocity profile (figure 7c(ii)). As in column (i), F̂s < 1. The model prediction matches
the DEM measurement reasonably well for both the linear and exponential velocity
profiles. Similarly for the cl profile with a minimum at z/H = 0.5 (column (iii)), the
model prediction matches the measured segregation force reasonably well, even with large
changes in the concentration gradient. For all cases in figure 7, (3.4) is satisfied locally.
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Figure 7. Concentration, solid volume fraction and segregation force profiles for F̂l = Fl/mlg0 (blue) and
F̂s = Fs/msg0 (red) at R = 2 for large-particle concentrations varying with depth (a). Segregation force profiles
for large (circles) and small (triangles) particles in a controlled uniform shear flow with gravity (b) and an
exponential velocity profile with gravity (c) with the same conditions as in figure 4. Here F̂i is based on the
measured profiles (solid curves) as well as DEM measurements (symbols) averaged over 2 s in steady state.
Vertical dotted lines indicate the value about which F̂l and F̂s balance when weighted by the concentration
according to (3.4). Note that the truncated data point in (c,iii) near z/H = 0 with F̂s = −3.12 nearly matches
the model prediction of −2.72 (red curve) within the range of uncertainty.

Unlike flows with uniform particle concentrations, particles in flows with depth-varying
concentration profiles tend to diffuse toward a uniform concentration state in the
absence of segregation forces. In this case, the force-measurement-imposed restoring
forces balance not only the segregation forces but also the remixing/diffusive forces,
consequently influencing the measurement of the segregation force. However, the fact that
the segregation force model (3.3) still predicts the measured segregation force reasonably
well for cases in figure 7 indicates that the concentration gradients have negligible impact
for these cases. The possible effects of diffusion on the restoring force approach are further
discussed in the supplementary material.
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Overall, it is evident that the concentration-dependent segregation force model (3.3),
which relies on the intruder segregation-force-based model (1.2), can estimate segregation
even when the concentration fields are spatially varying. Additionally, this prediction
capability implies that the segregation force is relatively insensitive to concentration
gradients.

4.3. Natural shear flows
As demonstrated above, the intruder segregation force model (1.2) with gravity- and
kinematics-driven terms can be extended to apparently arbitrary concentrations and
concentration fields via (3.3) in a variety of flows where the velocity field is artificially
controlled. We now examine four uncontrolled wall- or gravity-driven flows illustrated in
figure 3(e–h) in which the velocity field develops naturally via the boundary conditions
and gravity-induced body forces. Of note in the three examples with gravity (figure 3f –h)
is the direction of gravity with respect to the flow, which is characterized by the angle of
the bottom wall with respect to horizontal, θ . For wall-driven flow, g is perpendicular to
the flow direction (in z), such that θ = 0; for inclined chute flow, θ is greater than or equal
to the critical angle for flow to occur; and for vertical chute flow, g is parallel to z, such
that θ = π/2 and ∂P/∂z = 0.

As in the analysis of the controlled-velocity flow fields in the previous sections, we first
plot dimensionless depth profiles of u, γ̇ , ∂γ̇ /∂z, p, cl and φ with cl = cs = 0.5 for the
natural flows, as shown in figure 8. The kinematic terms are scaled with g0 and H, since
there is no intrinsic velocity scale for the vertical- or inclined-chute cases. We use R = 1.5
here to test a third size ratio (similar results for these natural flows are achieved for other
size ratios).

Consider first the wall-driven flow without gravity (column (i)). The velocity profile is
nearly linear with depth, except for a slight deviation near the lower wall which is amplified
for γ̇ and ∂γ̇ /∂z. The slightly asymmetric velocity profile near the top and bottom walls
is due to the top wall being able to move vertically to accommodate dilation during flow,
while the bottom wall is fixed vertically. The profiles of pressure and solid volume fraction,
φ, are nearly constant, while the concentration profile shows small deviations from its
mean value near the walls. With gravity (column (ii)), the wall-driven flow velocity profile
is steep near the upper moving wall at z/H = 1 but flattens in the bottom half of the flow
where the pressure is higher. This results in γ̇ and ∂γ̇ /∂z decreasing near the bottom of the
flow. At the same time the pressure increases linearly with depth, and the pressure gradient
is nearly constant. There is a small increase in φ with depth as particles near the bottom
wall dilate less due to the larger local overburden pressure.

The vertical chute flow (column (iii)) has a plug-like velocity profile, resulting in γ̇

varying from negative to positive with depth, while ∂γ̇ /∂z ≤ 0 with widely varying values.
The pressure remains nearly constant at P0 ≈ 0.89ρφg0H, while the solid volume fraction
decreases near the walls compared with the centre of the chute, as observed previously
(Fan & Hill 2011b). Despite the restoring force to prevent segregation, cl varies somewhat
in the region where γ̇ is non-zero. Finally, the curvature of the velocity profile for the
inclined chute with θ = 28◦ (column (iv)) is opposite that of the wall-driven flow with
gravity (column (ii)). Consequently, γ̇ increases with depth, while ∂γ̇ /∂z is negative,
except near the bottom wall, and relatively small through most of the depth compared
to the other two flows with gravity. Like the wall-driven case with gravity, p increases
with depth, but is zero at the free surface, and ρgH cos θ < ρgH at the base of the flow.
The solid volume fraction is independent of depth.
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Figure 8. Scaled flow fields of natural shear flows with R = 1.5, dl = 4 mm, ds = 8/3 mm, ρl = ρs =
1 g cm−3. Plane shear (i) without and (ii) with gravity, (iii) vertical chute and (iv) inclined chute. Here
H ≈ 0.2 m = 50dl for wall-bounded cases and fixed H = 0.2 m for vertical chute case, g = g0 = 9.81 m s−2,
and θ = 28◦ for the inclined chute. Applied overburden pressure P0 = ρφg0H (i,ii). Depth-averaged pressure
for the vertical chute P0 = 0.89ρφg0H (iii). In (e) cl data symbols are coloured and φ data symbols are black.
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Figure 9. Segregation force profiles for F̂l = Fl/mlg0 (a) and F̂s = Fl/msg0 (b) in natural shear flows for
cl = cs = 0.5 and R = 1.5 based on model predictions using measured flow fields in figure 8 (solid coloured
curves) and DEM measurements (symbols) time averaged over 2 s after the flows reach steady state. Note the
different horizontal axes limits in (a,b). Error bars indicate the standard deviation. Shaded bands represent the
uncertainty of the segregation force calculated from the measured profiles. (c) Inertial number profiles, I.

Model predictions of F̂i for the four natural shear flows are shown in figure 9. Unlike the
flows with controlled velocity profiles, these predictions are based only on flow profiles
calculated from the DEM simulations (solid coloured curves), since there is no imposed
velocity profile to consider. For the wall-driven shear flow without gravity (column (i)), the
DEM measured forces match the nominal value of zero and the model predictions, except
near the bottom wall where F̂l is negative and F̂s is positive for the DEM measurements
due to wall effects evident in column (i) of figure 8. However, it is notable that the
model reflects the measured non-zero forces at the bottom wall reasonably well. For the
wall-driven shear flow with gravity (column (ii)), the DEM measured forces and the model
prediction show the same trends – increasing with depth in the upper portion of the flow
and then decreasing, changing sign, and reaching a relatively larger amplitude near the
lower wall. The match is not as good in the lower portion of the flow as in the upper
portion.

989 A17-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.483


Y. Duan and others

For the vertical chute flow (column (iii)), the model-predicted forces match the DEM
measurements near the walls (within 0.2H), which is where the shear rate is non-zero
and the inertial number is not too small (figure 9c(iii)). In the central portion of the chute
where the flow is plug-like, γ̇ ≈ 0, ∂γ̇ /∂z ≈ 0 and I ≈ 0, the model correctly predicts the
change in the direction of the segregation force from z/H ≈ 0.3 to z/H ≈ 0.7, but with
extremely large uncertainty between these two heights and with much larger predicted
forces than the DEM measurements. This large deviation is likely due to a breakdown of
the model validity due to the corresponding very low inertial number (figure 9c(iii)) and
the singularity in the kinematics term in (1.2c) associated with γ̇ → 0. Lastly, the model
prediction shows the same trends as the DEM measurements for the inclined chute flow
(column (iv)). The model underestimates the measured segregation forces for z/H > 0.2
where the measured segregation forces are small and noisy, but matches the data well
near the bottom wall (z/H < 0.2) where F̂l and F̂s are largest. In all cases, the sum of the
segregation force across the two species is satisfied per (3.4).

While the correspondence between the model predictions and DEM measurements
of the segregation forces in these four natural flows is less satisfying than that for the
controlled flows, these results nevertheless demonstrate that the intruder force model of
(1.2) can be applied to bidisperse mixtures with reasonable accuracy using (3.1) and (3.3),
except in regions where γ̇ ≈ 0.

5. Conclusions

Predicting the segregation force on single-intruder particles, not to mention the more
difficult problem of particles in mixtures, in granular flows confounded researchers for
decades until the virtual spring approach pioneered by Guillard et al. (2016) allowed it to
be directly measured. Using that method, we established the dependence of the segregation
force on gravity and local kinematics for an intruder particle in three-dimensional
granular flow of spherical particles via (1.2) and (3.1) (Jing et al. 2021). We then
extended the virtual spring measurement method to allow measurement of segregation
forces in finite-concentration size-bidisperse mixtures with pressure gradients via (1.3)
(Duan et al. 2022). Here, we further extend the model for the combined gravity-
and kinematics-induced segregation force on an intruder particle (1.2) to arbitrary
concentrations of size-bidisperse particle mixtures, (3.3), by applying the concentration
dependence described by (1.3) to both gravity- and kinematics-induced components of the
segregation force. We use an extensive set of DEM simulations to show that the approach
can estimate the segregation force in four idealized flows with an artificially controlled
velocity profile as well as four natural shear- and gravity-driven flows (subject to minor
deviations near walls for wall-driven flows and for very small inertial numbers).

Considering the dependence of the segregation force on the particle size ratio, the
velocity field and its gradients, the pressure field and its gradients and the relative
concentrations of the two particle species, the performance of the model, i.e. (1.2), (3.1)
and (3.3), is remarkable. In all the situations that we consider, it is possible to estimate the
local spatial- and concentration-dependent segregation force on small and large particles
starting only with a knowledge of particle size ratio and the flow conditions, of which the
latter can be based on theory or measurement.

Given the broad range of conditions considered here, this approach is likely generally
applicable to a wide range of size-bidisperse granular flows at inertial numbers typical of
dense flows, although kinetic-theory-based approaches for segregation may be appropriate
where granular temperature gradients play a significant role (Larcher & Jenkins 2015;
Neveu et al. 2022). In fact, the success of the combined models of (1.2), (3.1) and (3.3)
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demonstrated here for size-bidisperse flows suggests that it is possible to extend the
approach to polydisperse and density disperse flows, as well as combined size and density
segregation, particularly since the effects of both particle size and density are accounted for
by the intruder segregation force (Jing et al. 2020, 2021). For example, density differences
can be considered in (1.1) through the pressure term, which is an integral over species
concentration and density, i.e. p = ∫ z

0 φ(clρl + csρs)g(H − z) + P0. This would allow the
prediction of combined size and density segregation, although further validation work is
necessary. Furthermore, friction coefficients measured from experiments can be notably
low compared with DEM simulations, i.e. μ ≈ 0.1 for soda-lime glass (Foerster et al.
1994). More research is needed under even more widely varying conditions to refine the
segregation force model, particularly with respect to low friction coefficients (μ < 0.2).

The accurate predictions of the segregation force model detailed in this paper are an
important piece in the puzzle of predicting segregation in size-disperse granular flows.
Although the overall segregation fluxes under many conditions can be predicted via
continuum models (Schlick et al. 2016; Xiao et al. 2016; Duan et al. 2021), accuracy is
predicated on knowledge of the dependence of the segregation velocity for each species
as a function of relative size or density (Umbanhowar et al. 2019). In addition to the
segregation force considered here, another important piece needed for predicting the
segregation velocity is the drag force on an intruder particle moving through sheared
granular beds, which was recently shown to be Stokes-like across a wide range of
conditions (Jing et al. 2022). A simple force balance on an intruder particle incorporating
both the segregation force and the drag force allows prediction of the segregation velocity,
which is a crucial element in continuum models for predicting overall segregation in
granular flows (Umbanhowar et al. 2019). This is clearly an appropriate direction for
further research.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.483.
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